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Abstract
Customer problem troubleshooting has been a crit-

ically important issue for both customers and system
providers. This paper makes two major contributions to
better understand this topic.

First, it provides one of the first characteristic stud-
ies of customer problem troubleshooting using a large
set (636,108) of real world customer cases reported from
100,000 commercially deployed storage systems in the
last two years. We study the characteristics of cus-
tomer problem troubleshooting from various dimensions
as well as correlation among them. Our results show that
while some failures are either benign, or resolved auto-
matically, many others can take hours or days of man-
ual diagnosis to fix. For modern storage systems, hard-
ware failures and misconfigurations dominate customer
cases, but software failures take longer time to resolve.
Interestingly, a relatively significant percentage of cases
are because customers lack sufficient knowledge about
the system. We observe that customer problems with at-
tached system logs are invariably resolved much faster
than those without logs.

Second, we evaluate the potential of using storage
system logs to resolve these problems. Our analysis
shows that a failure message alone is a poor indicator
of root cause, and that combining failure messages with
multiple log events can improve low-level root cause pre-
diction by a factor of three. We then discuss the chal-
lenges in log analysis and possible solutions.
1 Introduction
1.1 Motivation

There has been a lot of effort, both academic and com-
mercial [12, 22, 29, 35, 36, 46], put into building robust
systems over the past two decades. Despite this, prob-
lems always occur at customer sites. Customers usually
report such problems to system vendors who are then re-
sponsible for diagnosing and fixing the problems. Rapid
resolution of customer problems is critical for two rea-
sons. First, failures in the field result in costly downtime

for customers. Second, these problems can be very ex-
pensive for system vendors in terms of customer support
personnel costs.

A recent study indicates that problem diagnosis re-
lated activity is 36–43% of TCO (total cost of owner-
ship) in terms of support costs [17]. Additionally, down-
time can cost a customer 18–35% of TCO [17]. The
system vendor pays a price as well. A survey showed
that vendors devote more than 8% of total revenue and
15% of total employee costs on technical support for cus-
tomers [52]. The ideal is to automate problem resolution,
which can occur in seconds and essentially costs $0.

Unfortunately, customer problem troubleshooting is
very challenging because modern computing environ-
ments consist of multiple pieces of hardware and soft-
ware that are connected in complex ways. For exam-
ple, a customer running an application, which uses a
database on a storage system, might complain about poor
performance, but without sophisticated diagnostic infor-
mation, it is often difficult to tell if the root cause is
due to the application, network switches, database, or
storage system. Individual components such as stor-
age systems are themselves composed of many intercon-
nected modules, each of which has its own failure modes.
For example, a storage system failure can be caused by
disks, physical interconnects, shelves, RAID controllers,
etc [4, 5, 27, 47, 28]. Furthermore a large fraction of
customer problems tend to be human generated miscon-
figuration [46] or operator mistakes [43].

In all these cases, there is a problem symptom (e.g.
system failure) and a problem root cause (e.g. disk shelf
failure). The goal of customer problem troubleshooting
is to rapidly identify the root cause from the problem
symptom, and apply the appropriate fix such as a soft-
ware patch, hardware replacement or configuration cor-
rection. In some cases the fix is simply to clear a cus-
tomer’s wrong expectation.

It is standard practice for software and hardware
providers today to build-in the capability to record im-
portant system events in logs [51, 44]. Despite the
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widespread existence of logs, there is limited research
on the use of logs to troubleshoot system misbehavior
or failures. For IP network systems, some fault localiza-
tion studies use log events to observe the network link
failures, while the core diagnosis algorithms rely on the
dependency models describing the relationship between
link failures and network component faults [32, 30, 3].
For other systems, such a priori knowledge is usually
lacking. Other research using logs deals with intrusion
detection and security auditing [1, 19]. In industry, Log-
logic [39] and Splunk [25] provide solutions to help mine
logs for patterns or specific words. While useful, they do
not automate system fault diagnosis.

In this paper, we explore the use of storage sys-
tem logs to troubleshoot customer problems. We start
by characterizing the nature of customer problems, and
measuring problem resolution time with and without logs
(Sections 2 and 3). We then evaluate the extent to which
a problem symptom alone can help narrow the possi-
ble cause of the problem (Section 4). Finally, we study
the challenges in using logs to accurately obtain prob-
lem root cause information (Section 5) and briefly outline
some ideas we have for automated log analysis (Section
5.3). We are currently evaluating these ideas in a sys-
tem we are building for fully automated customer trou-
bleshooting from logs.

1.2 Our Findings
Providing meaningful, quantitative answers to the

questions we want to explore is a challenging task since it
requires analysis of hundreds or thousands of real world
customer cases and system logs. We speculate the lack
of availability of such a data set is one of the reasons for
the absence of studies in this area.

We had access to three structured databases at NetApp
containing a wealth of information about customer cases,
relevant system logs, and engineering analysis of the cus-
tomer problems.

Using this data, our work makes two major contri-
butions. First, it provides one of the first characteris-
tic studies of customer problem troubleshooting using
a large set (636,108) of real world cases from 100,000
commercially deployed storage systems produced by Ne-
tApp. We study the characteristics of customer problem
troubleshooting from various dimensions including dis-
tribution of root causes, impact, problem resolution time
as well as correlation among them. We evaluate the fea-
sibility and challenges of using logs to resolve customer
problems and outline a potential automatic log analysis
technique.

We have the following major findings:
(1) Problem troubleshooting is a time-consuming and

challenging task. While we observed that 36% of re-
ported problems are benign and automatically resolved,

Sat Apr 15 05:58:15 EST [busError]: SCSI adapter encountered an unexpected bus phase. Issuing SCSI bus reset.
Sat Apr 15 05:59:10 EST [fs.warn]: volume /vol/vol1 is low on free space. 98% in use.
Sat Apr 15 06:01:10 EST [fs.warn]: volume /vol/vol10 is low on free space. 99% in use.
Sat Apr 15 06:02:14 EST [raidDiskRecovering]: Attempting to bring device 9a back into service.
Sat Apr 15 06:02:14 EST [raidDiskRecovering]: Attempting to bring device 9b back into service.

……
Sat Apr 15 06:07:19 EST [timeoutError]: device 9a did not respond to requested I/O. I/O will be retried.
Sat Apr 15 06:07:19 EST [noPathsError]: No more paths to device 9a: All retries have failed.
Sat Apr 15 06:07:19 EST [timeoutError]: device 9b did not respond to requested I/O. I/O will be retried.
Sat Apr 15 06:07:19 EST [noPathsError]: No more paths to device 9b. All retries have failed.
Sat Apr 15 06:08:23 EST [filerUp]: Filer is up and running.

……
Sat Apr 15 06:24:07 EST [panic:ALERT]: Panic String: File system hung in process idle_thread1

Log  noise

Problem symptom

Problem root cause

Total of 106 log events

Log  noise

RAID retry

SCSI retry

Critical event

Figure 1. A sample asup message log. The
problem symptom is a panic. The root cause is a SCSI
bus bridge error. For this root cause, the log has some
noise, i.e. events that are not connected with this case.

the remainder required expensive manual intervention
that can take a long time.

(2) Hardware failures (40%) and misconfigurations
(21%) dominate customer cases. Software bugs account
for a small fraction (3%) but can cause significant down-
time and take much longer to resolve.

(3) A significant percentage of customer problems
(11%) are because customers lack sufficient knowledge
about the system, which leads to misconfiguring the op-
erating environment.

(4) More than 87% of problems have low impact be-
cause they are handled by built-in failure tolerance mech-
anisms such as RAID-DP R� [16]. While high-impact
problems are much fewer, they are much more difficult to
troubleshoot due to complex interactions between system
modules and the multiple failure modes of these mod-
ules.

(5) An important finding is that customer cases with
available system log messages invariably have a shorter
(16-88%) problem resolution time than cases that don’t
have logs.

(6) Critical events in logs, which capture the failure
symptoms, can help identify the high-level problem cat-
egory, such as hardware problem, misconfiguration prob-
lem, etc. However, on their own, critical events are not
enough to identify a more precise problem root cause
which is necessary to resolve the customer problem.

(7) Combining critical events with multiple other log
events can improve the problem root cause prediction by
3x, except for misconfigurations which tend to have too
many noisy, unrelated log events.

(8) Logs are challenging to analyze manually. They
contain a lot of log noise, due to messages logged by
modules that are not related to the problem. Often log
messages are fuzzy as well. This calls for an intelligent
log analysis tool to filter out log noise and accurately cap-
ture a problem signature.

While we believe that many of our findings can be
generalized to other system providers, especially storage
system providers, we would still like to caution readers
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to take our dataset and evaluation methodology into con-
sideration when interpreting and using our results.

2 Data Sources and Methodology
In this section, we describe how customer cases are

created and resolved, and the use of system logs in this
process. We also discuss how we select case and log data
for analysis.

2.1 The AutoSupport System
The AutoSupport system [33] consists of infrastruc-

ture built into the operating system to log system events
and to collect and forward these events to a database.
While customers can choose if they want to forward
these messages to the storage company, in practice most
do so since it allows for proactive system monitoring and
faster customer support.

Asup messages (autosupport messages) are sent both
on a periodic basis and also when critical events oc-
cur. Periodic messages contain aggregated information
for the week such as average CPU utilization, number
of read and write I/Os, ambient temperature, disk space
utilization etc. Critical events consist of warning mes-
sages or failure messages. Warnings, such as a volume
being low on space, can be used for proactive resolution.
A failure message, such a system panic or disk failure is
diagnosed and fixed, after it is reported.

Every asup message contains a unique id that identi-
fies the system that generated the message, the reason for
the message, and any additional data that can help such
as previously logged system events, system configuration
etc.

2.2 An Example Scenario and Terminology
Figure 1 shows a sample asup message log. At the

very end of the log is a critical event which is a message
showing there was a file system panic that halted the sys-
tem. Critical events can be either failure messages or
warning messages. The critical event contains a problem
symptom, in this case the system panic, which is what
the customer observes as the problem.

Notice that every module in the system logs its own
messages, and this is part of what makes log analysis
very difficult. There is often a lot of log noise, which
is what we call log messages that are not relevant to the
current problem. As we see in Figure 1, there are over
100 messages in a short span of time, most of which are
not relevant to the problem symptom.

In this example, we see that various components be-
low the file system, including, the RAID and the SCSI
layer, log their own failure messages. From our analysis,
we determined that the problem root cause was a SCSI
bus failure which is logged 106 events before the prob-
lem symptom.

Therefore, manually inspecting these logs can be time
consuming. Furthermore, manual inspection requires a
good understanding of the interactions between various
software layers. In this example, the person resolving the
case from logs would need to realize that the SCSI bus
failure makes disks unavailable which in turn caused the
file system to panic to prevent further writes that could
not be safely written to disk.

Customers

Human-Generated

Auto-Generated
Filtering

Resolutions

Warnings (35%)

Support Center

Automatic Hardware 
Replacement (1%)

Automatic System Panic Diagnosis (~0.1%)

Support Staff

Field Problems (64%)

Figure 2. Flowchart of the customer sup-
port system

2.3 How Customer Cases are Created
Customer cases are created either automatically or

manually. For every asup message that is received by
the company, a rule-engine is applied to determine if a
customer case should be created in the customer sup-
port database. We refer to these cases as auto-generated
cases. Such cases have a problem symptom, which is the
asup failure or warning message that led to the case be-
ing opened. For example, a system panic is a symptom
that always results in the creation of a customer case.

Human-generated cases are those that are created di-
rectly by the customer, either over the phone or by email.
These often include performance problems which are
difficult to detect and log automatically.

Figure 2 illustrates how customer cases are generated
and resolved in the customer support system.

2.4 Customer Case Resolution
Auto-generated customer cases are either manually

resolved or automatically resolved. In Figure 2, 35%
of customer cases are filtered out by the system since
they are warnings that have no immediate customer im-
pact. For 1% of customer cases, for example a disk fail-
ure, the resolution is to automatically ship a replacement
part. 0.1% of customer cases are system panics that were
automatically resolved by comparing the panic message
and stack back traceto a knowledge-base and pointing the
customer to appropriate fix.

In our study, we focus only on human-generated and
auto-generated cases that are manually resolved since
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these are the ones that are most expensive both in terms
of downtime and financial cost to the customer and the
storage system company.

2.5 Data Selection
We now describe how we selected customer case data

for analysis in later sections of this paper. There are
two primary databases that were used. The first is a
Customer Support Database that contains details on ev-
ery customer case that was human-generated or auto-
generated. Certain problems that cannot be resolved
by customer support staff are escalated to engineering
teams, who also record such problems in an Engineering
Case Database.

We analyzed 636,108 customer cases from the Cus-
tomer Support Database over the period 1/1/2006 to
1/1/2008. Of these 329,484 customer cases were
human-generated and 306,624 customer cases were auto-
generated. Overall these represent about 100,000 storage
systems.

For each of these 636,108 customer cases, problem
category and resolution time are retrieved from the Cus-
tomer Support Database. For each of the 306,624 auto-
generated customer cases, we also retrieved the critical
event that led to the creation of the case. However, the
human-generated cases do not have such information.

The goal for resolving any customer case is to deter-
mine the problem root case as soon as possible. Since
such information in the Customer Support Database is
unstructured, it was difficult to identify problem root
cause for solved cases. However, the Engineering Case
Database records problem root cause at a fine level. We
used 4,769 such cases that were present in both the Cus-
tomer Support as well as Engineering Case database to
analyze problem root cause and its correlation with criti-
cal events.

To study the correlation between problem root cause
and storage system logs, we retrieve the AutoSupport
logs from the AutoSupport Database. Since not all cus-
tomer systems send AutoSupport logs to the company,
among 4,769 customer cases, 4,535 customer cases have
corresponding AutoSupport log information.

2.6 Generality of our study
Although our study is based on customer service

workflow at NetApp, we believe it is quite representative.
As defined in ITIL [57], this customer service workflow
represents a typical troubleshooting sequence: a problem
case is opened by a call to the help center or by an alert
generated by a monitoring system, followed by diagno-
sis by support staff. A similar process is followed by
IBM customer service as described in [24]. Moreover,
the comprehensive environment of the storage systems,
gives us an opportunity to study a mixture of hardware,
software and configuration problems.
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Figure 3. Cumulative Distribution Function
(CDF) of resolution time for all customer
cases. 1 There is wide variance in problem resolution
time, with some cases taking days to solve.

3 Characteristics of Field Problems
3.1 Problem Resolution Time

One of the most important metrics of customer sup-
port is problem resolution time, which is time spent be-
tween when a case is opened and when the resolution or
workaround is available for a customer. The distribution
of problem resolution times is the key to understanding
the complexity of a specific problem or problem class,
since it mostly reflects the amount of time spent on trou-
bleshooting problems. It is important to notice that it
should not be directly used to calculate MTTR (Mean
Time To Recovery), since it does not capture the amount
of time to completely solve the problems (e.g., for hard-
ware related problems, it does not include hardware re-
placement or when it is scheduled to minimize the impact
for users).

Figure 3 shows the Cumulative Distribution Function
(CDF) of resolution time for all customer cases selected
from the Customer Support Database. It is possible for
troubleshooting to take many hours. For a small fraction
of cases, resolution time can be even longer. Since the
x-axis of the figure is logarithmic, the graph shows that
doubling the amount of time spent on problem resolution
does not double the number of cases resolved. While the
Autosupport logging system is an important step in help-
ing troubleshoot problems, this figure makes the case that
better tools and techniques are needed to reduce problem
resolution time.

3.2 Problem Root Cause Categories
Analyzing the distribution of problem root causes is

useful in understanding where one should spend effort
when troubleshooting customer cases or designing more
robust systems. While a problem root cause is precise,
such as a SCSI bus failure, in this section we lump root
causes into categories such as hardware, software, mis-
configuration, etc. For all the customer cases, we study
1We anonymize results to preserve confidentiality and anonymity.
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(a) Categorization of Problem Root Causes (b) Average Resolution Time per Problem Root Cause Category1

Figure 4. Problem Root Cause Category. Hardware Failure is related to problems with hardware components,
such as disk drive. Software Bug is related to storage system software, and Misconfiguration is related to system problems
caused by errors in configuration. User Knowledge is related to technical questions, e.g., explaining why customers were
seeing certain system behaviors. Customer Environment is related to problems not caused by storage system itself. The
figures shows that hardware failures and misconfiguration problems are the major root causes, but software bugs took longer
time to resolve.
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Figure 5. Resolution Time Spent on Prob-
lem Root Cause by Category. Although soft-
ware problems take longer time to resolve on average,
hardware failure and misconfiguration related problems
have greater impact on customer experience.

resolution time for each category, relative frequency of
cases in each category, and the cost which is the average
resolution time multiplied by the number of cases for that
category.

As Figure 4 (a) shows, hardware failures and miscon-
figuration are the two most frequent problem root cause
categories, and contribute 40% and 21% to all customer
cases, respectively. Software bugs account for a small
fraction (3%) of cases. We speculate that software bugs
are not that common since software undergoes rigorous
tests before being shipped to customers. Besides tests,
there are many techniques [12, 29, 35, 36] that can be ap-
plied to find bugs in software. While on average, based
on figure 4 (b), software bugs take a longer time to re-
solve, since their number is so small their overall impact
on total time spent on all problem resolutions is not very
high, as Figure 5 shows.

It is interesting to observe that a relatively significant
percentage of customer problems are because customers
lack sufficient knowledge about the system (11%) or cus-
tomers’ own execution environments are incorrect (9%)
(e.g. a backup failure caused by a Domain Name Sys-
tem error). These problems can potentially be reduced by
providing more system training programs or better con-
figuration checkers.

Figure 4 (b) is our first indication that logs are in-
deed useful in reducing problem resolution time. Auto-
generated customer cases i.e. those with an attached sys-
tem log and problem symptom in the form of a critical
event message, take less time to resolve than human-
generated cases. The latter are often poorly defined over
the phone or by email. The only instance where this is
not true is when the problem relates to the customer’s en-
vironment, which is difficult to record via an automated
system.

3.3 Problem Impact

In the previous subsections, we have treated all prob-
lems as equal in their impact on customers. We now con-
sider customer impact for each problem category. To do
this, we divide customer cases into 6 categories based on
impact ranging from system crash which is the most seri-
ous, to low impact unhealthy status. The other categories
from higher to lower impact are usability (e.g. inability
to access a volume), performance, hardware component
failure, and unhealthy status (e.g., instability of the in-
terconnects, low spare disk count). Hardware failures
typically have low impact since the storage systems are
designed to tolerate multiple disk failures [16], power-
supply failures, filer head failures etc. However, until
the failed component is replaced, the system operates in
degraded mode where the potential for complete system
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Figure 6. Problem Impact. 2 From the left to the right, it is in the order of higher impact to lower impact on customer
experience. Although the problems with higher impact happen much less frequently compared to the problems with lower
impacts, they are usually more complicated to resolve.

failure exists, should its redundant component fail.
Since human-generated customer cases do not have

all impact information in structured format, we randomly
sampled 200 human-generated cases and manually ana-
lyzed them. For auto-generated problems, we include all
the cases, and leverage the information in Customer Sup-
port Database.

For both human-generated and auto-generated cases,
the classification is exclusive: each problem case is clas-
sified to one and only one category. The classification is
based on how a problem impacts customers’ experience.
For example, a disk failure that led to a system panic will
be classified as an instance of System Crash. If it did not
lead to system crash (i.e. RAID handled it) it is classi-
fied as an instance of Hardware Component Failure. It
is important to notice that, in our study the Performance
problems are problem cases that lead to unexpected per-
formance slowdown. Therefore disk failures leading to
expected slowdown with RAID reconstruction processes
are classified as Hardware Component Failures, instead
of Performance problems.

Figure 6 (a) shows the distribution of problems by
impact. One obvious observation is that there are far
fewer high-impact problems than low-impact ones. More
specifically, system crash only contributes about 3%, and
usability problems contribute about 10%. Low impact
problems such as hardware component failure and un-
healthy status contribute about 44% and 20%, respec-
tively.

While high-impact problems are much fewer, as Fig-
ure 6 (b) shows, they are more time consuming to trou-
bleshoot. This is due to the complex interaction between
system modules. For example, the problem shown in
Figure 1 resulted in a system crash. The root cause was
an error in the SCSI bus bridge. This started a chain of
recovery mechanisms in layers of software, including re-
tries by the RAID layer and SCSI layer. As the result, the
time from the root cause to system failure is about a half
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Figure 7. CaseGenerationMethodandRes-
olution Time.1 Auto-Generated problems are re-
solved faster than Human-Generated problems.

hour, and there are more than 100 log events in between
the critical event and problem root cause. This makes
manual diagnosis of such problems difficult, even when
logs are available.

Finally, as we observed in the previous section, auto-
generated cases take less time to resolve than human-
generated ones.

3.4 Customer case generation method
As we mentioned in Section 2, 51.6% customer cases

were human-generated and 48.4% were auto-generated.
We now look at how these two methods impact resolution
time.

Figure 7 shows that resolution time for auto-generated
and human-generated customer cases is similar in dis-
tribution: both show huge variance in time. On the
other hand, auto-generated cases were solved faster than
human-generated ones.

One possible reason why auto-generated cases can be
resolved faster than human-generated ones is that auto-
generated cases contain valuable information such as

2“System Crash” here means crash of single system, which might
not lead to service downtime with a cluster configuration.
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Figure 8. Critical Events can partially help infer high-level problem root causes. The distribution
of customer cases across problem root cause categories, for 20 of the most common critical events. 4,769 auto-generated
customer cases that contain detailed root cause diagnosis were selected from the Engineering Case Database for this analysis.

critical events, which capture problem symptoms. In ad-
dition, information on prior failures or warnings is avail-
able in the system’s logs.

In comparison, human-generated problems are usu-
ally sent with vague descriptions, which vary from one
person to another and this information does not have the
same rigorous structure as auto-generated ones.

Similar trends have been observed in Figure 4(b).
Across all problem root cause categories, auto-generated
cases take 16-88% less resolution time than human-
generated cases. The only exception is Customer
Environment cases, where auto-generated and human-
generated cases take similar average resolution time.
4 Can Critical Events Help Infer Root

Causes?
Having established that customer cases with attached

system logs result in improved problem resolution time,
we now ask if critical events in the logs can be directly
used to identify problem root cause. To remind the
reader, a critical event is a special kind of log message
that contains a problem symptom, and triggers the au-
tomatic opening of a customer case via the Autosupport
system. An example of such an event is a system panic
log message.

4.1 High-level Problem Root Causes
We first look at the relationship between critical

events and high-level problem root cause categories:
hardware failure, software bug, and misconfiguration.
We do not present the results for the other two problem
root cause categories (user knowledge and customer en-
vironment) because they are often human-generated and
rarely have a clear critical event in the system log.

Figure 8 shows the distribution of customer cases
amongst the three high-level root cause categories for the

Case A

Sun Aug  5 08:26:39 CDT [downloadRequest]: newer system software download requested.
Sun Aug  5 08:29:38 CDT [downloadRequestDone]: download complete.
Sun Aug  5 08:34:36 CDT [raidLabelUpgrade]: upgrade RAID labels.
Sun Aug  5 08:34:56 CDT [diskLabelBroken]: device 1 has a broken label.
Sun Aug  5 08:34:56 CDT [diskLabelBroken]: device 2 has a broken label.
…
Sun Aug  5 08:37:42 CDT [raidVolumeFailure: ALERT]: RAID volume 1 has failed.

Case B

Wed Jan 14 09:41:13 CET [raidDiskInsert]: device 7 inserted.
Wed Jan 14 09:42:57 CET [raidMissingChild]: RAID object 0 only has 1 child, expecting 18.
Wed Jan 14 09:44:05 CET [raidVolumeFailure: ALERT]: RAID volume 2 has failed.

Figure 9. Two real-world customer cases
with the same critical event: RAID Volume
Failure but different root causes. Case A was
caused by a software bug: large-capacity disks, which
were previously used in degraded-mode (not used in full
capacity), were used in full capacity after a software
upgrade. However, due to a software bug, disk labels
could not be correctly recognized and multiple broken
labels led to a RAID Volume Failure Message. Case B
was caused by misconfiguration: customers mistakenly
inserted non-zeroed disk into the system, leading to a
RAID Volume Failure Message.

20 most frequent critical events. For this experiment, we
selected those auto-generated customer cases from the
Customer Support Database that were also in the Engi-
neering Case Database, so that we could relate each cus-
tomer case to its detailed engineering diagnosis.

As seen in Figure 8, for several critical events, there
is a dominant high-level problem root cause. For ex-
ample, 91% of customer cases with critical event 10 (a
Misconfiguration Warning Message) were obviously di-
agnosed as misconfiguration problems, and 95% of cus-
tomer cases with critical event 11 (a Hardware Failure
Warning Message) were diagnosed as hardware failure
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Figure 10. Critical Events cannot infer module-level problem root causes.

Case C

Tue Feb 21 19:00:01 EST [FibreChannelUnstable]: indicates loop stability problem.
Tue Feb 21 19:27:25 EST [timeoutError]: device 4a did not respond to requested I/O. I/O will be retried.
Tue Feb 21 19:27:35 EST [timeoutError]: device 4a did not respond to requested I/O. I/O will be retried.
...
Tue Feb 21 19:28:46 EST [noPathsError]: No more paths to device 4a. All retries have failed.
Tue Feb 21 19:29:03 EST [diskFailure: ALERT]: device 4a has failed.

Case D

Fri May 19 18:38:29 CEST [ioReassignFail]: device 5a sector 140392917 reassign failed.
Fri May 19 18:38:34 CEST [ioReassignFail]: device 5a sector 140392918 reassign failed.
Fri May 19 18:38:40 CEST [ioReassignFail]: device 5a sector 140392919 reassign failed.
Fri May 19 18:39:17 CEST [thresholdMediumError]: device 5a has crossed the medium error threshold.
Fri May 19 18:39:53 CEST [diskFailure: ALERT]: device 5a has failed.

Figure 11. Two real-world customer cases
with the Disk Failure Message. Customer case C
was caused by Fibre Channel loop instability and cus-
tomer case D was caused by disk medium errors.

problems. This is not surprising, since these critical
event messages have clear semantic meaning.

However, some critical events cannot be easily cate-
gorized to one dominant high-level problem root cause.
One example is critical event 07 (a RAID Volume Failure
Message). Among customer cases with critical event 07,
51% cases were diagnosed as hardware failure related,
16% cases were diagnosed as caused by misconfigura-
tion, and 33% cases were diagnosed as caused by soft-
ware bugs.

To better understand why there is not always a 1-1
mapping between critical event and root cause category,
we pick (Figure 9) two real-world auto-generated cus-
tomer cases, which were both triggered by the same crit-
ical event: RAID Volume Failure. As illustrated by the
figure, customer case A was caused by a software bug,
while customer case B was caused by a misconfiguration
(details are explained in the caption).

For a small majority of common critical events (13 out
of 20), there is a dominant (> 65%) high-level problem
root cause. Therefore, we conclude that critical events
can be used to infer the high-level problem root causes.

However, the high-level root cause isn’t enough to re-
solve the customer’s problems. One needs to determine
the precise root cause. In the next section, we see if crit-
ical events at least help us narrow down the root cause to
specific storage system modules.

4.2 Module-level Problem Root Causes
A module-level problem root cause defines which

module or component3 caused the problem experienced
by the customer. Zooming into one particular module is
a significant step towards problem resolution. With such
knowledge, customer cases can be effectively assigned
to the experts who are familiar with that module.

Figure 10 presents the distribution of module-level
problem root causes among the customer cases with the
same critical event. The same data set was used as for
Figure 8. The selected customer cases were diagnosed
with 13 different module-level root causes. The figure
shows that for only 4 out of 20 messages, there is a dom-
inant (> 65%) module-level problem root cause. There-
fore critical events are not indicative of module-level
problem root causes.

One explanation is that modules in the storage stack
have complex interactions. Multiple code paths can lead
to the same failure symptom. An example is critical
event 03 (Disk Failure Message), which is quite indica-
tive (> 75%) of a hardware failure; however, an error
in multiple hardware modules can lead to this message.
Figure 11 illustrates two real-world customer cases trig-
gered by Disk Failure Messages. As the figure explains,
customer case C was actually due to Fibre Channel Loop
instability while customer case D was caused by multiple
disk medium errors on the same disk.

Since APIs between modules enforce clean separation
between caller and callee, modules tend to log “local”
state information i.e. what happens within the module.
Theoretically a more sophisticated logging infrastructure
could store the interactions between modules and gener-
ate the critical events that capture “global” system state.
3We will use module to represent both software module and hard-

ware component in the rest of the paper

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

Critical Event ID

Cus
tom

er C
ase

 Dis
trib

utio
n

Software Bug (Module 6)
Software Bug (Module 5)
Software Bug (Module 4)
Software Bug (Module 3)
Software Bug (Module 2)
Software Bug (Module 1)
Misconfiguration (Module 4)
Misconfiguration (Module 3)
Misconfiguration (Module 2)
Misconfiguration (Module 1)
Hardware Failure (Module 3)
Hardware Failure (Module 2)
Hardware Failure (Module 1)



USENIX Association 	 7th USENIX Conference on File and Storage Technologies	 51

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Har
dwa

re F
ailu

re
(mo

dule
 1)

Har
dwa

re F
ailu

re
(mo

dule
 2)

Har
dwa

re F
ailu

re
(mo

dule
 3)

Mis
con

figu
rati

on
(mo

dule
 1)

Mis
con

figu
rati

on
(mo

dule
 2)

Mis
con

figu
rati

on
(mo

dule
 3)

Mis
con

figu
rati

on
(mo

dule
 4)

Sof
twa

re B
ug

(mo
dule

 1)

Sof
twa

re B
ug

(mo
dule

 2)

Sof
twa

re B
ug

(mo
dule

 3)

Sof
twa

re B
ug

(mo
dule

 4)

Sof
twa

re B
ug

(mo
dule

 5)

Sof
twa

re B
ug

(mo
dule

 6)

Ave
rag

e

F-s
cor

e
Critical Event Best Single-Event Log Signature DecisionTree-Selected Multiple-Event Log Signature

Figure 12. Comparison between three methods of using log events. F-score indicates how accurate
a prediction can be made on module-level problem root cause using log information. The same set of customer cases are
used here as for Figure 8, except customer cases without AutoSupport logs in AutoSupport Database, ending up with 4,535
customer cases.

However, we believe it is impractical to build such log-
ging infrastructure for existing commercial products, due
to the complexity of module interaction. Furthermore,
such infrastructure would be very hard to maintain as the
system evolves and more modules are added. We believe
the solution is to combine the critical log event with other
log information and in the next section we study the fea-
sibility of doing so.

5 Feasibility of Using Logs for Automating
Troubleshooting

As we analyzed in the previous section, critical events
alone are not enough for identifying the problem root
cause beyond a high level. This conclusion is supported
by several real-world customer cases presented in Fig-
ure 9 and Figure 11. These customer cases also suggest
that log events in addition to the critical events can be
quite useful for identifying the problem root causes.

In this section, we investigate the feasibility of using
additional information from system logs and answer the
following two questions: Does problem root cause de-
termination improve by considering log events beyond
critical events? What kind of log events are key to iden-
tifying the problem root cause?

5.1 Are additional log events useful ?
To study whether additional log events are useful, we

consider three methods of using log event information,
and compare how well they can be used as a module-
level problem root cause signature. We define a signa-
ture as a set of relevant log events that uniquely identify a
problem root cause. Such a signature can be used to iden-
tify recurring problems and to distinguish one problem
from another unrelated one, thereby helping with cus-
tomer troubleshooting. It is important to note that we are

not designing algorithms to find log signatures, instead
we are manually computing log signatures to study how
they improve problem root cause determination.

As a baseline, our first method is to only use the prob-
lem’s critical event as its signature. For each module-
level problem root cause, using a set of manually di-
agnosed cases as training data, we search for one criti-
cal event that can best differentiate customer cases diag-
nosed with this root cause from other customer cases.
More specifically, for each module-level problem root
cause, we exhaustively search through all critical events,
and calculate their F-score, which measures how well
the critical event can be used to predict the problem root
cause [49]. Then we pick the critical event with the high-
est F-score as the signature for this module-level prob-
lem root cause.

The second method is similar to method one. But in-
stead of just looking at critical events to deduce a root
cause signature, we search all log events looking for the
one log message that best indicated the module-level root
cause. If this method can find log signatures with much
better F-score, it indicates that some log events other
than critical events provide more valuable information
for identifying problem root cause.

The third method is to use a decision tree [9] to find
the best mapping between multiple log events and the
problem root cause. The resulting multiple log events
can be used as the root cause signature.

For all three methods, we use the same set of cus-
tomer cases as in Figure 8, except removing customer
cases without AutoSupport logs. This gives us 4,535 cus-
tomer cases. A random selection of 60% of these cases is
used as training data, while the remaining 40% are used
as testing data.

As Figure 12 shows, for all customer cases, using only
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Problem # Symptom Cause # of Key
Events

Distance
(secs)

Distance
(# events)

Fuzziness?

1 Battery Low Software Bug 2 5.8 1.6 no
2 Shelf Fault Shelf Intraconnect Defect 3 49.4 3.8 yes
3 System Panic Broken SCSI Bus Bridge 4 509.2 34.4 no
4 Performance Degradation FC Loop Defect 2 3652 69.4 no
5(Figure 1) Power Warning Incorrect Threshold in Code 2 5 2.4 yes
6(Figure 9A) RAID Volume Failure Software Bug 3 196 66.5 no
7(Figure 9B) RAID Volume Failure Non-zeroed Disk Insertion 3 80 35 yes
8 RAID Volume Failure Interconnect Failure 3 290.5 126 yes
9 Shelf Fault Shelf Module Firmware Bug 4 18285.5 21.5 no
10 Shelf Fault Power Supply Failure 3 31.5 3.5 no

Table 1. Characteristics of Log Signatures. We manually studied 35 customer cases. These 35 customer cases can be grouped into 10
groups, where each group had the same problem root cause. Based on diagnosis notes from engineers, we were able to identify the key
log events, which can differentiate cases in one group cases in another. “# of Key Log Events” is the total number of important log events
(including critical events) needed to identify the problem. “Distance” is calculated as the longest distance from a key log event to a critical
event for each customer case, averaged across all cases.

critical events as the problem signature is a very poor
predictor of root cause. On average, it only achieves an
F-score of about 0.15. Using the best matched log event,
instead of just critical events, can achieve an F-score
0.27. By comparison, the average F-score achieved by
the decision tree method for computing problem signa-
tures is 0.45, which is 3x better than using critical events.
Based on these results, we conclude that accurate prob-
lem root cause determination requires combining multi-
ple log events rather than a single log event or critical
event. This observation matters, since customer support
personnel usually focus on the critical event, which can
be misleading. Furthermore, as we show in the next sec-
tion, there is often a lot of noise between key log events
making it hard to manually detect problem signatures.

Although we use the decision tree to construct log sig-
natures that are composed of multiple log events, we do
not advocate this technique as the solution for utilizing
log information. First of all, the accuracy(F-score) is still
not satisfactory due to log noise, which we discuss later.
Moreover, the effectiveness of the decision tree relies on
training data. For problem root causes that do not have a
large number of diagnosed instances, a decision tree will
not provide much help.

5.2 Challenges of using log information
To understand the challenges of using log information

and identifying key log events to compute a problem sig-
nature, we manually analyzed 35 customer cases sam-
pled from the Engineering Case Database. These cus-
tomer cases were categorized into 10 groups, such that
cases in each group had the same problem root cause.

For these customer cases, we noticed that engineers
used several key log events to diagnose the root cause.
Table 1 summarizes these cases and characteristics of
their key log events.

Based on these 10 groups, we made following major
observations:
(1) Logs are noisy.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 4 8 16 32 64
128

256
512

1024
2048

4096
8192

16384
32768

65536

# Log Events

Ca
se

s 
(%

)

Figure 13. Cumulative Distribution Func-
tion (CDF) of number of log events within
one hour of critical event. For this figure, we
use the same data set as Figure 12. We only count the
log events generated and recorded by AutoSupport sys-
tem within one hour before the critical event, since prac-
tically engineers often only exam recent log events for
problem diagnosis.

Figure 13 shows the Cumulative Distribution Func-
tion (CDF) of the number of log events in AutoSupport
logs corresponding to customer cases. As can be seen
in the figure, for majority of the customer cases ( 75%),
there are more than 100 log events recorded within an
hour before the critical event occurred, and for the top
20% customer cases, more than 1000 log events were
recorded.

In comparison, as Table 1 shows, there are usually
only 2–4 key log events for a given problem, implying
that most log events are just noise for the problem.

(2) Important log events are not easy to locate.

Table 1 shows the distance between key log events and
critical events, both in terms of time and the number of
log events. For 6 out of 10 problems, at least one key log
event is more than 30 log events away from the critical
event, which captures the failure point. For all problems,
there are always some irrelevant log events in between
the key log events and the critical event. In terms of time,
the key log events can be minutes or even hours before
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the critical event.
(3) The pattern of key log events can be fuzzy.

Sometimes, it is not necessary to have an exact set of
key log events for identifying a particular problem. Us-
ing problem 7 as an example, it is not necessary to see
“raidDiskInsert” log event, depending on how the system
administrator added the disk drive. Another example is
problem 2. The same shelf intraconnect error can be de-
tected by different modules, and different log messages
can be seen for it depending on which module reports the
issue.
5.3 Preliminary Prototype for Automatic Log

Analysis
Based on the above observations, we designed and

implemented a log analysis prototype to improve the cus-
tomer troubleshooting process. It is important to note,
we are still exploring the design space and evaluating the
effectiveness of our log analyzer on real world customer
cases.

Our analyzer contains two major functions: extract-
ing log signatures and grouping similar logs sequences.
As discussed in observation (1), system logs are very
“noisy”, containing many log events irrelevant to the
problem. We also observed (Table 1) that 2-4 key log
events are sufficient to serve as a problem signature.

In order to extract log signatures, our log analyzer au-
tomatically ranks log events based on their “importance”
As mentioned in observation (2), important log events
are difficult to locate and can be far away from criti-
cal events (failure points). To solve this challenge, we
apply statistical techniques to infer the dependency be-
tween the system states represented by log events. Then
we design a heuristic algorithm to estimate the “impor-
tance” of a log event based on the following two rules:

(1) Between two dependent log events, the temporally
precedent event is usually more important than its suc-
cessor. If two log events are dependent, the earlier one
usually captures the system state that is closer to the be-
ginning of the error propagation process.

(2) The larger dependence “fan-out” a log event has,
the more important it is. Our reasoning is that if a log
event has a dependence relationship with many other log
events and it precedes other log events, it signifies a crit-
ical system state.

In this manner, we compute “important” log events
for a given problem and rank the top four events which
we then use as the problem signature. Even if the sig-
nature is not entirely accurate, we believe the process of
extracting important events and highlighting those can
greatly reduce the time spent by customer support staff
in manually analyzing logs.

The second function of our log analyzer is to identify
similar log sequences As described in observation (3),

similar log sequences, that represent the same problem
root cause, might not have exactly the same set of key
log events. Therefore, our log grouping engine clusters
logs based on their similarity, by mapping log signatures
into a vector space with each log event as a dimension.
We then apply unsupervised classification techniques to
group similar sequences together based on their relative
positions in the vector space [41].

Since we are still exploring the design space and eval-
uating the effectiveness of our log analysis techniques,
the details of the log analyzer are beyond the scope of
this paper and remain as our future work.

6 Related Work
6.1 Problem Characteristic Studies

There have been many prior studies that categorize
computer system problems and identify root causes such
as we have done.

A number of studies show that operator mistakes are
one of the major causes of failures. One of the first stud-
ies of fault analysis on commercial fault-tolerant sys-
tems [21] analyzes Tandem System outages with more
than 2000 systems in scope. Gray classifies causes into
5 major categories and 13 sub-categories, and finds that
operator error is the largest single cause of failure in
deployed Tandem systems. Murphy and Gent examine
causes of system crashes in VAX systems between 1985
and 1993, and find that system management caused more
than half of the failures, software about 20%, and hard-
ware about 10% [42]. Similarly, the characteristic study
by Oppenheimer et al. classifies Internet service failures
into component failures and service failures, and further
analyzes root causes for each failure type for each In-
ternet service [45]. They also found that operator error
is the largest cause of failures in two of the three ser-
vices, and configuration errors are the largest category
of operator errors. While their work focuses on system
outages, we are also interested in failures that don’t lead
to outages. We classify storage system failures based on
symptoms as well as root causes, and further show the
correlations between problem root cause, symptom and
resolution time.

Ganapathi et al. have developed a categorization
framework for Windows registry related problems [20].
Similar to our work, their classification is based on prob-
lem manifestation and scope of impact to help under-
stand the problem. Although they have described some
causes to problem manifestations, they do not have a
clear classification for it. Since our goal is to be able
to do problem diagnosis, we study not only the problem
symptoms, but also root causes of those symptoms.

Some failure studies are also conducted on storage
systems. Jiang et al. conduct a characteristic study of
NetApp R� storage subsystem failures [27, 28]. They clas-
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sify storage subsystem failures into four types, and then
study how storage subsystem components can affect stor-
age subsystem reliability.
6.2 Troubleshooting Studies

Since troubleshooting is very time-consuming, quite
a few studies have been trying to make it more efficient
by automating the process. By studying characteristics
of problem tickets in an enterprise IT infrastructure, re-
searchers in IBM T.J. Watson built PDA, a problem diag-
nosis tool, to help solving problems more efficiently [24].
Banga attempts to automate the diagnosis process of ap-
pliance field problems that is usually performed by hu-
man experts: system health monitoring and error de-
tection, component sanity checking, and configuration
change tracking [6]. Redstone et al. propose a vision
of an automated problem diagnosis system by captur-
ing symptoms from users’ desktops and matching them
against problem database [48].

In order to make this process automated, knowledge
about detection and checking rules and logic has to be
predefined by human experts. Cohen et al. present a
method for extracting signatures from system states to
help identify recurrent problems and leverage previous
diagnosis efforts [15]. Alternatively, by comparing the
target configuration file with the mass of healthy con-
figuration files [55], Wang et al. identified problematic
configuration entries that cause Windows R� system prob-
lems. Similarly, Wang [56] and Lao [34] address miscon-
figuration problems in Windows systems by building and
identifying signatures of normal and abnormal Windows
Registry entries. Some studies apply some advanced
techniques such as data mining to troubleshooting. For
example, PinPoint [14, 13] traces and collects requests,
and performs data clustering analysis on them to deter-
mine the combinations of components that are likely to
be the cause of failures.

It is important to collect system traces for trou-
bleshooting like AutoSupport logging systems. Mag-
pie [7], Flight Data Recorder [54], and the work by Yuan
et al. [58] improve system management by using fine-
grained system event-tracing mechanisms and analysis.
Stack back traces are used by several diagnostic systems,
including Dr. Watson [18], Gnome’s bug-buddy [11], and
IBM diagnosis tool [40].
6.3 Log Analysis

There are two major directions taken by previous re-
searchers to analyze system logs: tupling and depen-
dency extraction.

As a system failure may propagate through multi-
ple system components, multiple log events indicating
failure or abnormal status of components can be gener-
ated during a short period of time. Based on this ob-
servation, several studies try to reduce the complexity of

system logs by grouping successive log events into tu-
ples [8, 10, 23, 26, 37, 38, 53]. For example, Tsao [53],
Hansen [23] and Lin [38] applied variants of tupling al-
gorithms on system logs collected from VAX/VMS ma-
chines. The tupling algorithms explore the time-space
relationship between log events, and cluster temporally
related events into tuples, so that the number of logical
entities can be significantly reduced. The limitation of
tupling algorithms is that log events in a tuple may be
unrelated if related log events are interleaving with irrel-
evant log events. Unfortunately, based on our study on
modern system logs, such a limitation is fatal.

Another direction taken by previous studies is to ex-
tract dependency between log events. Steinle et al. [50]
apply two data mining techniques, aiming at finding the
dependency between two events in a log collected from
Geneva university hospitals environment. The first tech-
nique estimates the distribution of temporal distance be-
tween two events, and compares against random distri-
bution. The second technique extracts the correlation be-
tween two event types using association statistics. Aguil-
era et al. [2] apply signal processing techniques to extract
dependency between events. The main hypothesis be-
hind this work is that if two events are correlated, one
or a few typical temporal gaps between these two events
can be found through signal processing. Our study is fo-
cused on characteristic study on manually identified key
log events, and discusses the challenges and opportuni-
ties for applying log analysis. Several observations made
in our study using storage system logs are consistent with
conclusions made in [31]. Both studies identified that
the noisy and redundant log information make log anal-
ysis a challenging task and there is great value to extract
event correlations for capturing error context and prop-
agation. However, comparing to [31], which made a
qualitative study using 2-week distributed system logs,
our study looked at 4,769 storage system log files with
the corresponding real-world problem diagnosis, carried
out a quantitative study on the usefulness of logs, and
proposed an automatic log analysis solution.

7 Conclusion
In this paper, we present one of the first studies of

the characteristics of customer problem troubleshooting
from logs, using a large set of customer support cases
from NetApp. Our results show that customer problem
troubleshooting is a very time consuming and challeng-
ing task, and can benefit from automation to speedup res-
olution time. We observed that customer problems with
attached logs were invariably resolved sooner than those
without logs. We show that while a single log event,
or critical log event is a poor predictor of problem root
cause, combining multiple key log events leads to a 3x
improvement in root cause determination. Our results
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also show that logs are challenging to analyze manually
because they are noisy and that key log events are often
separated by hundreds of unrelated log messages. We
then outlined our ideas for an automatic log analysis tool
that can speed up problem resolution time.

Similar to other characteristic studies, it is impossible
to study a handful of different data sets, especially for
customer support problems due to the unavailability of
such data sets. Even though our data set (which is already
very large with 636,108 cases from 100,000 systems) is
limited only to NetApp, we believe that this study is an
important first-step in quantifying both the usefulness of
and challenge in using logs for customer problem trou-
bleshooting. We hope that our study can inspire and mo-
tivate characteristic studies about other kinds of systems
as well, and motivate the creation of new tools for au-
tomated log analysis for customer problem troubleshoot-
ing.
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