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Abstract

Clustered applications in storage area networks (SANs),
widely adopted in enterprise datacenters, have tradition-
ally relied on distributed locking protocols to coordi-
nate concurrent access to shared storage devices. We
examine the semantics of traditional lock services for
SAN environments and ask whether they are sufficient
to guarantee data safety at the application level. We ar-
gue that a traditional lock service design that enforces
strict mutual exclusion via a globally-consistent view of
locking state is neither sufficient nor strictly necessary
to ensure application-level correctness in the presence
of asynchrony and failures. We also argue that in many
cases, strongly-consistent locking imposes an additional
and unnecessary constraint on application availability.
Armed with these observations, we develop a set of novel
concurrency control and recovery protocols for clustered
SAN applications that achieve safety and liveness in the
face of arbitrary asynchrony, crash failures, and network
partitions. Finally, we present and evaluate Minuet- a
new synchronization primitive based on these protocols
that can serve as a foundational building block for safe
and highly-available SAN applications.

1 Introduction

In recent years, storage area networks (SANs) have been
gaining widespread adoption in enterprise datacenters
[19] and are proving effective in supporting a range of
applications across a broad spectrum of industries. Ac-
cording to a recent survey of IT professionals across a
range of corporations, government agencies, and uni-
versities, the overwhelming majority (80%) have de-
ployed a storage area network in their organizations and
26% of the respondents report having deployed five or
more SANSs [14]. Some of the common applications
include online transaction processing in finance and e-
commerce, digital media production, business data ana-
lytics, and high-performance scientific computing.

A SAN architecture is a particularly attractive choice
for parallel clustered applications that demand high-
speed concurrent access to a scalable storage backend.
Such applications commonly rely on a clustered middle-
ware service to provide a higher-level storage abstraction
such as a filesystem (GFS [35], OCFS [8], PanFS [10],
GPEFS [37]) or a relational database (Oracle RAC [9]) on
top of raw disk blocks.

One of the primary design challenges for clustered
SAN applications and middleware is ensuring safe and
efficient coordination of access to application state and
metadata that resides on shared storage. The traditional
approach to concurrency control in shared-disk clusters
involves the use of a synchronization module called a
distributed lock manager (DLM). Typically, DML ser-
vices aim to provide the guarantee of strict mutual exclu-
sion, ensuring that no two processes in the system can
simultaneously hold conflicting locks. In abstract terms,
providing such guarantees requires enforcing a globally-
consistent view of lock acquisition state and one could
argue that a traditional DLM design views such consis-
tency as an end-in-itself rather than a means to achieving
application-level correctness.

In this paper, we take a close look at the semantics of
SAN lock services and ask whether the assurances of full
mutual exclusion and strongly-consistent locking are, in
fact, a prerequisite for correct application behavior. Our
main finding is that the standard semantics of mutual ex-
clusion provided by a DLM are neither strictly necessary
nor sufficient to guarantee safe coordination in the pres-
ence of node failures and asynchrony. In particular, pro-
cessing and queuing delays in SAN switches and host
bus adapters (HBAs) expose applications to out-of-order
delivery of I/O requests from presumed faulty processes
which, in certain scenarios, can incur catastrophic viola-
tions of safety and cause permanent data loss.

We propose and evaluate a new technique for disk ac-
cess coordination in SAN environments. Our approach
augments target storage devices with a tiny application-
independent functional component, called a guard, and a
small amount of state, which enable them to reject incon-
sistent I/O requests and provide a property called session
isolation.

These extensions enable a novel optimistic approach
to concurrency control in SANs and can also make ex-
isting lock-based protocols safe in the face of arbitrar-
ily delayed message delivery, drifting clocks, crash pro-
cess failures, and network partitions. The session isola-
tion property in turn provides a foundational primitive
for implementing more complex and useful coordina-
tion semantics, such as serializable transactions, and we
demonstrate one such protocol.

We then describe the implementation of Minuet- a
software library that provides a novel synchronization
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primitive for SAN applications based on the protocols
we present. Minuet assumes the presence of guard at
the target storage devices and provides applications with
locking and distributed transaction facilities, while guar-
anteeing liveness and data safety in the face of arbi-
trary asynchrony, node failures, and network partitions.
Our evaluation shows that applications built atop Minuet
compare favorably to those that rely on a conventional
strongly-consistent DLM, offering comparable or better
performance and improved availability.

Unlike existing services for fault-tolerant distributed
coordination such as Chubby [20] and Zookeeper [15],
Minuet requires its lock managers to maintain only
loosely-consistent replicas of locking state and thus per-
mits applications to make progress with less than a ma-
jority of lock manager replicas. To demonstrate the prac-
tical feasibility of our approach, we implemented two
sample applications — a distributed chunkmap and a B+
tree — on top of Minuet and evaluated them in a clustered
environment supported by an iSCSI-based SAN.

The benefits of optimistic concurrency control and the
associated tradeoffs have been extensively explored in
the database literature and are well understood. In par-
ticular, techniques such as callback locking, optimistic
2-phase locking, and adaptive callback locking [18,21,
24,42] have been proposed to enable safe coordination
and efficient caching in client-server databases. It is im-
portant to note, however, that these approaches are not
directly applicable to SANs because they assume the
existence of a central lock server, typically co-located
with the data block storage server. This assumption
does not hold in a SAN environment, where the storage
"servers" are application-agnostic disk arrays that pos-
sess no knowledge of locking state or node liveness sta-
tus. Hence, a conservative DLM service that enforces
strict mutual exclusion has traditionally been viewed as
the only practical method of coordinating concurrent ac-
cess to shared state for SAN applications.

Our main insight is that a single nearly trivial exten-
sion to the internal logic of a SAN storage device suffices
to address the data safety problems associated with tra-
ditional DLMs and enables a very different approach to
protocol layering for storage access coordination. Cru-
cially, we achieve this without introducing application-
level logic into storage devices and without forfeiting the
generality and simplicity of the traditional block-level in-
terface to SAN-attached devices.

The technical feasibility of device-based synchroniza-
tion and its practical advantages have been demonstrated
by several earlier proposals [12,29]. Our study builds on
this earlier work and while prior efforts have primarily
focused on moving the functionality of a traditional clus-
ter lock manager into the storage device, Minuet aims to
provide a more general and useful synchronization prim-

itive that supports a wider range of concurrency con-
trol mechanisms. In addition to supporting traditional
conservative locking, our approach enables an optimistic
method of concurrency control that can improve perfor-
mance for certain application workloads. Further, Min-
uet allows existing locking protocols to remain safe in the
presence of arbitrarily-delayed message delivery, node
failures, and network partitions.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide the relevant background on SAN and
some representative examples of data safety problems.
In Section 3, we present our main contribution - the de-
sign of Minuet, a novel safe and highly available syn-
chronization mechanism for SAN applications. Section 4
describes our prototype implementation and two sample
parallel applications. We evaluate our system in Sec-
tion 5 and discuss practical aspects of our approach in
Section 6. Finally, we discuss related work in Section 7
and conclude in Section 8.

2 Background

2.1 Storage area networks

Storage area networks (SANSs) are popular in enterprise
datacenters and are commonly adopted to support the
storage needs of data-intensive clustered applications. In
the SAN (or shared-disk) model, persistent storage de-
vices, typically disk drive arrays or specialized hardware
appliances, are attached to a dedicated storage network
and appear to members of the application cluster as local
disks. Most SANs utilize a combination of SCSI and a
low-level transport protocol such as TCP/IP or FCP (Fi-
bre Channel Protocol) for communication between the
application nodes and the target storage devices.

SANs aim to provide fully decentralized access to
shared application state on disk and in principle, any
SAN-attached client node can access any piece of data
without routing its requests to a dedicated server. While
in this model, all requests on a particular piece of data
are centrally serialized, the crucial distinction from the
traditional server-attached storage paradigm is that the
point of serialization is a hardware disk controller that
exposes an application-independent I/O interface on raw
disk blocks and is oblivious to application semantics and
data layout considerations.

Broadly, the SAN paradigm is advantageous from the
standpoint of availability because it offers better redun-
dancy and decouples node failures from loss of persistent
state. Incoming application requests can be routed to any
available node in the cluster and, in the event of a node
failure, subsequent requests can be redirected to another
processor with minimal interruption of service.

One of the primary design challenges for clustered
SAN applications and middleware is ensuring safe and
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efficient coordination of access to shared state on disk
and commonly, a software service called a distributed
lock manager (DLM) is employed to provide such coor-
dination. A typical lock service such as OpenDLM [7]
operates on shared resources, abstract application-level
entities that require access coordination, and attempts to
provide the guarantee of mutual exclusion - no two pro-
cesses may simultaneously hold conflicting locks on the
same resource.

2.2 Safety and liveness problems in SANs

In theory, DLM-based mutual exclusion offers sufficient
mechanism to ensure safe access to shared state. In prac-
tice, however, guaranteeing safe serialization of disk re-
quests tends to be more difficult than the above discus-
sion might suggest due to the effects of node failures and
asynchrony: nodes can fail by stopping and the process-
ing and communication delays are not bounded. The fol-
lowing examples illustrate the nature of the problem.
Scenario 1: Consider a data structure S spanning 10
blocks on a shared disk D and two clients, C; and C,,
that are accessing the data structure concurrently. C;
is updating blocks [3 — 7] of S under the protection of
an exclusive lock, while C, wants to read § in its en-
tirety (i.e., blocks [0 —9]) and is waiting for a shared
lock. Suppose C; crashes after sending its WRITE re-
quest to D but before hearing the response. The lock
manager correctly detects the failure, reclaims the exclu-
sive lock, and grants it to C; in shared mode. Next, C;
proceeds to reading S and, assuming that a single disk
request can carry up to 5 blocks of data, issues two re-
quests: R; = (READ[0 —4]) and R, = (READ[5—9]).
Suppose C’s delayed WRITE request on blocks [3 — 7]
reaches the disk after R; but before R,, in which case
only the latter would reflect the effects of C;’s update.
Hence, although individual I/O requests are processed by
D as atomic units, their inconsistent interleaving would
cause C; to observe and act upon a partial update from
C1, which can be viewed as a violation of data safety.
As an alternative to heartbeat failure detection, a lease-
based mechanism [26] can be used to coordinate clients’
accesses in the above example, but precisely the same
problematic scenario would arise when clocks are not
synchronized. When C| crashes and its lease expires, the
lease manager could grant it to C; prior to the arrival of
the last WRITE from C| to the storage target. Since the
target does not coordinate with the lease manager, it fails
to establish the fact that an incoming request from C is
inconsistent with the current lease ownership state.
Scenario 2: Clustered applications and middleware
services commonly need to enforce transactional seman-
tics on updates to application state and metadata. In
a shared-disk clustered environment, distributed trans-
actions have traditionally been supported by two-phase

locking in conjunction with a distributed write-ahead
logging (WAL) protocol. In the abstract, the system
maintains a snapshot of application state along with a set
of per-client logs (also on shared disks) that record Redo
and/or Undo information for every transaction along with
its commit status. During failure recovery, the system
must examine the suspected client’s log and restore con-
sistency by rolling back all uncommitted updates and re-
playing all updates associated with committed transac-
tions that may not have been flushed to the snapshot prior
to the failure. An essential underlying assumption here is
that once log recovery is initiated, no additional WRITE
requests from the suspected process will reach the snap-
shot. A violation of this assumption could result in the
corruption of logs and application data.

Ensuring data safety in a shared-disk environment has
traditionally required a set of partial synchrony assump-
tions to allow reliable heartbeat-driven failure detection
and/or leases. For example, lease-based mechanisms
typically expect bounded clock drift rates and message
delivery delays to ensure the absence of in-flight I/O re-
quests upon lease termination. However, these assump-
tions are probabilistic at best and since application data
integrity is predicated on the validity of these assump-
tions, failure timeouts must be tuned to a very conser-
vative value to account for worst-case delays in switch
queues and client-side buffering. Such (necessarily) pes-
simistic timeouts may have a profoundly negative impact
on failure recovery times - one of the common criticisms
of SAN-oriented applications [16].

Another serious limitation exhibited by today’s SAN
applications is /iveness. The DLM (or lease manager)
represents an additional point of failure and while vari-
ous fault tolerance techniques can be applied to improve
its availability, the very nature of the semantics enforced
by the DLM places a fundamental constraint on the over-
all system availability. For instance, multiple lock man-
ager replicas can be deployed in a cluster, but mutual
exclusion can be guaranteed only if clients’ requests are
presented to them in a consistent order, which necessi-
tates consensus mechanisms such as Paxos [31]. Alter-
natively, a single lock manager instance can be elected
dynamically [27] from a group of candidates and in
this case, ensuring mutual exclusion necessitates global
agreement on the lock manager’s identity. In both cases,
reaching agreement fundamentally requires access to an
active primary component - typically a majority of nodes.
As a result, a large-scale node failure or a network par-
tition that renders the primary component unavailable or
unreachable may bring about a system-wide outage and
complete loss of service.

To summarize, today’s SAN applications and middle-
ware face significant limitations along the dimensions
of safety and liveness. At present, several hardware-
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assisted techniques, such as out-of-band power man-
agement (STOMITH) [3], SAN fabric fencing [1], and
SCSI-3 PR [11] can be employed to mitigate some of
these issues. These mechanisms help reduce the likeli-
hood of data corruption under common failure scenar-
ios, but do not provide the desired assurances of safety
and liveness in the general case and, as we would ar-
gue, do not address the underlying problem. We observe
that the underlying problem may be a case of capabil-
ity mismatch between "intelligent" application processes
that possess full knowledge of application’s data struc-
tures, their disk layout, and consistency semantics on the
one hand and relatively "dumb" storage devices on the
other. The safety and liveness problems illustrated above
can be attributed to a disk controller’s inability to identify
and appropriately react to the various application-level
events such as lock release, failure suspicion, and failure
recovery action.

3 Minuet Design

At a high level, our approach reexamines the correctness
criteria that a cluster DLM service must provide to appli-
cations. Traditionally, DLMs tend to treat shared appli-
cation resources as purely abstract entities and enforce
the mutual exclusion property: no two clients may si-
multaneously hold conflicting locks on the same shared
resource. We note, however, that the mutual exclusion
property as stated above is provably unattainable in an
asynchronous system that is subject to even a single crash
failure - a consequence of the impossibility of consen-
sus [23] in such an environment. Furthermore, as we
explain in the previous section, a hypothetical lock ser-
vice that does offer such guarantees would not by itself
suffice to guarantee data safety in such a setting due to
the possibility of out-of-order I/O request delivery.
Rather than restricting access to critical code sections,
our approach views the access coordination problem in
terms of I/O request ordering guarantees that the storage
system must provide to application processes. We refer
to this alternate notion of correctness as session isolation.
We define this correctness property in formal terms be-
low and then present a protocol that achieves session iso-
lation with the help of guard logic. Finally, we demon-
strate how distributed multi-resource transactions can be
supported using session isolation as a building block.

3.1 Session isolation

Throughout this paper, we will use the term resource
to denote the basic logical unit of concurrency control.
Each resource R is identified by a unique and persistent
application-level identifier (denoted R.resID) and has
some physical representation on a SAN-attached storage
device, which we call its owner (R.owner). More con-
cretely, a resource may represent a filesystem block, a

C1 c2
UpgradeLock(X, Shared)

UpgradeLock(X, Shared)

R1.1(X) R2.1(X)

R1.2(X) UpgradeLock(X, Excl)

UpgradeLock(X, Excl) W2.1(X) Excl

W1.1(X) Excl W2.2(X) session

W1.2(X) :lsession DowngradelLock(X, NoLock)
DowngradeLock(X, Shared)

R1.3(X) Shared
R1.4(X) session

DowngradeLock(X, NoLock)

Shared
session

Figure 1: Concurrent request streams to a shared resource X from
two client processes, C; and C;. In this example, C; first performs
two READ operations on X under the protection of a Shared lock,
then upgrades to Exc/ and issues two WRITEs. Lastly, C; down-
grades its lock to Shared and performs two more READs. Client C,
acquires a Shared lock on X and submits a READ request, followed
by an upgrade to Exc/ and two WRITE requests.

database table, or an individual tuple in a table. An appli-
cation process operates on R by issuing READ/WRITE
commands to R.owner, as well as by acquiring and re-
leasing locks on R.resID. We begin by defining the no-
tion of session to a shared resource and describing the
session isolation criterion.

Definition 1. Ifa client process C requests a Shared lock
on R and the request is granted by the lock service, we
say that C establishes a shared session to R. An existing
shared session is terminated when C releases the Shared
lock (i.e., downgrades to None). Analogously, by acquir-
ing an Excl lock, a client establishes an exclusive ses-
sion to R that can subsequently be terminated by down-
grading to Shared or None.

We define Sessions(T,C,R) to be the set of all sessions
to R from C active at time T, which is determined solely
by the sequence of C’s prior upgrade and downgrade re-
quests to the lock service. Sessions(T,C,R) may contain
a shared or an exclusive session to R, or both, or none.

We say that a shared session conflicts with every ex-
clusive session to the same resource R and an exclusive
session conflicts with every other session to R.

Definition 2. If a client process C issues at time T a
disk request r that operates on shared resource R, we say
that r belongs to session S if S € Sessions(T,C,R). For
a given session S, we additionally define Requests(S) to
be the set of all disk requests that belong to S.

Definition 3. A given global execution history satis-
fies session isolation with respect to R if the sequence
of disk request messages M = (ry,ra,...) observed and
processed in this history by R.owner satisfies: Vr;,r; €
M such that {ri,r;} C Requests(S) for some S : Ary €
M such thati < k < jand ry € Requests(S*) for a ses-
sion S* from another client that conflicts with S.

Informally, the above condition requires R.owner to
observe the prefixes of all sessions to R in strictly se-
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rial order, ensuring that no two requests in a client’s ses-
sion are interleaved by a conflicting request from another
client. To illustrate this definition, consider a pair of con-
current request sequences shown in Figure 1. In this sce-
nario, the following two orderings of request observa-
tions by the owner of shared resource X would satisfy
session isolation:

Ei=(Ri.1,R12,Wi1,Wi2,R13, R4, R21, Wa.1, Wa2)
E> =(Ri1,R12,Wi1,R21, W21, Wa2)

However, an execution history that causes the owner to
observe (Ry.1,Ra.1,R12,Wi.1,Wa.1) does not obey ses-
sion isolation because it permits R, and W), two
shared-session requests from C, to be interleaved by
W1 .1, an exclusive-session request from Cj.

Note that session isolation is more permissive than
strict mutual exclusion and in particular, permits ex-
ecution histories in which two clients simultaneously
hold conflicting locks on the same shared resource.
At the same time, one could argue that these seman-
tics meaningfully capture the essence of shared-disk
locking, by which we mean that the request order-
ing guarantees provided by session isolation are pre-
cisely those that applications developers have come to
expect from a traditional DLM. To see this, observe
that in the previous example, a conventional lock ser-
vice offering full mutual exclusion would cause X to
observe E;| by granting clients’ requests in the order
(C1(Shared),Cy(Excl),Cy(Shared),Cy(Excl)).  Like-
wise, E, corresponds to a possible failure scenario in
which Cj crashes after acquiring its locks, causing the
DLM to reclaim them and grant ownership to C;.

3.2 Guard

Our core approach is inspired by earlier work on bridg-
ing the intelligence gap between applications and block
storage devices [17, 25], as well as earlier proposals
for device-based synchronization [12, 29]. We aug-
ment SAN-attached disks with a small application-
independent component, which we call a guard, that en-
forces the session isolation invariant on the stream of in-
coming I/O commands. We associate a session identifier
(SID) with every client session to a shared resource and
modify the storage protocol stack on the initiators to an-
notate all outgoing disk commands with the current SID
for the respective resource. Below, we refer to this addi-
tional state in the command header as session annotation.

A session annotation for a disk command operating
on R has two components: a session verifier and a ses-
sion update, denoted by R.verifySID and R.updateSID,
respectively. For commands that belong to an existing
session, the verifier enables the target to confirm session
validity prior to accepting the command and updateSID
is used by the initiator to signal the start of a new session.

For each shared resource R, its owner device maintains
a local session identifier (denoted R.ownerSID) on per-
sistent storage. Upon receipt of an I/O command from an
initiator, the owner invokes the guard, which evaluates
the command’s session annotation against R.ownerSID
and determines whether session isolation would be pre-
served by accepting the command. Functionally, the
guard operation is a form of compare-and-set and we de-
scribe this operation in detail in Section 3.3.

If an incoming I/O request fails verification, the target
drops the request from its input queue and notifies the ini-
tiator via a special status code EBADSESSION. From an
application developer’s point of view, session rejection
appears as a failed disk request along with an exception
notification from the lock service indicating that a lock
on the respective resource is no longer valid.

The guard situated at the target devices addresses the
safety problems due to delayed messages and inconsis-
tent failure observations that plague asynchronous dis-
tributed environments and enforcing safety at the target
device permits us to simplify the core functionality of the
DLM module. In our scheme, the primary purpose of the
lock service is ensuring an efficient assignment of ses-
sion identifiers to clients that minimizes the frequency of
command rejection for a given application workload.

Decoupling correctness from performance in this man-
ner enables substantial flexibility in the choice of mech-
anism used to control the assignment of session identi-
fiers. At one extreme is a purely optimistic technique,
whereby every client selects its SIDs via an independent
local decision without attempting to coordinate with the
rest of the cluster and this might be an entirely reason-
able strategy for applications and workloads character-
ized by a consistently low rate of data contention. A tra-
ditional DLM service that serializes all session requests
at a central lock server can be viewed as a design point
at the other extreme. Minuet aims to position itself in the
continuum between these extremes and allow application
developers to trade off lock service availability, synchro-
nization overhead, and I/O performance.

3.3 Enforcing session isolation

Minuet uses a simple timestamp-based mechanism to
guarantee the session isolation invariant. A client’s ses-
sion to a given resource R is identified by a value pair
(Ty,T) specifying a shared and an exclusive timestamp,
respectively. These timestamps are globally unique - no
two sessions from distinct clients are identified using the
same pair of values and no client is assigned the same
value pair twice. To ensure global uniqueness, we use the
following timestamp format: (T.incNum.cintID), where
clntID uniquely identifies the client process and incNum
is the client’s incarnation number - a monotonic counter
ensuring uniqueness across crashes.
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Figure 2: Protocol messages and per-resource state at application
clients, lock managers, and shared storage devices.

Client-side state:  For each shared resource R, a
client C maintains a pair of session identifiers for
its shared and exclusive sessions to R, denoted by
R.sharedSID and R.exclSID, respectively. Addition-
ally, R.curSType identifies the current session type, one
of {None,Shared,Excl}, and R.contSType holds the
client’s session continuation type. The latter value is
used by the target device to verify (prior to executing
a request from C) that its existing session has not been
broken by a conflicting request from another client. Fi-
nally, every client C maintains an estimate of the largest
shared and exclusive timestamp values previously as-
signed to a session identifier for any client, which we de-
note by R.maxT; and R.maxT,. Initially, R.sharedSID =
R.exclSID = NIL, R.curSType = R.contSType = None,
and R.maxTs; = R.maxT, = 0. The steps and states of the
basic locking and storage access protocols are illustrated
in Figure 2.

Acquiring locks: To acquire/upgrade a lock on resource
R, a client C proposes a unique session timestamp pair
(proposedTy, proposedT,) to the lock manager. To ac-
quire a Shared lock on R, C sets proposedT, «+— R.maxT
and sets proposedT to some unique timestamp greater
than R.maxT;. The client then sends an U pgradeLock
request to the lock manager, specifying the desired mode
(Shared) and the proposed timestamp pair. The lock
manager accepts and enqueues this request if no request
with a larger proposedT, value has been accepted. Oth-
erwise, the manager denies the request and responds with
U pgradeDenied, which includes the largest timestamp
values observed by the manager. In the latter case, the
client updates its local estimates (R.maxTs, R.maxT,) and
submits a new proposal. After accepting and enqueuing
C’s request, the lock manager eventually grants it and
responds with U pgradeGranted. The client then sets
R.curSType < Shared and initializes the shared session
identifier: R.sharedSID «— (proposedTy, proposedTy).
To upgrade a lock from Shared to Excl, the client
sends UpgradeLock to the lock manager after set-
ting proposedT; «— R.maxT; and proposedT, to some

Setting up a session annotation during I/O request submission:
if (R.curSType = Shared) /* Shared session is active */
R.updateSID «— R.sharedSID;
R.verifySID.Ty «— NIL; R.verifySID.T, < R.sharedSID.T;;
else /* Exclusive session is active */
R.updateSID — R.exclSID;
if (R.contSType = Shared)
R.verifySID.Ty «— NIL; R.verifySID.T, < R.sharedSID.T,;
else
R.wverifySID < R.exclSID;
Guard logic at the target device:
Use the resource identifier (R.resID) to look up R.ownerSID;
if (R.verifySID.T, < R.ownerSID.T,) REJECT;
if (R.verifySID.T; # NIL)
if (R.verifySID.Ty < R.ownerSID.T;) REJECT;
if REJECTED)
Respond to the initiator with (EBADSESSION ,R.ownerSID);
else
R.ownerSID.T; <~ Max(R.ownerSID.Ty,R.updateSID.Ty);
R.ownerSID.T, — Max(R.ownerSID.Ty,R.updateSID.T);
Execute the command and respond to the initiator;

Figure 3: Disk request submission and guard logic pseudocode.

unique timestamp greater than R.maxT,. Upon re-
ceiving U pgradeGranted from the lock manager, the
client sets R.curSType < Excl and R.exclSID «
(proposedTy, proposedTy). Upgrading from None to
Excl is functionally equivalent to acquiring a Shared
lock and then upgrading to Excl, but as an optimization,
these operations can be combined into a single request to
the lock manager.

Accessing shared storage: After establishing a session
to R by acquiring a corresponding lock, client can pro-
ceed to issuing disk requests that operate on the con-
tent of R. Each outgoing request is augmented with
a session annotation that enables the target device to
verify proper ordering of requests and enforce session
isolation. The annotation carries a tuple of the form
(R.resID,R.verifySID,R.updateSID) and is initialized
as shown in Figure 3.

Upon receipt of a disk request from a client, the
owner device invokes the guard logic, which evaluates
the session annotation as specified in Figure 3. In the
event of rejection, the owner immediately discards the
command and sends an EBADSESSION response to
the client, together with a response annotation carrying
(R.ownerSID). Otherwise, the owner executes (or en-
queues) the command and updates its local session iden-
tifier as shown in the figure.

Upon receipt of an EBADSESSION status code, the
initiator examines the response annotation and notifies
the application process that its lock and session on R
is no longer valid. The condition R.verifySID.Ty <
R.ownerSID.T; indicates interruption of an exclusive
session, in which case the client downgrades its lock to
Shared, sets (R.curSType,R.contSType) «— Shared, and
sets R.excISID «— NIL. A Shared lock is further down-
graded to None if R.werifySID.T, < R.ownerSID.T,
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(since in this case, a conflicting exclusive-session re-
quest has been accepted). In this situation, the
client sets (R.curSType,R.contSType) <+ None and
R.sharedSID < NIL. In both cases, the maximum times-
tamp estimates R.maxTs and R.maxT, are updated to re-
flect the most recent timestamps observed by the owner.
Upon receiving a SUCCESS status code, the client sets
R.contSType < R.curSType and updates the shared ses-
sion identifier to reflect the most recent value in the anno-
tation: R.sharedSID «— R.updateSID. (This step is nec-
essary to ensure that a shared session remains valid after
a Shared — Excl upgrade or a downgrade to Shared).
Downgrading locks: To downgrade an existing
lock from Excl to Shared, the client sends a Down-
gradeLock request to the lock manager and re-
sets the exclusive-session state: R.excISID < NIL,
(R.curSType,R.contSType) «— Shared. Similarly, to
downgrade from Shared to None, the client noti-
fies the lock manager and sets R.sharedSID < NIL,
(R.curSType,R.contSType) — None. Upon receipt of a
DowngradeLock request, the manager updates the own-
ership state for R and, if possible, grants the lock to the
next waiter in the queue.
Correctness: The locking protocol and the guard de-
scribed above guarantee session isolation and a formal
correctness argument can be found in [22]. Informally,
consider two clients C; and C;, that compete for shared
and exclusive access to R, respectively, and suppose
that a shared-session request from C; gets accepted with
R.updateSID = (T}, T}) in its annotation. Observe that
due to global uniqueness of session proposals, the owner
of R would subsequently accept an exclusive-session re-
quest from C, with verifier R.verifySID = (T2, T?) only
if sz is strictly greater than Txl. In this case, subsequent
shared-session requests from C| would fail verification,
causing C; to observe EBADSESSION and downgrade
its lock. Thus, session isolation would be preserved in
this example via a forced termination of C;’s session.
A similar argument demonstrates that no two exclusive-
session commands can be interleaved by a conflicting
command from another client.

3.4 Supporting distributed transactions
3.4.1 Overview and design requirements

Transactions are widely regarded as a useful program-
ming primitive and traditionally, SAN-oriented applica-
tions implement transactional semantics using two-phase
locking for isolation and a write-ahead logging (WAL)
facility (sometimes referred to as journaling) for atomic-
ity and durability. To support transactions, Minuet relies
on these well-understood and widely-used mechanisms,
while extending them with the use of the guard to ad-
dress the safety problems outlined in Section 2.2. Since

the primary focus of this paper is feasibility of safe and
highly-available applications in SANS rather than perfor-
mance, we provide only a subset of features typically
found in a state-of-the-art transaction service such as D-
ARIES [38]. Below, we present a design that implements
Redo-only logging to support the "no force no steal"
buffer policy and currently, our design permits only one
active transaction per process at a time - after starting a
transaction, a client must commit or abort before initiat-
ing the next transaction. Finally, we assume unbounded
log space for each client. These restrictions allow us to
focus the discussion on the novel aspects of our approach
and we believe that additional optimizations, such as sup-
port for Undo logging, can be easily retrofitted onto our
scheme if necessary. The following set of requirements
motivates our design:

(1) Avoid introducing assumptions of synchrony re-
quired by conventional transaction schemes for SAN
environments. We rely on the guard at target devices
to provide session isolation and protect the state on disk
from the effects of arbitrarily-delayed I/O commands op-
erating on the application data and the log.

(2) Eliminate reliance on strongly-consistent lock-
ing. Rather than requiring clients to coordinate concur-
rent activity via a strongly-consistent DLM, the guard at
storage devices enables a limited form of isolation and
permits us to relax the degree of consistency required
from the lock service. Prior to committing a transaction,
a client process in Minuet issues an extra disk request,
which verifies the validity of all locks acquired at the start
of the transaction. This mechanism allows us to identify
and resolve cases of conflicting access due to inconsis-
tent locking state at commit time and can be viewed as a
variant of optimistic concurrency control - a well-known
technique from the DBMS literature [30].

(3) Avoid enforcing a globally-consistent view of
process liveness. Rather than relying on a group mem-
bership service to detect client failures and initiate log
recovery proactively in response to perceived failures,
our design explores a /azy approach to transaction recov-
ery that postpones the recovery action until the affected
data is accessed. This enables Minuet to operate without
global agreement on group membership.

3.4.2 Basic transaction protocol

Minuet stores transaction Redo information in a set of
per-client logs on shared disks. The physical location
of a client’s log can be computed from its client identi-
fier (cIntID). These logs appear to Minuet’s transaction
module as regular lockable resources that can be read
from and written to, while the guard is assumed to en-
force session isolation in the event of concurrent access
from multiple clients.

To support transactions, we extend the basic session
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isolation machinery described in Section 3.3 with an ad-
ditional piece of state called a commit session identifier
(CSID) of the form (cIntID, xactID). We extend the for-
mat of a session annotation to include two commit ses-
sion identifiers, denoted verifyCSID and updateCSID,
and both are set to NIL unless specified otherwise.
For each shared resource R, the owner device main-
tains a local commit session identifier (R.ownerCSID)
as well as R.ownerSID. Conceptually, the value of
R.ownerCSID at a particular point in time identifies the
most recent transaction that may have updated R and
committed without flushing its changes to the disk im-
age of R. If R.ownerCSID # NIL, the current state of
R on disk may be missing updates from a committed
transaction and thus cannot be assumed valid. In this
case, R.ownerCSID.clntID identifies the client process
responsible for the latest transaction on R and it is used
to locate the corresponding log for recovery purposes.

Upon receiving a disk request, the guard ex-
amines the annotation and rejects the request if
RverifyCSID.cintID # R.ownerCSID.cintID or if
R.verifyCSID .xactID < R.ownerCSID .xactID. A re-
quest is accepted only if its verifySID and verifyCSID
both pass verification and upon completing the request,
the owner device updates its local commit session iden-
tifier by setting R.ownerCSID <« R.updateCSID. If ver-
ification fails, the owner responds with EBADSESSION
and attaches the tuple (R.ownerSID,R.ownerCSID) in a
response annotation.

In Minuet, transactions proceed in five stages: Be-
gin, Read, Update, Prepare, and Commit and we illus-
trate them using high-level pseudocode in [22]. During
one-time client initialization, Minuet’s transaction ser-
vice locks the local client’s log in Exc/ mode. To be-
gin a new transaction 7', the client selects a new transac-
tion identifier (curX actID) via a monotonic local counter
and appends a BeginXact record to its log. Next, in the
Read phase of a transaction, the application process ac-
quires a Shared lock on every resource in T.readSet and
reads the corresponding data from shared disks into local
memory buffers. In the Update phase that follows, the
client acquires Excl locks on the elements of T.writeSet,
applies the desired set of updates locally, and commu-
nicates a description of updates to Minuet’s transaction
service, which appends the corresponding set of U pdate
records to the log. Each such record describes an atomic
mutation on some resource in T.writeSet and essentially
stores the parameters of a single disk WRITE command.

The Prepare phase serves a dual purpose: to ver-
ify the validity of client’s sessions (and hence, the ac-
curacy of cached data) and to lock the elements of
the write set in preparation for committing. For each
resource in T.readSet U T.writeSet, the client sends a
special PREPARE request to its owner. Minuet im-

plements PREPARE requests as zero-length READs,
whose sole purpose is to transport an annotation and
invoke the guard. PREPARE requests for elements of
T .writeSet carry verifyCSID = NIL and updateCSID =
(C,curXactID) in their annotations, where C is the
client’s identifier. If all PREPARE requests return
SUCCESS, the transaction enters the final Commit phase,
in which a CommitXact record is force-appended to
client C’s log.

The protocol outlined above ensures transaction iso-
lation, identifying cases of conflicting access during the
Prepare phase. Recall, however, that under the session
isolation semantics, any I/O command, including oper-
ations on the log, may fail with EBADSESSION due to
conflicting access from other clients. This gives rise to
several exception cases at various stages of transaction
execution. For example, a client C may receive an error
while forcing CommitXact to disk due to loss of session
to the log. This can happen only if another process has
initiated log recovery on C and hence, the active transac-
tion must be aborted. Other failure cases and the corre-
sponding recovery logic are described in the report [22].
Syncing updates to disk: After committing a
transaction, a client C flushes its locally-buffered
updates to R simply by issuing the corresponding
sequence of WRITE commands to its owner de-
vice. Each such command specifies in its annotation
{R.verifyCSID,R.updateCSID} = (C,syncXactID),
where syncXactID denotes C’s most recent committed
transaction that modified R. After flushing all committed
updates, C issues an additional zero-length WRITE re-
quest, which specifies R.verifyCSID = (C,syncX actID)
and R.updateCSID = NIL in the annotation. This
request causes the device to reset R.ownerCSID to NIL,
effectively marking the disk image of R as "clean".
Lastly, C appends to its log an U pdateSynced record of
the form (R, syncX actID).

Lazy transaction recovery: A client C can initiate
transaction recovery when its disk command on some
resource R fails with EBADSESSION and a non-NIL
value ownerCSID = (Cp,xactID) is specified in the re-
sponse annotation. This response indicates that the disk
image of R may be missing updates from a transaction
committed earlier by another client Cr. If C suspects
that Cr has failed, it invokes a local recovery procedure
that tries to repair the disk image of R. First, C ac-
quires exclusive locks on R and Cr.Log and reads the
log from disk. Next, C searches the log for the most re-
cent transaction that has successfully flushed its updates
to R, from which it determines the list of subsequent
committed updates that may be missing from the disk
image. The client then proceeds to repairing the state of
R on disk by reapplying these updates and all WRITE
requests sent to the owner during this phase specify
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{R.verifyCSID,R.updateCSID} = R.ownerCSID in the
annotation. Finally, after reapplying all missing up-
dates, C completes recovery by issuing a zero-length
WRITE annotated with R.verifyCSID = R.ownerCSID,
R.updateCSID = NIL. A more detailed discussion of
transaction recovery in Minuet can be found in [22].

3.5 Lock manager replication

Some lock services seek to achieve fault tolerance by
replicating lock managers. Since Minuet does not need
to provide assurances of mutual exclusion, it relies on a
simpler and more available replication scheme that per-
mits clients to retain progress in the face of extensive
node and connectivity failures. A lock can be acquired
as long as at least one manager instance is reachable. In
an extreme case, that instance can be the local Minuet
client itself, which would simply grant its own proposals
without coordinating with other processes.

To support manager replication, we extend the ba-
sic locking protocol presented in Section 3.3 as follows:
When acquiring or upgrading a lock, a client selects a
subset of managers, which we call its voter set, and sends
an U pgradeLock request to all members of this set. The
lock is considered granted once U pgradeGranted votes
are collected from all members. If any of the voters re-
spond with U pgradeDenied due to an outdated times-
tamp, the client downgrades the lock on all members
that have responded with U pgradeGranted, updates its
maxT; and maxT, values, and resubmits the upgrade re-
quest with a new timestamp proposal. As a performance
optimization, we allow U pgradeLock requests to specify
an implicit downgrade for an earlier timestamp.

4 Implementation

We have implemented a proof-of-concept prototype of
Minuet based on the design presented in the preceding
section. The prototype has been implemented on the
Linux platform using C/C++ and consists of a client-side
library, a lock manager process, an iSCSI protocol stack
extension, and two sample parallel applications.

4.1 Core Minuet modules

Client-side library (5,440 LoC): The client-side
component is implemented as a statically-linked library
and provides an event-driven interface to Minuet’s core
services, which include locking, remote disk I/O, and
transaction execution. When requesting a lock, a client
can optionally specify the desired size of the voter set,
which enables application developers to tune the de-
gree of locking consistency, enabling a choice between
optimism and strict coordination. A small voter set
works well for low-contention resources; it helps keep
the lock message overhead low and permits clients to
make progress in a partitioned network. Conversely, a

large voter set requires connectivity to more manager
replicas, but reduces the rate of I/O rejection under high
contention. All outgoing disk commands are augmented
with session annotations and in the event of rejection by
the target device, a ForcedDowngrade event is posted
to inform the application that the corresponding lock has
been downgraded to some weaker mode.

Minuet lock manager (4,285 LoC): The lock man-
ager process grants and revokes locks using the times-
tamp mechanism of Section 3.3 and several manager
replicas can be deployed for fault tolerance. For each
lockable resource, the manager maintains the current
lock mode, the list of current holders, the queue of
blocked upgrade requests, and the largest observed
timestamp proposal.

SAN protocols and guard logic: To demonstrate the
practicality of our approach, we implemented the guard
logic and session annotations within the framework of
iSCSI [4], a widely-used transport for IP-based SANS,
and our prototype extends an existing software-based
implementation of the iSCSI standard. On application
client nodes, we modified the top and the bottom levels of
the 3-tier Linux SCSI driver model. The top-level driver
(/drivers/scsi/sd.c) presents the abstraction of a generic
block device to the kernel and converts incoming block
requests into SCSI commands. We extended sd with a
new ioctl call, which enables the Minuet client library to
specify session annotations for outgoing requests and to
collect response annotations.

The bottom-level driver implements a TCP encapsu-
lation of SCSI and our current prototype builds on the
Open-iSCSI Initiator driver [6] v2.0-869.2. We used the
additional header segment (AHS) feature of iSCSI to at-
tach Minuet annotations to command PDUs and defined
anew AHS type for this purpose.

Our storage backend is based on the iSCSI Enterprise
Target driver [5] v0.4.16, which exposes a local block
device to remote initiators via iSCSI. We extended it
with the guard logic, which examines incoming PDUs
and makes an accept/reject decision based on the anno-
tation. Command rejection is signaled to the initiator via
the REJECT PDU defined by the iSCSI standard.

The addition of guard logic represents the most sub-
stantial extension to the SAN protocol stack, but incurs
only a modest increase in the overall complexity. The ini-
tial implementation of the Enterprise Target driver con-
tained 14,341 lines of code and augmenting it with Min-
uet guard logic required adding 348 lines.

4.2 Sample applications

Distributed chunkmap (342 LoC): Our first applica-
tion implements a read-modify-write operation on a dis-
tributed data structure comprised of a set of fixed-length
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data chunks. It mimics atomic mutations to a distributed
chunkmap - a common scenario in clustered middleware
such as filesystems and databases. The chunkmap could
represent a bitmap of free disk blocks, an array of i-node
structures, or an array of directory file slots. In each it-
eration, the application selects a random chunk, reads it
from shared disk, modifies a random chunk region, and
writes it back to disk. To ensure update atomicity, the
application acquires an Excl lock on the respective block
from Minuet prior to reading it from disk and releases
the lock after writing back the updated version.

Distributed B-Tree (3,345 LoC): To demonstrate the
feasibility of serializable transactions, we implemented a
distributed B-link tree [32] (a variant of B+ tree) on top
of Minuet. Our implementation provides transactional
insert, delete, update, and search operations based on
the protocol presented in Section 3.4.2. For each oper-
ation, the application initiates a transaction and fetches
the chain of tree blocks necessary for the operation
(Read phase). Next, it upgrades the locks on the mod-
ified blocks to Excl mode and logs the updates (Up-
date phase). Lastly, the client Prepares and Commits the
transaction. If a transaction aborts due to loss of session
to a tree block or the client’s log, the application reac-
quires the corresponding lock and retries (without back-
off) until it commits successfully. For efficiency, clients
retain Shared locks (and the content of cache buffers)
across transactions and stale cache entries are detected
and invalidated during the Prepare phase.

5 Evaluation

In this section, we evaluate the performance of our appli-
cations under different modes of locking. Due to space
constraints, we present only key results that demonstrate
the benefits of optimistic coordination enabled by Minuet
and confirm the feasibility of our design. Several addi-
tional important measurements are reported in [22].

5.1 Experimental setup

For our experiments, we emulated a 39-node SAN en-
vironment interconnected via 100Mbps links using Em-
ulab [41] and detailed hardware specifications are pro-
vided in Figure 4. Three of the nodes were configured to
serve as Minuet lock managers and four additional nodes
were used to emulate SAN-attached target devices, col-
lectively providing 2GB of logical disk space, equally
striped across the nodes. The remaining 32 nodes were
configured as application clients. We ran each iteration
of the experiment for 5 minutes and all of the values re-
ported below are averages over 3 iterations.

In each iteration, we measure the aggregate goodput
(the number of successful application-level operations

The number of storage targets | 1 | 2 | 3 | 4

strong(1) coordination 105.0 | 220.0 | 329.9 | 4124
strong(2) coordination 105.5 | 219.5 | 330.7 | 411.7
weak-own coordination 1059 | 220.9 | 331.1 | 410.6

Table 1: Chunkmap application goodput (in operations per sec-
ond) under the uniform workload.

per second) from all nodes and the rate of disk command
rejection under the following locking configurations:
strong(x): We deploy a total of 2x — 1 lock managers and
require clients to obtain permissions from a majority (x).
Note that strong(1) represents a traditional locking pro-
tocol with a single central lock manager, while strong(2)
requires 3 lock manager replicas and masks one failure.
weak-own: An extreme form of weakly-consistent lock-
ing. Each client obtains permissions only from the local
lock manager (co-located on the same machine) and does
not attempt to coordinate with the other clients.

In all of our experiments, applications rely on Minuet
to provide both modes of locking and do not make use of
any other synchronization facilities.

5.2 Distributed chunkmap

In this experiment, we configured the chunk size to 8KB
(for a total of 250K chunks) and ran the chunkmap ap-
plication with 32 clients, varying the number of storage
targets from 1 to 4. We considered two forms of work-
load:

uniform: In each operation, a chunk to be modified is
selected uniformly at random.

hotspot(x): x% of operations touch a hotspot region of
the chunkmap constituting 0.1% of the entire dataset.

Table 1 reports the aggregate goodput under the uni-
form workload, which represents a low-contention sce-
nario. The goodput exhibits linear scaling with the num-
ber of storage servers. Further, there is no measurable
difference in performance between the three locking con-
figurations. These results suggest that the optimistic
method of coordination enabled by Minuet does not ad-
versely affect application performance, while providing
safety, in scenarios where the overall I/O load is high, but
contention for a single resource is relatively rare.

The rate of I/O rejection increases when the workload
has hotspots and, as expected, weak-own suffers a per-
formance hit proportional to the popularity of the hotspot
(Figure 5). We note that the hotspot workload represents
a very stressful case (the hotspot size is 0.1%) and our
results demonstrate that weakly-consistent locking de-
grades gracefully and can still provide reasonable per-
formance in such scenarios.

We also ran experiments in a partitioned network sce-
nario, where each client can communicate with only a
subset of replicas. A strongly-consistent locking proto-
col demands a well-connected primary component con-
taining at least a majority of manager replicas - a condi-
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Figure 5: Left: chunkmap goodput under the hotspot(x) workload for varying x. Right:
the rate of rejected I/O requests under hotspot(x) for varying x.
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Figure 6: Pre-populated B+ tree parame-
ters.

tion that our partitioned scenario fails to satisfy. As a re-
sult, no client can make progress with traditional strong
locking and the overall application goodput is zero. In
contrast, under Minuet’s weak locking, clients can still
make good progress. This demonstrates the availability
benefits that Minuet gains over a traditional DLM design.

5.3 Distributed B+ tree

The B+ tree application demonstrates Minuet’s support
for serializible transactions. In this experiment, we start
with a pre-populated tree and run the application for 5
minutes on 32 client nodes. Each client inserts a series
of randomly-generated keys and we measure the aggre-
gate goodput, defined as the total rate of successful inser-
tions per second from all clients. To test Minuet’s behav-
ior under different transaction complexity and contention
scenarios, we used two different pre-populated B+ trees,
whose parameters are given in Figure 6.

Figure 7(left) compares the performance of strong(1)
and weak-own. Under both locking schemes, the
throughput exhibits near-linear scaling with the num-
ber of storage targets. As expected, tree-large demon-
strates a lower aggregate transaction rate because each
transaction requires accessing a longer chain of nodes.
Moreover, since the number of leaf nodes is large, read-
write or write-write contention is relatively infrequent
and hence, the performance penalty due to I/O rejection
incurred under weak-own is negligible. By contrast, tree-
small represents a high-contention workload and our re-
sults suggest that even in this stressful scenario, Minuet’s
weak locking incurs only a modest performance penalty.

Further investigation revealed that the primary cause
of the performance degradation was an outdated esti-
mate of maximum timestamps (maxTy, maxT,), causing

Broadcast frequency (# / sec)

Figure 7: Left: B+ tree application goodput with free-small and tree-large datasets.
Right: effects of the timestamp broadcast optimization with tree-small dataset.

some of the commands to carry outdated session iden-
tifiers (e.g., with verifySID.T, < ownerSID.Ty). Under
weak-own, clients select session identifiers without co-
ordinating with other clients and hence, a client may not
know the up-to-date value of ownerSID.T, that may have
been set by an earlier transaction from another client.

A simple optimization alleviating this issue is to let
clients lazily synchronize their knowledge of maximum
timestamps. More specifically, each client can broadcast
its local updates on maxT; and maxT; to other clients at
some fixed broadcast rate (b) and other clients can update
their local estimates accordingly. We implemented this
optimization and measured its effects on the tree-small
workload with 4 storage targets. Figure 7(right) shows
the results, which suggest that we can substantially re-
duce the rate of rejection by broadcasting with b > 0.2
and the resulting goodput closely approaches the maxi-
mum value achievable under strong locking.

Note that this optimization affects only performance
and is not required for safety. Conceptually, the broad-
cast rate b provides a way of parameterizing the contin-
uum between traditional locking and the fully optimistic
case of weak-own and other methods may be possible.

6 Discussion

In this section, we discuss several issues pertaining to the
practical feasibility of our approach and the implications
of Minuet’s programming model.

Storage target modifications: Our approach rests on
the basic idea of extending SAN-attached storage targets
with a small amount of guard logic that enables them to
detect and filter out inconsistent I/O requests , which will
require storage array vendors to introduce a new feature
into their products.
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We acknowledge that Minuet relies on functionality
that does not presently exist in standard storage hard-
ware and, consequently, faces non-trivial barriers to stan-
dardization, implementation, and deployment. However,
we observe that the proposed extensions are very incre-
mental and can easily be retrofitted into an existing de-
sign. The guard logic is amenable to efficient implemen-
tation in hardware or firmware, requiring only a few table
lookups and comparison operations.

As we argue above, the benefits of implementing such
an extension can be substantial. In addition to lifting
the safety and liveness limitations that have traditionally
characterized shared-disk applications and middleware,
our approach establishes a new degree of freedom in the
design space of SAN applications, enabling a choice be-
tween optimism and strict coordination.

Our investigation builds upon earlier work on device
locking [12], which has demonstrated the practical fea-
sibility of this approach and the willingness of storage
hardware vendors to adopt a promising new feature [2].
Metadata storage overhead: In our prototype imple-
mentation, target storage devices maintain 16 bytes of
per-resource metadata. For a typical middleware service
such as a database or a filesystem, a resource would cor-
respond to a single fixed-length block containing appli-
cation data or metadata and taking a clustered filesystem
as an example, block sizes in the range 128KB - 1MB are
common [8]. Assuming 128KB application block size,
the table of Minuet session identifiers for a dataset of
size 1TB would consume an additional 128MB.

Perhaps more alarmingly, Minuet metadata must be
stored in random-access memory for efficient lookup on
the data path. We envision the use of flash memory or
battery-backed RAM for this purpose and observe that
today, high-performance storage arrays make extensive
use of NVRAM for asynchronous write caching [39].
Alternatively, the session state can be stored persistently
on disk and a fixed-size NVRAM buffer can be used as a
cache, providing efficient access to the working set.
Protocol extensions: Our approach requires augment-
ing the format of READ and WRITE commands with
session annotations and our prototype implementation
extends the iSCSI protocol with a new AHS type for this
purpose. A transport-level modification simplified our
software implementation, but would be difficult to de-
ploy in a production environment, since it would require
modifying the HBAs. For a more easily-deployable so-
lution, the required set of extensions can be implemented
in a transport-independent manner at the SCSI command
level. One option would be to use an extended command
descriptor block (XCDB), as defined in SPC-4 ([13], sec-
tion 4.3.4), and introduce a new descriptor extension type
for carrying the session annotation. Likewise, command
rejection can be signaled to the initiator via a CHECK

CONDITION status code with a new additional sense
code and the response annotation can be communicated
as fixed-format sense data ( [13], section 4.5.3).
Programming model: Another concern is that Minuet
imposes a different programming model, exposing appli-
cation developers to additional exception cases that do
not naturally arise under strong locking. When a tradi-
tional DLM service grants a lock to an application pro-
cess, the lock is assumed to be valid and the client can
proceed to accessing the disk without worrying about
conflicting access from other clients. In contrast, Minuet
gives out locks in a more permissive manner, but pro-
vides machinery for detecting and resolving conflicting
access at the storage device. As a result, applications
that rely on Minuet for concurrency control must be pro-
grammed with the assumption that any I/O request can
fail with EBADSESSION due to inconsistent lock state.

We observe that while I/O rejection does not occur
under conservative locking, the protocols employed by
traditional DLMs for ensuring system-wide consistency
of locking state inevitably expose application developers
to analogous exception cases. For instance, a network
connectivity problem causing some application node to
lose connectivity to a majority of lock managers would
typically cause that node to observe a DLM-related ex-
ception event. More concretely, the application process
would be informed that due to lack of connectivity, some
of its locks may no longer be valid - these are precisely
the semantics of Minuet’s ForcedDowngrade notifica-
tion. Hence, both models demand exception-handling for
dealing with forced lock revocation.

With Minuet, a node that finds itself partitioned from
the rest of the cluster need not immediately give up its
locks and instead, can perform a more granular recov-
ery action. For example, it can switch to the optimistic
method and resume disk access without coordinating
with other application processes and this would permit
it to make progress in the absence of conflicting access.

Our experience with developing and deploying sam-
ple applications on top of Minuet suggests that the avail-
ability benefits enabled by the use of such fine-grained
recovery actions are certainly worth the extra implemen-
tation effort, which we believe to be relatively small. The
chunkmap application was initially implemented on top
of conventional locking using 327 lines of C code and
extending the implementation to operate on top of Min-
uet required adding only 15 lines of code to handle the
EBADSESSION notifications.

7 Related Work

Concurrency control has been extensively studied in the
operating systems, distributed systems, and database
communities. VMS [40] was among the first widely-
available platforms to provide application developers
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with the abstraction of a general-purpose distributed lock
manager and today, DLMs are generally viewed as a use-
ful building block for distributed applications.

Clustered and distributed filesystems [8, 10, 35-37]
and relational databases [9] rely on locking or lease-
based mechanisms to coordinate access to shared appli-
cation state. Both sets of mechanisms make certain as-
sumptions about timing, such as partially-synchronized
clocks and bounded communication latency, in order to
operate safely. These systems can directly leverage Min-
uet to ensure safe coordination of concurrent access to
shared data on disk without assuming synchrony.

In web service data centers, distributed coordination
services such as Chubby [20] and Zookeeper [15] have
also become popular. These services are intended pri-
marily for coarse-grained synchronization - a typical use
case might be to elect a master among a set of candi-
dates. Although the intended use of Minuet is to pro-
vide fine-grained synchronization in a shared-disk clus-
ter, our system can also support such use cases by tran-
sitioning to strongly-consistent locking, whereby each
lock is acquired with a majority voter set. Unlike our
system, Chubby provides a hierarchical namespace and
the ability to store small pieces of data, but these fea-
tures are largely orthogonal to our approach. Chubby’s
lock sequencer mechanism allows servers to detect out-
of-order requests submitted under an outdated lock and
our timestamp-based sessions generalize this idea to sup-
port shared-exclusive locking. We also develop this no-
tion further and observe that once we have the ability to
reject inconsistent requests at the destination, very little
is gained by enforcing strong consistency on replicated
locking state and specifically, the use of an agreement
protocol (e.g., Paxos [31]) may be more than necessary.

Concurrency control and transaction mechanisms have
been extensively studied in databases. ARIES [33] is
a state-of-the-art transaction recovery algorithm for a
centralized database, supporting fine-granularity lock-
ing and partial rollbacks of transactions, while D-
ARIES [38] extends this work to be usable in distributed
shared-disk databases. Implementing these mechanisms
on top of Minuet’s locking and I/O facilities would en-
sure that they retain their safety properties in the face
of arbitrary asynchrony. Minuet’s basic transaction ser-
vice presented in Section 3.4 is a variation of timestamp-
based concurrency control - a standard and well-known
technique in relational database design. Finally, database
researchers have explored hybrid approaches to concur-
rency control [34] that enable tradeoffs between opti-
mism and strict coordination and our work enables sim-
ilar tradeoffs for general SAN applications, where the
data resides on application-agnostic block devices.

There have been several research projects tackling the
intelligence/information gap between operating systems

and storage systems [17,25,28]. These projects aim to
achieve more expressive storage interfaces by exposing
more information or adding more intelligence to storage
devices. In our work, we identified and tackled safety
problems in SANs by narrowing the intelligence gap be-
tween clustered applications and SAN storage devices.

Several earlier projects have investigated new ap-
proaches to concurrency control via functional exten-
sions to storage devices. [29] proposes Dlocks as a new
primitive for distributed mutual exclusion, whereby the
lock acquisition state is maintained by the target devices
themselves and manipulated by the initiators using a new
SCSI command. Due to the inherent complexity of dis-
tributed locking, the lock management functionality has
proven too difficult to implement in a SAN storage array
and as a result, this mechanism did not attain wide accep-
tance among the storage device vendors. Follow-on work
to the initial proposal presented a simplified scheme in
form of DMEP [12]. In this scheme, storage devices ex-
pose an array of shared memory buffers holding the lock
state and clients manipulate this state directly using sim-
ple atomic commands. The DMEP specification was im-
plemented by a storage device vendor [2] and used by
earlier versions of GFS [35].

Our work revisits the idea of device-assisted synchro-
nization and is in line with these earlier efforts, but dif-
fers in several crucial respects. First, rather than ex-
tending the storage devices with lock management func-
tions, we propose a more general synchronization prim-
itive that supports a wider range of coordination tech-
niques. In addition to "traditional" conservative locking,
Minuet enables the use of optimistic concurrency con-
trol, which has been shown to reduce the synchronization
overhead and deliver better performance for certain ap-
plication workloads. As a result, Minuet enables a new
degree of freedom in the design space of parallel SAN
applications, enabling the developers to safely exploit the
tradeoffs between synchronization overhead, access con-
flict rate, and application availability. Second, acquir-
ing or releasing a lock in Minuet does not require ex-
plicit communication with the target storage device and
instead, clients annotate outgoing I/O requests with the
relevant synchronization state. This technique addresses
the problem of delayed requests delivered under the pro-
tection of an outdated lock and thus enables SAN ap-
plications to guarantee safety despite arbitrary message
delays, drifting clocks, and node failures. Finally, unlike
prior proposals, our design does not require new SCSI
commands and can be implemented within the confines
of existing protocol standards.

Similar in spirit to this work, SCSI-3 Persistent Re-
serve [11] tries to address the safety problems in shared-
disk environments by extending the storage protocol and
target devices. Revoking a suspected node’s reservation
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typically necessitates a global decision on declaring the
respective node faulty, which, in turn, requires majority
agreement. Hence, SCSI-3 PR offers safety but not live-
ness in the presence of network partitions and massive
node failures, while Minuet provides both.

8 Conclusion

This paper investigates a novel approach to concurrency
control in SANs. Today, clustered SAN applications co-
ordinate access to shared state on disks using strongly-
consistent locking protocols, which are subject to safety
and liveness issues in the presence of asynchrony and
failures. To solve these problems, we augment target de-
vices with a small amount of guard logic, which enables
us to provide a property called session isolation and a re-
laxed model of locking which, in turn, provide a building
block for distributed transactions. They also enable us to
loosen the consistency requirements on distributed lock-
ing state, thus providing high availability despite failures
and network partitions.

We have designed, implemented, and evaluated Min-
uet, a DLM-like synchronization and transaction mod-
ule for SAN applications based on the protocols we pre-
sented. Our evaluation suggests that distributed appli-
cations built atop Minuet enjoy good performance and
availability, while guaranteeing safety.
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