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Abstract

HYDRAstor is a scalable, secondary storage solution

aimed at the enterprise market. The system consists of

a back-end architectured as a grid of storage nodes built

around a distributed hash table; and a front-end consist-

ing of a layer of access nodes which implement a tradi-

tional file system interface and can be scaled in number

for increased performance.

This paper concentrates on the back-end which is,

to our knowledge, the first commercial implementa-

tion of a scalable, high-performance content-addressable

secondary storage delivering global duplicate elimina-

tion, per-block user-selectable failure resiliency, self-

maintenance including automatic recovery from failures

with data and network overlay rebuilding.

The back-end programming model is based on an ab-

straction of a sea of variable-sized, content-addressed,

immutable, highly-resilient data blocks organized in a

DAG (directed acyclic graph). This model is exported

with a low-level API allowing clients to implement new

access protocols and to add them to the system on-line.

The API has been validated with an implementation of

the file system interface.

The critical factor for meeting the design targets has

been the selection of proper data organization based on

redundant chains of data containers. We present this or-

ganization in detail and describe how it is used to deliver

required data services. Surprisingly, the most complex

to deliver turned out to be on-demand data deletion, fol-

lowed (not surprisingly) by the management of data con-

sistency and integrity.

1 Introduction

The enterprise environment places strenuous demands

on the secondary storage systems. With ever increas-

ing amounts of data produced and fixed backup win-

dows, there is a clear need for scaling performance and

backup capacity appropriately. Different types of data

have varying importance which require different classes

of reliability and availability and have specific retention

periods. Regulatory requirements (SOX, HIPPA, the Pa-

triot Act, SEC rule 17a-4(t)) demand security, traceabil-

ity and data auditing. Strict data retention and deletion

procedures need to be defined and followed rigorously.

Failure to present retained data on demand can result in

serious business losses, fines and even criminal prosecu-

tion. Last but not least, limited IT budgets increase the

importance of providing efficient storage by improving

storage utilization for backup and archival applications,

and by reducing the data management costs.

Substantial progress has been made to address these

enterprise needs, as demonstrated by advanced disk-

targeted deduplicating Virtual Tape Libraries [2, 3], disk-

based back-end servers [43] and content-addressable

archiving solutions [4]. However, the exponential in-

crease in the amount of data stored creates new prob-

lems not addressed by these solutions. First of all, unlike

primary storage, which is usually networked and under

common management (e.g. SANs), secondary storage

consists of a large number of highly-specialized dedi-

cated components, each of them being a storage island

requiring customized, elaborate, and often manual ad-

ministration and management. As a result, large frac-

tion of the total cost of ownership (TCO) can still be at-

tributed to management of more and more of secondary

storage components [1, 17, 21]. Moreover, fixed capac-

ity assignment to each storage device results in poor ca-

pacity utilization. Duplicate elimination in these islands

of storage is similarly limited in scope which compounds

the inefficiency. Finally, since each of secondary storage

devices offers fixed, limited performance, reliability and

availability, the high overall requirements of enterprise

secondary storage in these dimensions can be met only

by implementing complex in-house solutions.

Fortunately, new technology and previous research

results provide building blocks for a solution address-
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ing these problems. The content-addressable storage

paradigm [4, 24, 43] enables cheap and safe implemen-

tation of duplicate elimination. Distributed hash ta-

bles [12, 20, 25, 27, 31, 42] allow for building scalable,

failure-resistant systems and extending duplicate elimi-

nation to a global level. Erasure codes can add resiliency

to the stored data with fine-grain control between re-

quired resiliency level and resulting storage overhead.

Hardware and pricing trends are also critical for en-

abling HYDRAstor. The capacity of SATA drives and

the performance of new multi-core CPUs increase even

as the costs of these components fall. Together, these

trends provide the building blocks needed for systems

like HYDRAstor at a very reasonable cost.

Other work applicable include research on self-

management [13, 33], monitoring [35], and on-line re-

configuration [30] and upgrade [7]. Although all of

these elements facilitated building HYDRAstor, the task

proved to be much more complex than we originally en-

visioned and required a significant amount of original

research. The effort often felt like trying to design and

construct a building given just bricks and stones.

HYDRAstor [23] is a commercial secondary storage

solution for the enterprise addressing shortcomings dis-

cussed earlier. It consists of a back-end architectured as

a grid of storage nodes delivering scalable capacity and a

front-end consisting of a layer of access nodes scaled for

performance. In this paper, we concentrate on the design

of the back-end grid which supports capacity sharing be-

tween all clients and types of data, for example, back

up images or archival data. This sharing together with

system-wide deduplication allow for highly efficient use

of storage capacity. The system is highly-available, as it

supports on-line extensions and upgrades, tolerates mul-

tiple disk, node and network failures, rebuilds the data

automatically after failures and informs users about re-

coverability of the deposited data. The reliability and

availability of the stored data can be dynamically ad-

justed by the clients with each write, as the back-end

supports multiple data resiliency classes.

This paper makes the following contributions. First, it

presents the HYDRAstor as a concrete commercial im-

plementation of scalable secondary storage system ad-

dressing today’s enterprise needs. Second, it discusses

in detail the HYDRAstor data organization and how it

is used to implement advanced data services like global

duplicate elimination, on-demand deletion, and data in-

tegrity management. Third, it contains an evaluation of

the HYDRAstor that demonstrates effectiveness of its

implementation.

The remainder of this paper is organized as follows.

Section 2 describes the system’s functionality including

the programming interface. Section 3 contains a high-

level discussion of the back-end design. It establishes

context for the next section, 4, which discusses require-

ments on data organization and the resulting solution.

Section 5 illustrates how this organization is used to de-

liver data services like data rebuilding and distributed

data deletion. Section 6 presents evaluation of the sys-

tem. Related work is discussed in Section 7, whereas

conclusions and future work are given in Section 8.

2 Functionality

The back-end has been designed as a vast data repository,

allowing for storing and extracting streams of data with

high throughput. Internally, it consists of a potentially

large number of independent nodes presented externally

as a single system image. The back-end is designed to

scale up to thousands of dedicated nodes which could

provide hundreds of petabytes of storage. The primary

deployment target is the data center.

From the beginning, the HYDRAstor back-endwas in-

tended to provide a foundation for a commercial product.

Therefore, one of the design targets has been to support

not only tailor-made new applications, but also commer-

cial legacy applications, as long as they use streamed

data access. To that end, the system does not define

one fixed access protocol, instead it is flexible to allow

support for legacy applications using standards like file

system interface as well as for new applications using

highly-specialized access methods. New protocols can

be dynamically added to an online system by loading a

new protocol driver without disrupting any client using

the existing protocols.

One of the primary design goals has been to ensure

continuous operation of the system, limiting or elimi-

nating impact of upgrades, extensions and failures. The

distributed architecture enhances system availability by

allowing online software or hardware upgrades in most

cases, eliminating the need for costly downtime. More-

over, the system is capable of automatic self-recovery in

case of hardware failures (disk, network, power loss),

and even from some of software failures. The system

works correctly in the presence of up to a specific con-

figurable number of fail-stop and intermittent hardware

failures. The system does not handle Byzantine failures

which have a very low probability of actually occurring

in a real data center and would add significant overhead.

However, the system has several layers of data integrity

checking to detect data corruption.

Another important function of the system is to en-

sure high data reliability, availability and integrity. Each

block of data is written with a user-selected resiliency

level which allows the user to choose how many concur-

rent disk failures the block can survive. This is achieved

with erasure coding each block into fragments; as shown

in [36] erasure codes increase mean time to failure by
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many orders of magnitude over simple replication for

the same amount of space overhead. After a failure, if a

block remains readable, the system automatically sched-

ules data rebuilding to bring the resiliency back to the

level requested by the user. No permanent data loss re-

mains hidden for long. Global state indicates whether all

stored blocks are readable, and if so, how many disk and

node failures must happen before data loss occurs.

Secondary storage systems have unique characteristics

which influence the design goals. In contrast to primary

storage, which often deals with random accesses, these

systems are dominated by writes of long data streams.

Given the scale of the system, multiple streams will

be written concurrently by different clients. Successive

streams are often similar to previously written streams

which can contain many duplicate blocks. Since all data

must be saved during short backup windows, very high

write throughput is essential. Read throughput is quite

important for restores, but it is not as critical as write

throughput in our system since the restores are typically

much less frequent and involve reading only a portion of

the stored data.

2.1 Programming Model

The back-end programming model is based on an ab-

straction of a sea of variable-sized, content-addressed,

immutable, highly-resilient blocks. A block consists of

data and, optionally, an array of block addresses, point-

ing to previously written blocks. A block’s address is

derived from the SHA-1 hash of its content (both data

and pointers). Blocks are variable-sized to allow for bet-

ter deduplication; and pointers are exposed to facilitate

data deletion implemented as garbage collection. The

back-end exports a low-level block interface used to im-

plement new and legacy protocols. This interface allows

for a clean separation of the back-end from the front-end

which can support a wide range of access protocols.

SP1

SP1

SP2

RETENTION ROOT

RETENTION ROOT

A

B

C

F

D

E

DELETION ROOT

Figure 1: Blocks organized in a directed acyclic graph.

Data part of each block is shaded, pointers are not.

Blocks in the back-end form a DAG (directed acyclic

graph), as illustrated by Fig. 1. Drivers write trees of

blocks, but because of deduplication, these trees over-

lap at deduplicated blocks and form directed graphs. No

cycle is possible in these structures as long as the hash

used in the block address is secure. A source vertex in a

DAG is usually a block of a special type called search-

able retention root. In addition to the regular data and

the array of addresses, a retention root contains a user-

defined search key used to locate the block. This key can

be arbitrary data. A user retrieves a searchable block by

providing its search key instead of a cryptic block content

address. For example, multiple snapshots of the same file

system can have each root organized as a searchable re-

tention root with search key containing file system name

and a counter incremented with each snapshot. Search-

able blocks do not have user-visible addresses and can-

not be pointed to, so they cannot be used to create cycles

in block structures. However, each searchable block has

an internal hashkey assigned to it for fast retrieval. Un-

like regular blocks, the hashkey of a searchable block is

computed only over the search key portion of the block’s

data.

Fig. 1 shows a set of blocks organized into a DAG with

3 source vertices, 2 of them are retention roots; the 3rd

source vertex is a regular block, which indicates that this

part of the DAG is still under construction.

The API operations include writing and reading regu-

lar blocks, writing searchable retention roots, searching

for a retention root based on its search key; and mark-

ing a retention root with a specified key to be deleted by

writing an associated deletion root, as discussed below.

Cutting the data stream into blocks is beyond this inter-

face and is responsibility of the drivers, although we plan

to re-evaluate this decision soon.

When writing a block, a driver assigns it to one of a

few available resiliency classes. Each class represents

a different tradeoff between data resiliency and storage

overhead: from the low resiliency data class where a

block can survive only a single disk failure but has mini-

mum storage overhead, up to the critical data class where

each block can be replicated multiple times on different

disks and physical nodes. Different resiliency classes are

achieved by varying the number of original fragments in

the erasure coding scheme (described later).

The system does not provide a way to delete a sin-

gle block immediately because this block may be refer-

enced by other blocks. Instead, the API allows to mark

roots of the DAG(s) which should be deleted. To mark

a retention root as dead, a user writes a special block

called searchable deletion root with the search key iden-

tical to this retention root’s search key. In Fig. 1, there

is a deletion root associated with the retention root SP1.

The deletion algorithm marks for deletion all blocks not
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reachable from the live retention roots, for example in

Fig. 1 all blocks with dotted lines will be marked. The

block named A will also be deleted because there is no

retention root pointing to it, whereas the block named F

will be retained, as it is reachable from the retention root

SP2 which is still defined as live since it does not have a

matching deletion root.

During data deletion, there is a short read-only period,

in which the system identifies blocks to be deleted. Ac-

tual space reclamation happens in the background during

regular read-write operation. Before entering a read-only

phase, all blocks to be retained should be pointed by live

retention roots.

3 System Architecture

HYDRAstor back-end nodes are built of highly reliable

server-grade components. No customized hardware is

needed. Detailed description of available hardware con-

figurations is given in Section 6. The number of storage

nodes determines the total raw capacity of the system as

well as its maximal level of performance. Front-end ac-

cess nodes can be added to realize this performance up

to the limit determined by the current back-end configu-

ration.

Software components of the back-end include the stor-

age server and proxy server, both implemented as Linux

user space processes, and protocol drivers implemented

as libraries.

Storage servers are organized in an overlay network,

with data blocks assigned to each server based on block’s

hashkey. The details of the overlay are discussed in Sec-

tion 3.1. Each storage node hosts one or more storage

servers. The number of storage servers running on a stor-

age node depends on its resources. The bigger the node,

the more servers we run, with each server responsible

exclusively for a specific number of this node’s disks.

Putting multiple servers on one physical node is a simple

solution to the problem of harnessing computing power

of multicore CPUs.

Proxy servers run on access nodes and export the same

block API as the storage servers. A proxy provides ser-

vices like locating the storage nodes, optimized message

routing and caching.

Protocol drivers use the API exported by the back-

end to implement access protocols. These drivers can be

loaded in the runtime on both storage and proxy servers.

Location of a driver depends on available resources and

driver resource needs. Usually, resource-hungry drivers

like the file system driver are loaded on proxy servers.

3.1 Network Overlay

Since one of our design goals has been scalability, the

use of distributed hash tables has been a natural choice.

However, because for a distributed storage system both

storage utilization and data resiliency are extremely im-

portant, we have had additional requirements on a DHT:

assurances about storage utilization and ease of integra-

tion of the selected overlay network with the data re-

siliency scheme we have planned to use, i.e. erasure cod-

ing. Since none of the existing DHTs allowed for that,

we have decided to use a modified version of the Fixed

Prefix Network (FPN) [12] distributed hash table. FPN

makes it possible to maintain very short routing paths for

a wide range of the number of nodes and guarantees a

minimal level of storage utilization.

00 01 10 11

0 1

empty prefix

node1

node2

node3

node4

node5

node6

Figure 2: Supernodes and components. 4 supernodes

spanned over 6 physical nodes. Each supernode has 4

components, i.e. supernode cardinality is 4.

In FPN, each overlay node is assigned exactly one

hashkey prefix used also as an identifier of this virtual

node. An FPN node is responsible for hashkeys with pre-

fix equal to this node identifier. All possible hashkeys

form a hashkey space. The overlay network strives to

keep prefixes disjoint and to cover completely this space,

which we call also prefix space. The upper part of Fig. 2

shows a prefix tree which has four leaf FPN nodes, di-

viding the prefix space into four disjoint subspaces.

To meet our DHT requirements, we have extended the

original FPN with supernodes. A supernode represents

one FPN node (and as such, it is identified with a hashkey

prefix), but spans several physical nodes to increase re-

siliency to node failures. Each supernode consists of a

fixed number (called supernode cardinality) of supern-

ode components. Components of the same supernode are

called peers and are usually placed on separate physical

nodes, as show on Fig. 2. Practical supernode cardinal-

ity values are in the 4-32 range, and in the commercial

HYDRAstor it is set to 12. For a given HYDRAstor in-

carnation, its supernode cardinality is the same for all
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supernodes and is constant throughout entire system life-

time.

Supernode peers use a distributed consensus algorithm

to decide what change should be applied to the supern-

ode — for example, after node failure, they decide on

which physical nodes new incarnations of lost compo-

nents should be recovered.

3.2 Read and Write Handling

On write, a block of data is routed to one of the peers of

the supernode responsible for the hashkey space where

the block’s hash belongs. For both read and write re-

quests, the peer is deterministically chosen based on

the hashkey of the data. Next, this write-handling peer

checks if a suitable duplicate is already stored; this pro-

cess is described in detail in Section 5.2. If a duplicate is

found, its address is returned; otherwise the new block is

compressed (if requested by a user), fragmented, and its

fragments are distributed to remaining peers.

On read, the read handling peer first determines the

minimal number of fragments required to reconstruct this

block, which is stored in the block’s metadata. Next, the

read handling peer sends fragment read requests to some

of the other peers. If any of these requests times out, all

remaining fragments are read. After a sufficient number

of fragments have been found, the block is reconstructed,

decompressed (if it was compressed), its SHA-1 hash is

verified and, in case of successful verification, returned

to the user.

In general, sequential reading is very efficient since the

blocks are read in the same order that they were written

and the individual fragments end up getting prefetched

from disk into local memory. Usually, the requested frag-

ment is present in the current component location. How-

ever in some cases (for example after intermittent fail-

ures), the requested fragment may only be present in one

of the previous locations of this component. In such a

case, the component directs a distributed search for the

missing data. In particular, the trail of previous compo-

nent locations can be searched in the reverse order.

3.3 Load Balancing

In a distributed storage system like the HYDRAstor

back-end, the distribution of data among physical nodes

is critical for system survivability, data resiliency and

availability, storage utilization, and system performance.

For example, placing too many peer components on

one machine may have catastrophic consequences if this

node is lost. The affected supernode may not recover,

because too many components have been lost; and even

when it is recoverable, some or even all of the data han-

dled by this supernode may not be readable, due to loss

of too many fragments. Also, performance of the system

is maximized when components are assigned proportion-

ally to available node resources, since the load on each

node is proportional to the prefix space covered by the

components assigned to this node.

Our system continuously attempts to balance compo-

nent distribution over all physical machines to reach a

state where failure resiliency, performance and storage

utilization are maximized. The quality of a given distri-

bution is measured by a multi-dimensional function pri-

oritizing these objectives, called system entropy. Balanc-

ing is carried out by each machine, which periodically

considers all possible transfers of locally hosted compo-

nents to neighboring nodes. If the machine finds a trans-

fer that would improve the distribution, it is executed.

After a component arrives at a new location, its data is

also moved from old location(s) to the new one; but this

data transfer happens in the background and may take a

long time.

The same entropy-driven balancing is applied to the

system when nodes are added or removed from the sys-

tem.

3.4 Impact of Supernode Cardinality

Selection of supernode cardinality has profound impact

on properties of HYDRAstor. First of all, it determines

the maximal number of tolerated node failures. The net-

work overlay, but not necessarily user data, survives node

failures as long as each supernode remains alive. A su-

pernode survives if at least half of the supernode’s peers

plus one remain alive so they can reach a consensus.

Supernode cardinality also influences scalability, at

least in theory. For a given cardinality, the probability

that each supernode survives is fixed; the higher the car-

dinality the higher the probability of survival. When a

system size grows, its number of supernodes also grows,

and, as a result, the system reliability decreases, as for

the system to be operational we require all supernodes to

be alive. However, the practical impact of this limitation

is negligible in the target range of system size, because

permanent loss of a physical node is very rare, and self-

healing reduces the window of vulnerability even when

it happens.

Finally, supernode cardinality defines the number of

data redundancy classes available. Erasure coding is

parametrized with the maximal number of fragments that

can be lost while a block remains still reconstructible

(standard m-of-n erasure codes with n set to supernode

cardinality and m determined by the redundancy class;

we use the Cauchy-based Reed-Solomon codes [9]).

Since in HYDRAstor the erasure coding always produces

supernode cardinality fragments, the tolerated number of

lost fragments can vary from one to supernode cardi-
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nality minus one (in the latter case we keep supernode

cardinality copies of such block). Each such choice of

tolerated number of lost fragments defines one data re-

dundancy class. Each class represents different tradeoff

between storage overhead (due to erasure coding) and

failure resiliency.

4 Data Organization

Proper representation of stored data is critical for meet-

ing reliability, availability and performance targets of

HYDRAstor. The system should be able to easily iden-

tify the availability of stored data, and in case of a fail-

ure, rebuild only the data actually written and only to the

requested resiliency level (as opposed to RAID, which

rebuilds entire disk even if it contains no valid user data).

Since components move between nodes followed by the

data transfer, it should be possible to locate and retrieve

data from old component locations. When such data is

available, it should be transferred instead of being re-

built, as transfer is a much cheaper operation. Data writ-

ten in one stream should be placed nearby to maximize

write and read performance. Last but not least, the data

organization should support on-demand distributed data

deletion, in which data blocks not reachable from any

live retention root are deleted and the space occupied by

them is reclaimed.

4.1 Synchruns and Synchrun Components

As discussed earlier, we use erasure coding for data re-

dundancy. Resulting fragments of one block are dis-

tributed to peer components of the supernode responsi-

ble for this block. The basic logical unit of data man-

agement in HYDRAstor is the synchrun, containing a

limited number of blocks written consecutively by one

write-handling peer component.

A synchrun is analogous to a stripe in a RAID group

since both allow faster reads and writes of continuous

data faster than any single disk can do. Unlike a RAID

stripe, a synchrun is also the basic block that is used for

data balancing and load management as described below.

Since writing a block really means writing a supernode

cardinality of its fragments, each synchrun is represented

by supernode cardinality of synchrun components, one

for each peer. For the i-th peer of a supernode, the cor-

responding synchrun component contains all i-th frag-

ments of the synchrun blocks. A synchrun is a logical

structure only, but synchrun components actually exist

on corresponding peers.

4.2 Chains of Containers

At any given time, each write-handling peer writes block

fragments to exactly one synchrun. As a result, all such

synchruns can be logically ordered in a chain, with the

order determined by the write-handling peer. Synchrun

components are placed in a data structure called syn-

chrun component container (SCC). Each SCC can con-

tain one or more chain-adjacent synchrun components,

and as a result, SCCs form also chains similar to syn-

chrun component chains.
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Figure 3: Data organization with synchruns and syn-

chrun containers.

The upper row in Fig. 3 shows synchruns A and B

that belong to the empty prefix supernode which covers

the entire hashkey space. Each synchrun component

is placed here in one SCC, with its individual fragments

represented by smaller boxes inside the SCC. SCCs with

synchrun components of these synchruns are shown as

rectangles placed one behind the other. A chain of syn-

chruns is represented by the supernode cardinality of

SCC chains, we call them peer SCC chains. In the re-

mainder of the Fig. 3 we show only one such peer SCC

chain.

Peer SCC chains are normally identical with regards to

the synchrun components’ metadata and the number of

fragments they hold, but there are occasional differences

caused by node failures which cause holes in the chains.

This chain organization allows for relatively simple and

efficient implementation of required features. For ex-

ample, if the number of peer chains without any holes is

not lower than the number of fragments needed to recon-

struct each block, then we infer that the data is available

(i.e. all blocks are reconstructible). In such way, deter-

mination of data availability can easily be made for each

redundancy class.

Each supernodewill eventually be split as more data is

stored or as more nodes are added to the system. This is
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a regular FPN split which results in two new supernodes

with prefixes extended from their ancestor prefix with,

respectively, 0 and 1. After a supernode split, each syn-

chrun in this supernode is also split, with fragments dis-

tributed between them based on their hash prefixes. The

second row of Fig. 3 shows two such chains, one for the

supernode with the prefix 0, and the other with the pre-

fix 1. As a result of the split, fragments from synchruns

A and B are distributed to these two chains. The system

now has 4 synchruns, each approximately half the size of

the orignals.

The system strives to maintain a limited number of

local SCCs, and merges adjacent synchrun components

into one SCC (as shown on the third row of Fig. 3) until

the maximum size of an SCC is reached. By limiting the

number of local SCCs, the system can keep their meta-

data cached in RAM which enables fast determination of

actions needed for providing data services. The target

size of an SCC is a configuration constant (usually set

well below 100 MB), so multiple SCCs can be read into

the main memory. These SCC concatenations are loosely

synchronized on all peers, so peer chains look the same.

A similar operation is needed after deletion, shown in

the remaining rows of this figure and discussed later in

Section 5.3

This data organization is relatively simple in a static

system, but it becomes quite complex due to the dynamic

nature of the HYDRAstor back-end. For example, when

a peer is transferred to another physical node because

of load balancing, its chains are transferred in the back-

ground to a new location, one SCC at a time. Similarly,

after a supernode split, not all SCCs of the supernode are

split immediately; instead we run background operations

adjusting chains to the current supernode locations and

shape. As a result, in any given moment, we may have

chains partially-split, partially present in previous loca-

tions of this peer, or both. After failure, we may have se-

rious holes in some of the chains. Fortunately, since peer

chains describe the same data, we have supernode cardi-

nality chain redundancy in the system, so usually there

is a sufficient number of complete chains. This chain

redundancy allows for reasoning about the data in the

system even in the presence of transfers/failures. Addi-

tionally, more refined algorithms are used in some cases,

constructing chain coverage from chain parts present on

different peers.

5 Data Services

Based on the data organization described above,

HYDRAstor efficiently builds data services like identi-

fication of the recoverability of data, deletion and space

reclamation, locating data in the network, data dedupli-

cation and others. Given a detailed description of all of

these features is beyond the scope of this paper, but this

section will present a sketch of the data rebuilding, dele-

tion and duplicate elimination services.

5.1 Data Rebuilding

When a node or disk fails, the SCC’s residing on that

node or disk are lost. As a result, the redundancy of the

data blocks with fragments belonging to these SCCs is

at best reduced below the level requested by users when

writing these blocks. In the worst case, a block may be

lost completely if not enough fragments survive. To keep

the block redundancy at the desired levels, the system

scans SCC chains looking for holes and schedules data

rebuilding as background jobs for each missing SCC.

Multiple peer SCCs can be rebuilt in one rebuilding

operation. Based on SCC metadata, the minimal number

of peer SCCs needed for rebuilding is read by the peer

that is in charge of rebuilding. This peer does bulk era-

sure decoding and encoding to restore the missing frag-

ments. Next, the rebuilt SCCs are sent to the current tar-

get locations. Before SCCs are rebuilt, all input SCCs

are made to look the same, i.e. required splits and con-

catenations are performed first. This requirement allows

for fast bulk rebuilding as measured in Section 6.

5.2 Duplicate Elimination

Duplicate elimination can be classified in many dimen-

sions: (1) the granularity of the deduplication: whole

files, partial files, fixed size blocks or variable sized

blocks; (2) time when the deduplication occurs: inline

during the write phase or as a background process; (3)

precision of duplicate identification: can the system re-

liably find all duplicates or does it use an approximate

technique which trades precision for increased perfor-

mance? (4) the verification of equality between a dupli-

cate and its copy: just by comparison of hashes or with

full data comparison; (5) the scope of the deduplication:

the whole system (global deduplication), or the dedupli-

cation limited for example to data on a specific node (lo-

cal deduplication).

Today HYDRAstor implements variable-sized block,

inline, hash-verified global duplicate elimination imple-

mented on storage nodes. Variable-size blocks allow for

better deduplication, because content-dependent chunk-

ing can be used ([40]). Inline deduplication increases

write throughput, since duplicated block writes can be

handled without writing to disk; this also increases stor-

age efficiency compared to off-line deduplication. For

regular blocks, we use fast approximate deduplication,

whereas for retention roots, we do reliable duplicate

elimination to ensure that searchable retention roots with

the same search key but different contents are not written.
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In both cases, for successful deduplication, we require

that the potential duplicate of the block being written has

a redundancy class not weaker than the class requested

by this write and that the potential old duplicate is recon-

structible.

On a regular block write, the peer handling this write

is selected based on the hash of this block. It means that

two identical blocks written when this peer is alive will

be handled by it, and the second block will be found a

duplicate of the first one.

A more complicated case arises when the write-

handling peer has been recently created because of trans-

fer or component recovery, and it does not have yet all

the data it should have, i.e. its local SCC chain is not

complete. In this case, we go to the longest-alive peer

in the current supernode to check for possible duplicates.

This is just a heuristics, as this peer may also not have

the proper SCC chain complete, so a duplicate may not

be detected. However, such a miss occurs only in corner

cases, after massive failures when most likely all chains

are broken. Moreover, for a particular block, we miss

only one opportunity to eliminate a duplicate; the next

duplicate block will be deduplicated unless another fail-

ure or transfer of this peer happens.

For retention roots, we need to ensure that two blocks

with the same search key have identical contents (oth-

erwise retention roots would not uniquely identify snap-

shots). As a result, we need accurate duplicate elimi-

nation for retention roots. When a local SCC chain has

holes at the peer handling this write, the peer sends dupli-

cate elimination queries to all other peers in this supern-

ode. Each of these peers checks locally for a duplicate.

A negative answer also includes a summary description

of the parts of the SCC chain on which this answer is

based. The write handling peer collects all replies. If

there is at least one positive, a duplicate is found; other-

wise, when all are negative, this peer tries to determine if

SCC information attached to negative replies covers one

entire SCC chain. If yes, the new block is not a dupli-

cate; otherwise such determination cannot be done and

the write is rejected with special error status indicating

that data rebuilding is in progress (this may happen af-

ter massive failures); in such case this write should be

submitted later. Needless to say, such situations so far

happened only in special tests, and never in practice.

5.3 Deletion and Space Reclamation

Implementing data deletion in a system like HYDRAstor

turned out to be surprisingly difficult because of many

challenges which stem from the nature of the sys-

tem: content-addressability, distribution, failure toler-

ance, and duplicate elimination. While deletion in our

content-addressable system is somehow similar to dis-

tributed garbage collection [29], which is well under-

stood, overcoming the remaining challenges, discussed

below, required new research.

When deciding if a block is to be duplicate-eliminated

against its older copy, we must be sure that this old block

is not scheduled for deletion. Deciding which block to

keep and which to delete must be globally consistent and

robust in the presence of failures. For example, a dele-

tion decision made should not be temporarily lost due

to intermittent failures, as otherwise we may eliminate

duplicates using blocks which are really scheduled for

deletion. Moreover, the robustness of the data deletion

algorithm should be higher than the data robustness. As

a result, even if some blocks are lost, data deletion should

be able to proceed to logically remove the lost data and

heal the system if requested to do so by the user.

To simplify the design and make the implementa-

tion manageable, we have implemented deletion in two

phases. During the first phase, the system is read-only

and blocks are marked for deletion. In the second phase,

the data can be read and written, as the system reclaims

the blocksmarked for deletion. Having a read-only phase

simplified the deletion implementation, because such ap-

proach lets us eliminate the impact of writes on marking

blocks for removal.

Deletion is implemented with a per-block reference

counter that counts the number of pointers in blocks in

the system pointing to this block. Reference counters are

not updated immediately on write. Instead, they are up-

dated later in the read-only phase processing all point-

ers written since the previous read-only phase (so the

counter update is incremental). For each such pointer,

the reference counter of the pointed block is incre-

mented. After all such incrementation is completed, all

blocks with reference counter equal to zero are marked

for deletion (dark-shaded fragments in Fig. 3). More-

over, reference counters of blocks pointed by blocks al-

ready marked for deletion (including roots with associ-

ated deletion roots) are decremented. Next, the whole

decrementation process (i.e. marking for removal blocks

with reference counters equal to zero and decrementing

reference counters of blocks pointed by pointers included

in these blocks) is repeated, until no more new blocks can

be marked for deletion. At this point, the read-only phase

ends, and blocks marked for deletion can be removed in

the background.

The deletion algorithm described above requires that

the metadata of all blocks, as well as all the pointers, be

present before proceeding. The pointers and block meta-

data are replicated on all peers, so the deletion can pro-

ceed even if some blocks are no longer reconstructible,

as long as at least one block fragment exists.

Since blocks are really kept as fragments, a copy of the

block reference counter is kept per-fragment, and each
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fragment of a given block should have the same value

of this counter. Reference counters are computed inde-

pendently on peers participating in the read-only phase.

Before deletion is started, each such peer must have its

SCC chain complete with respect to fragment metadata

and pointers. Not all peers in a supernode have to par-

ticipate, but some minimal number of peers is required

to complete the read-only phase. The computed coun-

ters are later propagated in the background to remaining

peers.

The redundancy in counter computation allows a dele-

tion decision to survive node failures. However, the in-

termediate results of deletion computations are not per-

sistent. Any failure before the decision is made wipes

out these results on the affected nodes, and the whole

computation needs to be repeated if too many peers can-

not participate in this phase any more. Deletion can

still continue, if a sufficient number of peers in each su-

pernode are not affected by the failure. Upon conclu-

sion of the read-only phase, the new counter values are

made failure-tolerant. All dead blocks i.e. blocks with

counters equal to zero are then swept out from physical

storage in the background (reclamation in Fig. 3). Free

space fragmentation is avoided by rewriting the whole

synchrun component container, copying only fragments

of live blocks to the new location.

6 Evaluation

Each current HYDRAstor storage node (SN) runs one

back-end server, and has six 500 GB SATA disks, 6GB

RAM, two dual-core 3 GHz CPUs and two GigE cards.

Some experiments have also been done with the ex-

perimental next generation hardware (denoted SN2), in

which each storage node runs two back-end servers and

has twelve 1 TB SATA disks, 20 GB of RAM, two quad-

core 3GHz CPUs and four GigE cards. In all experi-

ments, we used the current access node (AN) with 6GB

RAM, two dual-core 3 GHz CPUs, two GigE cards and

only limited local storage. All nodes run the Red Hat EL

5.1 version of Linux.

All experiments were performed using block size of

64KB compressible by 33% to 48KB except where

noted. The system was configured with a supernode car-

dinality of 12 and the number of supernodes was equal to

the number of physical machines. All of the tests wrote

data using a resiliency class which has 9 original and 3

redundant fragments.

6.1 Read/Write Bandwidth

This experiment shows write throughput as a function

of the fraction of blocks detected as duplicates for two

different compression ratios. We have used 4 SN2 ma-

chines, and 4 AN machines, each with one testing driver

able to generate a stream of blocks with a specified per-

centage of duplicates and compression ratio. Duplicates

are evenly distributed in the stream. Duplicated data is

written in the same order as the base data, re-creating the

original data stream. For the read experiment, the testing

driver attempts to read data in the same order as it was

written.
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Figure 4: Write throughput as a function of duplicate ra-

tio.

As shown in Fig. 4, very high bandwidth is achieved,

which is a consequence of a carefully chosen data organi-

zation utilizing bulk transfer to disk. Duplicates are pro-

cessed much more effectively than non-duplicated data,

because they do not require fragmentation, fragment dis-

tribution and storage. Moreover, SCC-based organiza-

tion allows the write-handling peer to perform fast local

duplicate elimination by checking block reconstructibil-

ity with SCC reports submitted in the background from

the remaining peers. However, when all writes are du-

plicates, the network bandwidth between AN and SNs

becomes a bottle-neck, and the overall performance does

not increase as much as expected (both curves flatten a

bit at 100% duplicates). For high deduplication ratios,

the CPU utilization decreases dramatically and network

bandwidth between storage nodes remains available, so

background tasks like data reconstruction and data scrub-

bing can be run without impact on user-visible perfor-

mance.

Read bandwidth highly depends on factors like the se-

quentiality of the data read, the number of drivers reading

simultaneously and the granularity of the distribution of

the duplicates in the data. A detailed discussion of the

impact of these factors on read performance is beyond

the scope of this paper. Instead, we give read through-

put achieved when reading the data written during the

experiment described above. With four drivers reading,

the total combined read bandwidth for indicated levels

of deduplication was between 450 MB/s and 790MB/s
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for 33% compressible data, and between 400 MB/s and

550MB/s for 0% compressible data.

The time required to fill the 4 SN2 node system de-

pends on the percentage of duplicates in the data written.

The system can be filled in 1 day when writing with no

duplicates, while filling a system with 95% duplicated

data can take up to 10 days. In general, for configura-

tions in which high performance is not a priority, fewer

ANs can be used resulting also in extended time-to-fill.

These results were obtained with testing drivers run-

ning on the ANs. Experiments with real backup ap-

plications using the filesystem front-end yielded similar

performance. However, since the experiments were not

done in a controlled setup, their results are not presented

here.

6.2 System Scaling

This experiment, with up to 12 SNs and the number of

ANs set to half of the number of SNs, shows how perfor-

mance is scaled when numbers of storage nodes and ac-

cess nodes increase. Two sets of measurements are done

— a dynamic one, in which nodes are added while the

user is writing, and a static one in which the number of

nodes remains constant during the test. In the latter case,

each measurement was taken after re-initializing the sys-

tem from scratch and then loading the same amount of

random, non-duplicated data. Time on the X axis refers

to the dynamic case only.
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Figure 5: Dynamic vs. static scalability test.

The results indicate that in the range of nodes tested

the system performance scales linearly with the system

growth in the static case. The system attempts to balance

components so that the hash space is divided equally

across storage nodes. Such balancing guarantees that ev-

ery machine is equally loaded and does not become a

bottleneck. In the dynamic case, the cost of dynamically

reconfiguring the system results in lower user bandwidth.

This happens since most of the data is on the older nodes

which are checked on every write for duplicate elimina-

tion. However, after all data transfers are completed, the

performance in the dynamic case will be the same as in

the stable case.

6.3 Node Failure and Data Rebuilding

This experiment shows the system behavior and its per-

formance just after node failure, during resulting data re-

construction, and after the failed node is recovered. The

system tested has 4 SN2 machines and 4 AN machines.
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Figure 6: Node failure during backup.

We started writing to the healthy system with four stor-

age nodes, achieving write throughput over 600 MB/s.

After about 14 minutes one storage node failed (both

back-end servers crashed). Write performance just after

the node failure dropped to 300 MB/s, then stabilized at

about 400 MB/s. The initial drop was caused by timed-

out messages to the failed node and overhead for sys-

tem rebalancing. Data rebuilding (reconstruction) tasks

were ordered, however they were suppressed because of

the ongoing user backup. Reconstruction started to work

with full bandwidth just after all user writes had been

finished. Every block reconstruction required reading

all 9 remaining fragments in order to rebuild the 3 lost

ones. The reconstruction read bandwidth reached 480

MB/s on the 3 surviving machines with a reconstruction

write bandwidth of 160 MB/s. The rebuilding finished

in the 58th minute of the experiment leaving a healthy

system with only 3 storage nodes.

In the 64th minute the next writing session started

achieving write bandwidth of 430 MB/s. The failed node

was recovered and connected once again in the 100th

minute. Just after the re-connection, system write band-

width dropped to 380 MB/s, but when components rebal-

ancing was finished it increased to about 550 MB/s. At

the end of the experiment the system had 4 storage nodes,

however it was not healthy, as not all data (SCCs) were

in the correct places. Write performance will increase

to the initial (600 MB/s) after all pending transfers are

finished and the system becomes healthy again.
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The results show that the system maximizes user band-

width during backup even if background tasks are pend-

ing. In particular, ongoing reconstruction is suspended if

a new backup is started. This approach allows a user to

minimize costly backup windows regardless of internal

system state, but carries the risk of starvation of critical

data rebuilding tasks. However, this may happen only if

the system is fully loaded by a user all the time and only

when the user writes non-duplicated data. If the user load

decreases or some duplicates are written, reconstruction

is executed in the background. Finally, this experiment

also shows how quickly the system adjusts to changes in

its environment, as it takes only a few minutes for the

system to fully utilize released resources.
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Figure 7: Read-only phase duration.

6.4 Data Deletion

The purpose of this experiment is to evaluate the du-

ration of the read-only phase as a function of the data

loaded with a focus on scenarios reflecting a realistic

system usage. Therefore, we use the file system interface

to write and delete data periodically, increasing overall

the amount of data stored in the system. Deletion exper-

iments were performed using 4 SN2 machines and 1 AN

machine.

The test runs the following four step sequence four

times. During the initial step (shown with the dotted

lines in the Fig. 7), the data is loaded into the system.

The loading phase pauses at 1TB, 2TB, 4TB and 8TB.

In the second step, during each pause, the read-only data

deletion phase is run which recomputes the counters for

the newly loaded data (note that no data is marked for

deletion at this point). The duration of this step is shown

with light-gray bars. The third step (shown with dashed

lines), an additional half terabyte of new data (ND) is

loaded and a user invokes a deletion operation of 0.2 TB

of older data (DD). In the last step, one more read-only

phase is run to recompute the counters to reflect the re-

cently loaded data and mark the blocks for deletion.

The duration of each read-only phase is shown with

dark-gray bars. In all cases, the new data is not com-

pressible and does not contain any duplicates, but with

duplicates present the results will be similar, except that

all phases will be shorter.

Although the X axis in Fig. 7 shows duration of each

read-only phase, the data-loading steps are not shown in

proportion there, because they are too big (we load ter-

abytes of data and it takes several hours). We note that

all read-only phases are relatively short, the longest one,

after loading 3.7 TB of data (which took about 4 hours)

is about 30 minutes, resulting in deletion time of under

13% of writing time. For writing with two ANs, this frac-

tion can go up to 20% in case of not-duplicated streams.

When writing data with a high number of duplicates (the

common case with backups), deletion takes significantly

less time (on the order of 5% of the writing time), since

less data needs to be read to access the pointers, and fill-

ing the capacity takes so much longer. Moreover, the

duration of the first read-only phase (shown with the

light-gray bars) in each sequence is proportional to the

new data loaded in the first step of the scenario. Finally,

the duration of the second read-only phase (shown with

dark bars) is fairly constant, taking around 11 minutes

per run. This also shows the power of the incremental

reference-counting deletion in HYDRAstor. The dura-

tion of the read-only phase depends only on the amount

of data added and deleted since the previous run of this

phase, but not on the total amount of data in the system.

7 Related Work

A significant number of distributed storage systems [8,

10, 11] are designed as large scale systems which are

distributed over wide area networks and built with un-

trusted peers. These systems undergo frequent configu-

ration changes. For example, the goal of OceanStore [8]

was to provide reliable storage for all data ever cre-

ated. These systems concentrated on scalability (e.g.

OceanStore, PAST [11]) and tolerating a large class of

failures, including Byzantine and large-scale correlated

failures (Glacier [18]) at the expense of performance.

Another group of distributed storage systems targeted

the data center and, in this, are more like HYDRAstor.

These systems include distributed virtual disk like

Petal [19], distributed file systems like CEPH [37] and

Farsite [6], clustered file systems like Sorrento [34],

Panasas [39], and GoogleFS [15], clustered storage in-

cluding Ursa Minor [5], RADOS [38], and FAB [28].

Compared to HYDRAstor these systems have different

target applications and are not advertised as secondary

storage. As a result, they do not provide deduplication
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(except Farsite, which does it on file level); these sys-

tems are not CAS-based, but need to deal with issues of

consistency in the presence of write-sharing, which do

not occur in our system. Ursa Minor does support user-

selected choices of data resiliency, similar to our data

resiliency classes. DISP [14] is a flexible system that

can be specialized to both WAN and data center. Like

HYDRAstor, DISP uses erasure codes, but it does not

provide deduplication.

Venti [24], EMC Centera [4, 16], Pergamum [32] and

DataDomain [43] are secondary storage systems. Venti,

Pergamum and Centera target archiving, whereas Data-

Domain is designed to store backup data. Pergamum

does not support duplicate elimination, Venti prototype

and Centera do it, respectively, on fixed block size and

entire file level. Centera might be able to do chunk-

level deduplication, based on available information [16],

but the chunk size seems to be much larger (100MB

per chunk versus the HYDRAstor 64KB). These ap-

proaches result in lower deduplication than a variable-

block size approach used by HYDRAstor and DataDo-

main. However, DataDomain is a centralized system and

does not do global deduplication in distributed environ-

ment. HYDRAstor provides global deduplication using

also variable block chunking with comparable write per-

formance. RepStore [41], a smart-brick scalable storage

system, uses erasure codes and content-based address-

ing, but does not provide deduplication. Deep Store [40],

an archiving system, employs multitude of techniques

for reducing stored data size, including delta compres-

sion and variable-block-size deduplication. However,

this system does not target backup data.

Blocks in our system have some resemblance to ob-

jects in the object-based storage [22], as they have at-

tributes (for example resiliency class) and simple inter-

face to access its components like pointers.

Many systems introduce structures similar to SCCs for

block aggregation. Venti uses arenas to serve as a unit

of data maintenance; however, they do not take advan-

tage of the sequential nature of incoming data streams

and achieve very low performance. The Foundation [26]

CAS Layer improves Venti’s sequential write perfor-

mance by prefetching entire arenas when duplicates are

written. However, since Foundation is designed for per-

sonal use, it does not have to deal with the problem of

multiple streams written concurrently but later read sep-

arately. DataDomain introduces containers to group se-

quential writes from each stream of data to increase ef-

fectiveness of read-ahead caching. HYDRAstor achieves

a similar result by sorting incoming blocks by their

stream id and flushing them out to disk in batches. Using

separate containers for every stream in HYDRAstor is

not feasible, as the number of containers written concur-

rently may be very large for big systems. HYDRAstor

data organization is unique in use of replicated chains of

containers which allow for reasoning about state of the

data in the system.

Deletion in a distributed storage system is relatively

simple if there is no duplicate elimination. It can be done

with leases like in Glacier [18], or with simple recla-

mation of obsolete versions like in Ursa Minor. How-

ever, with deduplication, deletion becomes difficult for

reasons explained earlier. For example, Venti and Deep

Store have not implemented deletion. As far as we know,

the HYDRAstor back-end approach to deletion is unique.

The use of blocks with pointers, retention and deletion

roots and redundant chains of containers enables an effi-

cient, fault-tolerant implementation of a distributed dele-

tion.

8 Conclusions and Future Work

HYDRAstor is a decentralized, scalable secondary stor-

age that is commercially available today. It can be used

as an on-line repository for all enterprise backup and

archival data while dynamically and efficiently sharing

available capacity. Critical features like high-availability

and reliability, ease of management, capacity and perfor-

mance scalability, and storage efficiency make the sys-

tem unique in addressing today’s enterprise needs. The

system is externally visible as one storage pool and can

be accessed by legacy applications using traditional file

system interface.

The core architecture is built around a DHT with vir-

tual supernodes spanned over physical nodes. Data re-

siliency is provided with erasure codes, with fragments

of erasure-coded blocks distributed among supernode

components. Redundancy in the network and data allows

for on-line upgrades and extensions, increasing availabil-

ity of the system. High storage efficiency is facilitated by

variable block size global deduplication. The back-end

exports a low-level API providing operations on content-

addressed blocks which expose pointers to other blocks.

A novel data organization based on redundant chains of

data containers is used to deliver reliably multitude of

data services, including failure-tolerant deletion and fast

verification of data health.

Although the system is fully functional today, there is

an important work left to improve its value delivered to

the end user. The read-only phase of deletion will be

eliminated, which will make the system fully usable all

the time. Deduplication can be moved to a proxy server,

saving bandwidth and improving write performance of

highly-duplicated streams. Additionally, since multiple

types of drivers can write to the back-end, there is a need

for a stream interface that can cut data into blocks in

a standard way. This will ensure higher deduplication

among data written by different types of clients.



USENIX Association 	 7th USENIX Conference on File and Storage Technologies	 209

References

[1] Plasmon and Pegasus. Archival Storage Total Cost of Owner-

ship Analysis, 2005. http://www.pegasus-afs.com/PDFs/White

Papers/Archive Storage TCO Report.pdf.

[2] Vtf open, 2005. http://www.diligent.com/products:VTF-Open-2.

[3] Overland storage unveils reo 9500d all-in-one deduplicating vtl

appliance, 2007. http://www.overlandstorage.com.

[4] EMC Corp. EMC Centera: content addressed storage sys-

tem, 2008. http://www.emc.com/products/family/emc-centera-

family.htm?-openfolder=platform.

[5] ABD-EL-MALEK, M., II, W. V. C., CRANOR, C., GANGER,

G. R., HENDRICKS, J., KLOSTERMAN, A. J., MESNIER, M. P.,

PRASAD, M., SALMON, B., SAMBASIVAN, R. R., SINNAMO-

HIDEEN, S., STRUNK, J. D., THERESKA, E., WACHS, M., AND

WYLIE, J. J. Ursa minor: Versatile cluster-based storage. In

FAST (2005).

[6] ADYA, A., BOLOSKY, W., CASTRO, M., CHAIKEN, R., CER-

MAK, G., DOUCEUR, J., HOWELL, J., LORCH, J., THEIMER,

M., AND WATTENHOFER, R. Farsite: Federated, available, and

reliable storage for an incompletely trusted environment, 2002.

[7] AJMANI, S., LISKOV, B., AND SHRIRA, L. Modular software

upgrades for distributed systems. In European Conference on

Object-Oriented Programming (ECOOP) (July 2006).

[8] BINDEL, D., CHEN, Y., EATON, P., GEELS, D., GUMMADI, R.,

RHEA, S., WEATHERSPOON, H., WEIMER, W., WELLS, C.,

ZHAO, B., AND KUBIATOWICZ, J. Oceanstore: An extremely

wide-area storage system. Tech. rep., Berkeley, CA, USA, 1999.
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