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Abstract

Fault-tolerant services typically make assumptions about the
type and maximum number of faults that they can tolerate
while providing their correctness guarantees; when such a fault
threshold is violated, correctness is lost. We revisit the notion
of fault thresholds in the context of long-term archival storage.
We observe that fault thresholds are inevitably violated in long-
term services, making traditional fault tolerance inapplicable
to the long-term. In this work, we undertake a “reallocation of
the fault-tolerance budget” of a long-term service. We split the
service into service pieces, each of which can tolerate a dif-
ferent number of faults without failing (and without causing
the whole service to fail): each piece can be either in a critical
trusted fault tier, which must never fail, or an untrusted fault
tier, which can fail massively and often, or other fault tiers in
between. By carefully engineering the split of a long-term ser-
vice into pieces that must obey distinct fault thresholds, we can
prolong its inevitable demise. We demonstrate this approach
with Bonafide, a long-term key-value store that, unlike all simi-
lar systems proposed in the literature, maintains integrity in the
face of Byzantine faults without requiring self-certified data.
We describe the notion of tiered fault tolerance, the design, im-
plementation, and experimental evaluation of Bonafide, and ar-
gue that our approach is a practical yet significant improvement
over the state of the art for long-term services.

1 Introduction

Current fault-tolerant replicated service designs are often
unsuitable for long-term applications, such as archival
storage for digital artifacts, which is gaining importance
for business [42], regulatory [5, 6], and cultural [36] rea-
sons. This unsuitability results from the typical fault as-
sumptions on which the correctness of such systems is
conditioned. For example, in typical Byzantine-fault tol-
erant (BFT) replicated systems [13], it is assumed that
the number of faulty replicas is always less than some
fixed threshold such as 1/3 of the replica population.

In typical, “near-term” applications, such a uniform-
threshold-based fault assumption can be reasonable and
achievable. For example, one can argue that in a well-
maintained population of diverse, high-assurance replica
servers, by the time a third of the population is broken
into or just grows faulty, the operators of faulty repli-
cas can repair them. Thus, the repair reduces the number
of faulty replicas, averts a threshold breach, and thereby
keeps the system’s fault assumption inviolate.
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Unfortunately, this reasoning falls apart for applica-
tions and deployments with a long-term horizon, say
many decades. Whereas a population of replica servers
can be plausibly “well-maintained” enough for a few
years, it is difficult to protect perfectly from momen-
tary threshold breaches over the long haul. Even im-
probable correlated faults become probable given enough
time [10]. Once that threshold is breached, for however
brief a period, the system’s fault assumption is violated,
and correctness can no longer be guaranteed at any point
in time thereafter (Section 2.1).

In this work, we focus on storage applications with a
long-term horizon and design a replicated service model
that suits them. We observe that the reliability of a sys-
tem’s components over long spans of time can vary dra-
matically. First, a complex but formally unverified soft-
ware artifact might be likely to exhibit vulnerabilities;
all that stands between it and a bug is a lapse in the judg-
ment of a human programmer. However, a formally ver-
ified software artifact might take much longer to exhibit
vulnerabilities: it will not exhibit bugs against which it
was verified, but perhaps the assumptions under which
its correctness was verified might cease to hold upon a
radical technology change (think of the transition from
uniprocessors to multiprocessors as such a change). Tak-
ing this rationale to its extreme, a trusted third party—a
“component” in a distributed service, such as a root DNS
server—might take even longer to fail: for example, even
if all involved hardware and software components are op-
erating as specified, the trusted component can fail if the
organization operating it sells out to criminals. We argue
that whereas this differentiation might be esoteric and
moot for near-term services, it may be an unavoidable
consideration for long-term applications.

This observation leads us to a tiered fault frame-
work for such replicated applications (Section 2.2). This
framework partitions system components into different
classes; for instance, software and hardware used for
write operations is in a different class from software
and hardware used for read-only operations. The frame-
work treats components of one class across all nodes
separately from components from another class, assign-
ing a separate fault tier to each class. Like more tra-
ditional models, the fault assumption within each tier
is threshold-based, but the actual threshold differs from
tier to tier. For instance, the fault assumption for the
population of write-operation components may be a 1/3
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threshold as with typical BFT systems, whereas the fault
threshold for the population of read-operation compo-
nents may be higher. There is no magic in this formu-
lation: each fault tier is itself subject to a fault threshold.
However, this multi-tier approach enables us to struc-
ture a system so as to operate longer without violating
its overall fault assumptions.

One could informally view this tiered fault frame-
work as a “reallocation of the dependability budget”
across the different hardware and software components
and across time. This stronger fault framework implies
different operational practices for each component class:
high-trust components must be formally verified before
deployment—which might imply that they be limited in
functionality or that they run infrequently and briefly,
and are mostly off-line to reduce their attack surface—
whereas lower-trust components might be larger, bug-
gier, and running continuously.

To make things concrete, we study a particular kind
of long-term application: an authentic long-term key-
value store. Such a facility can be useful, for instance,
as a directory for finding sensitive data given a human-
memorable name. One example is a directory for self-
certifying names of stored files given a file’s human-
friendly name. Such a service can close the loop for
previously proposed reliable long-term archival services
such as Glacier [25], Oceanstore [31], Pergamum [49],
and Preservation DataStores [20], which can withstand
Byzantine attacks only as long as a client holds a self-
certifying name for a data item. This leaves out of scope
the task of finding those human-unfriendly names by
a user in the future, not to mention that today’s self-
certifying names (e.g., the SHA-1 hash of a document)
will not be certifying anything in the future if the technol-
ogy behind them is defeated (this was recently demon-
strated as inevitable for SHA-1 hashes [19]).

Bonafide is such a key-value store that provides its
correctness guarantees (integrity and liveness) under a
tiered fault model (Section 3). Bonafide partitions the op-
eration of a key-value store into three classes of compo-
nents bound by three tiers of threshold-based fault as-
sumptions. The lowest, most error-prone tier of Bonafide
is occupied by the service process, a mechanism for re-
sponding to the clients’ read-only requests (e.g., looking
up existing key-value bindings) and for buffering—but
not executing—new key-value additions. The middle tier
contains the update process, which performs in batch all
buffered key-value additions, but runs periodically and
only briefly. The highest tier contains a minimal trusted
facility for a moded, attested storage module (MAS),
which keeps the error-prone service process safe and pro-
tects the integrity of the update process.

Bonafide provides its guarantees as long as no com-
ponent of the trusted top tier and fewer than a third of

middle-tier components fail at the same time; any num-
ber of bottom-tier components can fail. In addition, like
other systems such as Carbonite [15], Bonafide offers
durability (that is, does not lose stored key-value bind-
ings) as long as the system creates copies of data faster
than they are lost.

Our prototype implementation provides a simple
add/get interface and shows reasonable performance
(Section 4). We note that most building blocks for
Bonafide are borrowed from prior work, most notably
from trusted primitives, authenticated data structures,
proactive recovery, and BFT replicated state machines.
It is the structuring of Bonafide as a service observing
a tiered fault framework for long-term operation that we
claim as novel.

We discuss the tradeoffs and extensions of Bonafide in
Section 5, describe related work in Section 6, and con-
clude in Section 7.

2 Tiered Fault Tolerance

In this section, we demonstrate how a uniform-fault-
threshold system model is not suitable for long-term ap-
plications, and we introduce a tiered fault framework
examining its feasibility for long-term applications. Al-
though we focus here on Byzantine faults, the approach
applies to weaker kinds of faults as well.

2.1 Fault Assumption Violations

We give here an example of how a system built on Cas-
tro and Liskov’s popular Practical Byzantine Fault Toler-
ance (PBFT) [13] protocol for replicating state machines
breaks with even a transient violation of the fault thresh-
old. In PBFT, an upper bound f on the number N of
replicas allows the use of replica quorums (typically of
size 2f + 1) to protect the safety and liveness of the sys-
tem, only as long as N > 3 f. Figure 1 illustrates a pop-
ulation of N = 4 replicas, of which r; and ry are faulty,
in violation of PBFT’s fault bound' (f = 1). Further-
more, non-faulty replicas r¢ and r3 cannot temporarily
communicate with each other, e.g., due to transient in-
terference such as DoS from the faulty replicas. Client
a sends req,, to the system. The two faulty replicas con-
vince 7 to commit and execute reg, first, since the three
of them form a quorum of 3 = 2f + 1. Later client b
sends req; to the system. The two faulty replicas con-
vince 73 to commit and execute req, first, since r3 never
saw req,. Henceforth, all results that the two non-faulty
replicas send back to clients will be dependent on diver-
gent views of the system’s global history and state.
Because only 2(= f + 1) matching replies are re-
quired to convince a client of a result, even if the fault
assumption is again met because one faulty replica is
repaired, the remaining one faulty replica will always
be able to corroborate ry’s view of the world to some
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Figure 1: An example that shows the potential effects of a fault
threshold violation in PBFT. Black circles are faulty replicas
(one of them is the primary), gray circles are correct replicas,
and white circles are clients. When two clients c¢; and c2 sub-
mit requests req, and reg, to the replicas at roughly the same
time, but only manage to reach one correct replica each, the two
faulty replicas can convince the two correct replicas to assign
the same sequence number to different requests.

clients and r3’s view of the world to other clients, keep-
ing up the charade indefinitely. Crash-fault tolerant repli-
cated state machines based on the Paxos [32] protocol do
not deal with Byzantine faults explicitly (i.e., assume a
Byzantine-fault threshold of 0) and they can have similar
problems if a Byzantine fault crops up rarely and briefly.

Though not general for all possible replicated state
machine protocols, this illustration serves to demonstrate
the common trend: once the fault assumption is violated
(the same as a threshold breach in traditional BFT pro-
tocols) the system cannot offer its correctness guarantees
again, even if the fault assumption is later restored.

The fault bound in the original PBFT protocol applies
over the lifetime of the system, assuming that once a
replica becomes faulty it does not recover. PBFT’s au-
thors devised PBFT-PR, an enhanced protocol with some
hardware support that attempts to repair faulty replicas.
As a result, PBFT reduces the length of the vulnerabil-
ity window of the system during which the fault bound
might be breached; even though more than f faults may
occur during the lifetime of the system, as long as faults
are repaired frequently enough so that no more than f
faults are ever simultaneously present, the system main-
tains its guarantees.

PBFT-PR achieves this repair using proactive recov-
ery [14]: a hardware watchdog on every replica periodi-
cally reboots it with a fresh software installation from a
read-only medium (e.g., a CD-ROM), flushing any run-
time code damage caused since the last reboot. Upon re-
boot, the protocol cleans up the service state before it
goes back into regular operation. Now the window of
vulnerability? is the period of time between two suc-
cessive, successful proactive recovery phases across the
replica population, which is much shorter than the life-
time of the system. However, if the f fault bound is vi-
olated within a vulnerability window, the protocol fails
once again.

2.2 Tiered Fault Framework

We observe that the traditional fault model mostly
presents an either-good-or-bad view of the world. Nodes
that are faulty are incorrect and there is nothing in be-
tween. In reality, however, different components of nodes
in a complex system exhibit different levels of fault tol-
erance; this fact is also explored in the wormholes model
for short-term applications [51, 53] and we compare our
approach with the wormholes model in detail in Sec-
tion 6. In this work we argue that it may be unavoidable
for long-term services to use a tiered fault framework,
which exploits different levels of reliability in different
components of the system. In this framework, different
classes of components of the service implementation are
assumed to keep their numbers of (Byzantine) faults un-
der different thresholds.

We believe that a tiered fault framework is desir-
able because of the broad differentiation among software
and hardware components. One source of differentia-
tion comes from different assurance practices. Hardware
microprocessor designs undergo extensive formal veri-
fication before production and, though extremely com-
plex, tend to exhibit fewer bugs and security vulnerabil-
ities in their implementation than typical software sys-
tems. Even in the software world, formally verified com-
ponents can rigorously prove their correctness guaran-
tees under specific execution models and, as a result,
be protected from many runtime bugs and vulnerabili-
ties [40,45]. This approach can be leveraged with some
success and performance cost via the use of strongly
typed languages such as Java and C#, which are touted
as safer environments for building robust systems: they
offer a formal guarantee that, as long as the execution
runtime implements the language semantics correctly, no
application will be vulnerable to some of the typical sys-
tem plagues like buffer overflows. Similar guarantees are
offered by language-based type-safe operating systems
such as Singularity [27].

A second source of differentiation comes from care in
the deployment of a system: tight physical access con-
trols, proactive hardware and software replacement, re-
sponsive system administration, well-designed firewalls
and intrusion detection mechanisms contribute to keep-
ing out the threats that can exploit any vulnerabilities
present in the physical and logical interfaces of a system
component. For example, a software component that is
vulnerable to a particular exploit borne over SSH traffic
can be shielded from that exploit if the firewalls between
the Internet and that component drop all SSH packets be-
fore they reach it [54], or if it only communicates with
other trusted components over a private network [18,46].

A third source of differentiation comes from the
rolling procurement characteristics of the software and
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hardware technologies in long-term services. Unlike typ-
ical “near-term” systems, it is not the data that “flow”
through the hardware and software, but instead the hard-
ware and software that “flow” through the long-term ser-
vice data®: though the service needs to remain the same,
hardware becomes obsolete, operating systems evolve,
communication standards grow, and cryptographic best-
known methods are broken and replaced by their succes-
sors. For example, a trusted logical component assumed
to never fail would require the expensive proactive re-
placement of the cryptographic libraries or the trusted
hardware platform used to implement it, as new crypt-
analysis techniques become possible, faster hardware is
introduced, and new processes for protecting processor
packages from physical or electrical tampering become
available. In contrast, a less trusted component could af-
ford to trail the state of the art and use replication or other
techniques to mask faults, only migrating to new soft-
ware and hardware less frequently and potentially at a
lower cost.

Finally, fault differentiation can come from limited
exposure. Many high-assurance systems such as certifi-
cation authorities keep their sensitive components (e.g.,
their signing keys) mostly or wholly off-line, limiting at-
tack opportunities. Services that have limited or poten-
tially batched updates but can be mostly read-only (or in-
deed off-line with on-line, untrusted proxies [21,30,33]),
can be protected quite effectively in this fashion.

Interestingly, there are non-trivial dependencies
among all these sources of differentiation. For example,
a proven-correct system that is operated by a trustwor-
thy organization is strictly more reliable than the same
system operated by an unreliable organization. As goes
the usual secure systems’ truism, a complex system is
as secure as its weakest link. This simple observation al-
lows us to argue that long-term fault models can usefully
and realistically be constructed in which different system
components belong in different fault tiers: in each tier, a
different fault threshold can be assumed, though the jus-
tification for that fault threshold might imply restrictions
on the component capabilities for each tier. For example,
if one were to argue that a component tier is afforded a
low fault threshold thanks to its being formally verified,
that component cannot be too complex: formal verifica-
tion is still an extremely expensive proposition both in
terms of human effort and computational resources [56].
Similarly, a tier whose fault threshold is justified by its
remaining mostly off-line had better correspond only to
functionality that the service can afford to perform peri-
odically in batches.

3 Bonafide

Our target application in this paper is Bonafide, a key-
value store designed to provide long-term integrity us-

ing replication in a tiered fault model. We are moti-
vated to build a long-term key-value store not only as
a case study for the system-building approaches we de-
scribed earlier in the paper, but also because it is fun-
damentally needed by archival storage systems such
as Glacier [25], OceanStore [31], Pergamum [49], and
Preservation DataStores [20]. Whereas such systems pro-
vide durability (protection from data loss) and authen-
ticity, they require data to be self-certified for their au-
thenticity properties to hold: a client who needs to fetch
a document from the archival system must have an au-
thenticator such as a cryptographic hash of the docu-
ment’s contents to ensure that what the service returns
has not been modified; a client who does not have such
an authenticator cannot obtain any authenticity guaran-
tees from the service. We seek to create an archival ser-
vice for providing indirection for precisely such authen-
ticators: it can be used as a lookup service from a URL or
a human-readable name to the random bits making up the
authenticator, which can then be used to fetch the actual
document from Glacier, Oceanstore, or systems similar
to them.

In the simplest case, a system like Bonafide of-
fers a minimal interface: clients invoke Bonafide’s
Add(key, value) method to store and preserve a partic-
ular key-value pair, if no such key is already being pre-
served, and the Get (key) — value method to obtain any
stored key-value pair by that key, if one exists. The ser-
vice is append-only. There is no method to remove or re-
place an existing key-value pair. We use an append-only
interface for simplicity; it is not a requirement.

3.1 Design Rationale

We apply the intuition behind the tiered fault framework
by attempting to refactor the functionality of a service
such as Bonafide into a more reliable fault tier for state
changes and a less reliable fault tier for answering read-
only state questions (i.e., Get requests). In keeping with
the justification for distinct fault tiers, we make the re-
liable, state-changing functionality mostly off-line, run-
ning periodically to execute state changes in batch (for
Add requests buffered but not executed during the mostly
unreliable operation of the system).

One challenge with such a high-level design, espe-
cially when using commodity hardware, is the isolation
between the reliable and the unreliable class of compo-
nents. The Castro and Liskov approach punctuates a sys-
tem’s timeline with periodic software refreshes, which
can help bring a system whose faults are climbing to-
wards the fault threshold back from the precipice. Unfor-
tunately, that isolation goes away once the system has
crossed the precipice; even if the number of faults is
somehow reduced below the fault threshold again, data
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Figure 2: Operation of Bonafide. Each Bonafide replica alter-
nates between a service phase (S phase) and an update phase
(U phase).

changes before and after the fault violation cannot be iso-
lated, causing the loss of safety and liveness guarantees.

To address this challenge, we require our third, most
reliable class of component in its own top fault tier:
a trusted mechanism for protecting state during execu-
tion of the unreliable class of components. This mecha-
nism is not only extremely critical, but cannot even be
mostly off-line; as a result, to ensure its fault thresh-
old is plausible, we must make it extremely simple. For
Bonafide’s top-tier component class we use a moded, at-
tested storage (MAS) facility, akin to the sealed storage
mechanism provided by modern trusted platform hard-
ware [4]. This facility allows us to store reliably very
small amounts of memory, only allowing the reliable
stage-changing mechanism to update this storage.

A second challenge is that our middle-tier, reliable
state-changing mechanism must somehow be able to
mask faults experienced by its components. We use
a Byzantine-fault tolerant replicated state machine ap-
proach to implement this middle-tier mechanism. How-
ever, since this middle tier is mostly off, we require that
all of the system’s nodes execute this tier in a synchro-
nized fashion, which implies loose clock synchronization
and a fairly long period for the execution of this tier. We
describe how to relax the requirement for clock synchro-
nization and synchronized execution of the state machine
replication in Section 5.2.

The final challenge is figuring out how to use our very
limited attested storage to protect a potentially large ser-
vice state. The approach we adopt is the use of an authen-
ticated data structure, which allows the integrity of arbi-
trarily large, structured data to be protected by a small
cryptographic digest.

3.2 Overview

Bonafide is a replicated service running on replicas R =
{1,...,N} (N = 3f + 1). The replicas operate in alter-
nating synchronous phases of two types: a service phase
(S phase) and a subsequent state-update phase (U phase)
(Figure 2). During the ¢-th S phase, Get requests can
query the service state committed (i.e., fetch bindings

Fault bound | Component || When | How used
0 ‘Watchdog Periodic | Invoked
MAS S phase | Read
U phase | Written/Read

1/3 Byzantine* | Update U phase | Replicated store
Serve ADDs

Unbounded Service S phase | Serve GETs
Buffer ADDs
Audit and repair

Table 1: The components in Bonafide and their associated fault
tiers.

that were added) up to the (i — 1)-st U phase. Add re-
quests are buffered and executed after the end of the i-th
S phase, during the ¢-th U phase. In other words, service
state changes occur in batch only during the U phase.

Bonafide consists of three component classes (trusted
storage, state update, and service), each of which belongs
to a fault tier with a different fault threshold. Table 1
summarizes the fault tiers in Bonafide. The state update
component of a replica contains the state update process,
0OS, and hardware excluding the trusted top tier, and the
service component of a replica contains the service pro-
cess, OS, and hardware excluding the trusted top tier.

In addition, Bonafide has the following standard, par-
tial synchrony assumption for liveness. In the network,
packet drops, reorderings, and duplications can occur but
retransmissions of a message eventually deliver it. How-
ever, though finite upper bounds exist for message deliv-
ery and operation execution times, those bounds are not
known to protocol entities. This is a standard network as-
sumption for Byzantine-fault tolerant systems and is not
unique to Bonafide.

Under this tiered fault assumption, Bonafide guaran-
tees service safety, that is, integrity of returned data.
However, to guarantee durability as well (i.e., that no
data are lost) the system should create copies of data
faster than they are lost, as in systems such as Car-
bonite [15]. Also, to ensure /iveness (i.e., non-starvation)
S phases with at most 2/3 faulty replicas must occur
once in a while (more precisely, within a finite number
of phases at all points in time). This is to ensure that an
Add request must be resubmitted by a client a finite num-
ber of times before it is eventually served by a U phase.

A Bonafide node contains a MAS as well as a buffer
to hold 2Add requests temporarily and a main data
structure that maintains committed bindings (Figure 3).
In Bonafide, the service state—the key-value pairs—is
maintained as a variation of a hash tree [37], which com-
putes a cryptographic digest of the whole state from the
leaves up, storing it at the tree root. The results of in-
dividual state queries (i.e., key lookups in the tree) can
be validated against that root digest; as long as the di-
gest is kept safe from tampering, individual lookups can
be performed by an untrusted service component with-
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out risking an integrity violation. This state is replicated
at each replica in the system in untrusted storage (bottom
tier) but its root digest (of size on the order of 1 Kbit in
today’s hardware) is stored in each node’s MAS. Each
replica’s MAS module lies in its most trusted fault tier:
we assume that while in service no MAS module returns
contents other than those that were stored at it. We use a
MAS for the root digest of the service state, since it cryp-
tographically protects the integrity of any answers about
that state provided by even an untrusted component.

The service state is updated during the U phase, which
is invoked by a trusted watchdog in the most trusted fault
tier. In the U phase, all buffered writes are agreed upon
by non-faulty replicas using a state machine replication
protocol and then reflected in the service state, replacing
the integrity digest in each replica’s MAS. The U phase is
in the next most trusted fault tier in Bonafide: we assume
that no more than a third of the replicas’ update software
can fail simultaneously, to ensure that the state machine
replication protocol safety and liveness guarantees can
be upheld within a single U phase.

The service state is served to clients during the S
phase. Responses to Get/Add requests are accepted by
clients when f + 1 replicas return to the client the same
result, and each result is consistent with the correspond-
ing replica’s service state digest in its MAS module. The
f + 1 number comes from the fault bound of the update
tier, which assumes no more than f update processes can
be faulty in any single U phase; as a result, no more than
f update processes can put an incorrectly updated digest
into their own MAS. If the same response to a client re-
quest is provided by at least f + 1 untrusted service pro-
cesses, but backed by the f+1 trusted state digests in the
MAS, the client is guaranteed to be getting what at least
one correct replica provides. At worst, the client will re-
ceive no valid responses or obviously invalid responses
from the replicas and try again. Also, the service state
is audited (for latent storage faults or other bit loss) and
repaired during the S phase.

At the protocol level, Bonafide provides the follow-
ing safety property. If an Add or Get operation collects
f + 1 matching replies from distinct replicas, the reply
is correct. In other words, there is a serial schedule of
committed bindings, and once a binding is committed, it
is seen by clients. This is similar to the integrity guaran-
tees of other long-term storage systems, but unlike them,
Bonafide can take any key to “name” the sought data
value, not only self-certified names. In this paper, we dis-
cuss only Adds, but the safety property of Bonafide holds
even when there are Removes or Replaces in the system
APL

In addition to safety, Bonafide provides the following
liveness property. If an Add operation collects 2 f +1 ten-
tative acknowledgments from distinct replicas, the bind-

Trusted storage

Update

Service Update

Figure 3: A Bonafide node contains the following state shown
in the middle of the figure: a MAS, a buffer to hold Add re-
quests temporarily, and an AST that maintains committed bind-
ings. The MAS stores the AST root digest, a sequence number,
and a checkpoint certificate. The left side shows the get, add,
audit/repair processes running during the S phase, and the right
side shows the update process running during the U phase. The
arrows show what state the processes access.

ing is guaranteed to be committed during the U phase if
there are at most f faults in the S phase during which
the operation is invoked. If there are more than f faults
in the S phase, the Add operation does not guarantee the
binding to be committed during the U phase since faulty
replicas can send fake tentative acknowledgments.

A fundamental limitation of Bonafide is that it is not
resistant to common denial-of-service attacks, such as
name squatting. As in all existing archival systems we
are aware of, faulty clients can insert arbitrary bindings
into Bonafide, preventing legitimate clients from using
those bindings.

Next we detail the service state and component func-
tionalities of Bonafide.

3.3 Bonafide State

In Bonafide, the service state (the collection of key-value
bindings) is maintained as an authenticated search tree
(AST). An AST [11] is an incremental mechanism for
maintaining cryptographic digests over sorted data sets
(such as key-value pairs sorted by key), extending the
concept of a traditional Merkle tree [37] for search. Ev-
ery node contains a key-value pair and an authentication
label. The label for an AST node is computed by hash-
ing together its content and the labels of all child nodes.
The label of the tree root is a cryptographic digest for
the entire contents of the tree: it is collision-resistant,
which means it is intractable to find two different data
sets yielding the same AST digest and, as a result, it can
serve as a commitment on the contents of the AST [39].
As with Merkle trees, a succinct witness (sometimes
also called a proof) can be generated showing that a par-
ticular key-value pair appears within an AST with a root
label. Unlike Merkle trees, an AST can also provide a
succinct witness that a key does not appear within it.
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Witnesses have logarithmic length in the number of the
key-value pairs contained within a tree.

Each Bonafide replica maintains an AST in typical
(untrusted) storage containing its collection of key-value
pairs sorted by key, a buffer of received but yet uncom-
mitted client requests for adding new key-value pairs also
in untrusted storage, and a MAS having two slots within
its trusted hardware device (see Section 3.4). The MAS
slot with identifier ¢, stores values of the form (s, ),
where s is the latest AST digest and r is an integer se-
quence number associated with a particular U phase. The
slot with identifier g, stores a checkpoint certificate de-
scribed in Section 3.6. Finally, replicas know each other’s
public keys and hardware device public keys.

3.4 Top Tier: Trusted

Cryptography: We assume standard cryptographic
primitives for digital signing and hashing. These prim-
itives belong in the top tier of the fault model (as they do
in virtually all systems research and practice). In keeping
with our “rolling procurement” argument for this trust
over long periods (Section 2.2), we assume that cryp-
tography is replaced with up-to-date technologies, algo-
rithms, and key sizes well before its compromise is even
feasible let alone practical (see Section 5.2 for a sketch
of how this is accomplished). For a managed system, this
is a reasonable and plausible approach.

For conciseness, we denote by (M ); amessage M that
is digitally signed by principal 7. Replica ¢’s trusted hard-
ware device (i.e., its MAS principal) is principal ¢’. If M
is not signed, there is no subscript in the notation.
Trusted Hardware: Bonafide relies on the existence of
a trusted hardware device on every replica in the sys-
tem [8]. Today, such a device could be implemented in a
programmable, tamper-resistant secure coprocessor such
as IBM’s commercially available PCIXCC [8] board, but
cheaper trusted alternatives are implementable with the
trusted computing platforms coming from Intel’s (e.g.,
Intel TXT) and AMD’s (Presidio) pipelines.

To help conduct periodic recovery operations, this de-
vice contains a time source (this can be a regular, mono-
tonic, crystal-based clock source with an upper bound on
drift, or an external trusted time source received by the
device such as GPS). A hardware watchdog, also con-
tained within, uses this time source to trigger proactive
recovery periodically, by causing the host to reboot from
read-only media. This hardware watchdog sets a mode bit
of the MAS associated with it. This bit is used to indicate
that the system is in its U phase, and cannot be set in any
fashion other than by triggering the watchdog. The mode
bit can, however, be reset by the operating system. Typi-
cally this is done during the U phase, while the software
is still under the middle trust tier. During the S phase, the
no longer trusted operating system can of course reset

this bit, but bit resets are idempotent, so this misbehavior
is ineffective. Such mode bits are sometimes called sticky
registers.

Finally, the device contains a MAS with a simple in-
terface. A MAS contains a mode bit, and a set of storage
slots, each of which is identified by an identifier q. The
write interface to a MAS is Store(q,v) where v is a
value; this stores v to the slot with identifier ¢. This in-
terface allows requests only when the mode bit indicates
a U phase is ongoing. The read interface of MAS allows
access all the time. It allows the attested, fresh retrieval
of any slot; a Lookup(q, z), where ¢ is a slot identifier
and z is a nonce used for freshness (typically provided
by clients), returns (LOOKUP, ¢, v, z,t,m);, where v is
the value currently occupying the slot with identifier ¢ of
the MAS, t is the internal time in the device, m is the
current mode bit, and ¢’ is the hardware device princi-
pal. If the slot is empty, then v = EMPTY in the returned
attestation. In our own recent work, we have introduced
an Attested Append-Only Memory (A2M) [16] and we
compare MAS with A2M in detail in Section 6.
Membership Management: Bonafide is intended for a
well provisioned, low-churn node infrastructure. Since
membership churn is low, the membership of nodes can
be managed manually. Membership management is con-
ceptually also trusted, in the top tier of the fault model.
We discuss how to extend Bonafide to automate mem-
bership management in the middle tier by refactoring it
with MAS in Section 5.2.

3.5 Bottom Tier: Service Process

In the S phase, each Bonafide replica runs an add/get
process to serve client requests, and a continuous audit
and repair process in the background for durability. Pseu-
docode for the service process is given in Figure 4.

Get: When a client ¢ invokes Get(k) to retrieve a
value of key k, its Bonafide stub (called a proxy be-
low) multicasts (GET, k, z, c). messages to R where
z is a nonce used for freshness and waits for f +
1 (REPLY, %, v, p;, (LOOKUP, ¢, {8;,7i), z, t,m);) valid
matching messages confirming that (k,v) is within the
AST, or that (k,v) does not exist in the AST. Note that
the attestation includes the nonce the client sent to ensure
it does not accept a stale response.

A replica handles a GET by looking it up by key in
its local AST and producing an existence/non-existence
witness, accompanied by its latest MAS attestation.
Add Buffering: When a client ¢ invokes add(k, v) to in-
sert a binding between key k and value v, the Bonafide
client proxy code multicasts (ADD, k, v, z, ¢). to R. The
client waits for 2 f + 1 tentative acknowledgments, each
of which is a (TENTREPLY, k, v, 2, ¢); message where ¢
is a replica identifier, from distinct replicas. If the client

USENIX Association

FAST ’09: 7th USENIX Conference on File and Storage Technologies 273



CLIENT.GET(key)
// quo_RPC sends msg to R, collects matching responses on non-*
// fields from a quorum of given size, retransmits on timeout
(REPLY, %, value, witness, ) < quo_RPC((GET, key), f + 1)
return value

SERVER.GET(client, key); // this is server ¢
(value, witness) <« lookup_AST(key)
att < lookup_MAS (gs) // attestation
send client a (REPLY, 4, value, witness, att)

CLIENT.ADD(key, value)
(TENTREPLY, x, key, value) «—
quo_RPC((ADD, key, value),2f + 1)
// at this point, the client holds a tentative reply
collect REPLY messages // in the next S phase
if (f + 1 valid, matching replies are collected)
return accepted (key, value)
SERVER.ADD(client, key, value);
if ((key, value’) in AST), treat as a GET and return
add (client, key, value) to Adds
send client a (TENTREPLY, ¢, key, value)

SERVER.AUDIT(ASTNode, hasTNode )i
status «— check ASTNode, hasTNode
if (status invalid) repair ASTNode // fetch from other
for each child C of ASTNode
AUDIT(C, h¢) /] he is contained in the label of ASTNode

SERVER.START_SERVICE( Committed_Adds);
// reply for ADDs committed in the previous U phase
for each (key, value, client) in Committed_Adds
send client a (REPLY, 4, value, witness, att)

Figure 4: Simplified service process pseudocode.

does not receive the responses within a timeout, it pre-
sumes that the request has been dropped by the network,
so it retransmits the request to the replicas that did not
respond. Note that receiving 2f + 1 tentative acknowl-
edgments is a hint that means the binding is likely to be
committed. The client does not perform any operation
that depends on the fact that the binding is committed
and cannot be undone. Our liveness guarantee ensures
that the client will receive a final commitment (see be-
low) for each Add after receiving a finite number of un-
committed 2 f + 1 such hints.

The client also waits asynchronously for com-
mit replies in MAS-attested messages of the form
(REPLY, i, v, p;, (LOOKUP, qs, (S;,7:), 2, t,m);/) (the at-
testation is the result of a MAS Lookup). These mes-
sages are sent by replicas in the beginning of the next
S phase. A reply is valid if witness p; verifies the ex-
istence of the key-value pair (k,v) within an AST with
digest s;, and the attestation is correctly signed by the
sender’s MAS. As soon as the client proxy obtains f + 1
valid matching replies from distinct replicas, all confirm-
ing the addition of the same key-value pair, it accepts the
request as complete and notifies the application.

During the S phase, a replica only buffers Abps and
sends a TENTREPLY message back for each ApD. It han-
dles the Apps during the U phase. The replica also re-

SERVER.UPDATESTART();
PBFT.Invoke((BATCH, i, stable_ckpt_cert, Adds);)
SERVER.FINALIZE();

SERVER.EXECUTE(batch); // PBFT Execute callback
append batch in batch_log
on receiving the 2 f + 1-st batch:
choose the latest stable_ckpt from batch_log
AllAdds « the union of the Adds set from each batch
for each (key, value, client) in AllAdds
repair the AST path to this new key if needed
insert key, value into AST
insert (key, value, client) into Committed_Adds
store_MAS(qs, ASTRootDigest)
multicast a UCHECKPOINT and flush batch_log

SERVER.FINALIZE();
on receiving 2 f + 1 matching UCHECKPOINTs:
store_MAS(qc, stable_ckpt_cert)
reset the watchdog timer and the mode bit
begin a new S phase

Figure 5: Update process pseudocode.

turns the existing mapping for ApDs for already assigned
names. During the next S phase, the replica responds to
newly inserted ApDs with a REPLY message. The average
(committed) response time for AbDs of new bindings is
on the order of the S phase length.

Audit and Repair: The audit and repair process ensures
that all reachable AST nodes from the AST root are
correctly stored. This process is recursive, starting with
SERVER.AUDIT(ASTRo0t, hasTRoot) Where hasTRoot
is the digest of the AST root and traversing the tree in
order, during which a tree node is fetched from storage
if still available and verified by computing its hash value
and comparing it with the hash contained in the label of
its parent node.

For every missing AST node with digest h, replica ¢
multicasts a (REQASTNODE, 7, h); request to R, waiting
for at least one (RESPASTNODE, h, ASTNode) response.
The response need not be signed, since the replica can
verify its integrity thanks to the recursive hashes of the
AST. As long as the root digest remains in the trusted
MAS, the rest of the AST nodes are self-certifying.

3.6 Middle Tier: Update Process

When the trusted watchdog timer expires, the system be-
gins a reboot securely from a read-only medium of its
proactive recovery software. The main responsibility of
the U phase is to commit a new set of additions into the
main service state. At the end of the U phase, the system
ensures that at least 2 f 41 replicas store the latest service
state digest in MAS (see Figure 5 for the pseudocode).
We use the PBFT protocol [14] to replicate the state
machines of individual U phases, though any BFT state
machine replication protocol would work. PBFT offers
a synchronous Invoke(request) method, that returns a
response. A PBFT client (which is a replica’s U phase
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in our use of the protocol) uses this method to submit
application requests—buffered Add requests—to repli-
cas and eventually receives replies containing the result.
PBFT also offers replicas an Execute(request) call-
back, which invokes the application code that processes
ordered client requests to be executed—the actual inser-
tion of Added key bindings into the service state.

All messages exchanged between replicas contain a

fresh attestation fetched from the MAS after the current
U phase began: the mode bit shown must be on, and the
timestamp must be recent. Messages unaccompanied by
this attestation are invalid and dropped. This is to ensure
that update operations, including invocations of PBFT,
are performed by nodes that have rebooted into their U
phase. Any faults caused by such nodes are due to update
process faults, which our middle fault tier bounds by f.
Update Start: Each replica packages up its pending
ADDs (denoted by A) and the latest stable checkpoint
(i.e., 2f + 1 matching MAS attestations of the previous
round) (denoted by C) obtained from the MAS slot g,
into a (BATcH, i, Cs, A); message, which it submits to
PBFT’s Invoke.
Application State Machine: The update state machine,
executed on BATCH requests as ordered by PBFT, stores
BATCH requests in order, until it receives the 2 f + 1-st
of them (from distinct replicas). Subsequent batches are
ignored to ensure liveness (there is no way for replicas
to know how many batches they can expect beyond the
2f + 1-st). Note that if there are at most f faults dur-
ing the S phase, there is at least one correct replica sub-
mitting every request whose client received 2f + 1 ten-
tative acknowledgments during the S phase, precluding
starvation. As long as there are such S phases with no
more than f faults from time to time, the system makes
progress.

In receiving the (2f + 1)-st batch, the application
state machine picks the latest stable checkpoint, and
the union of all Apps across all 2f + 1 batches. It or-
ders the ApDs according to a consistent order (e.g., by
h(k||v] c)), verifies the client’s signature, and inserts all
valid pairs into the AST in that order, ignoring keys
that already exist. The replica computes the new AST
digest s} for sequence number r; (= r + 1), stores
it into the g slot of its MAS, and multicasts to R a
(UCHECKPOINT, (LOOKUP, g5, (s, r¥),t,m);/) message.

When a replica receives 2f + 1 matching UCHECK-
POINT messages, it stores the set at the MAS slot ¢, as
a new stable checkpoint certificate. If a replica’s old ser-
vice state is not the latest one, it will have to perform
state transfer, as described below.

When the replica obtains a new stable checkpoint cer-
tificate, it resets its watchdog timer to D, which is the
remaining time until the next U phase, and exits into its
S phase by opening up communication with nodes other

than replicas and resetting the mode variable. In the be-
ginning of the new S phase, the replica sends REPLY mes-
sages for all newly inserted ApDs as described earlier.
State Transfer: Up-to-date replicas missing actual ser-
vice state (e.g., because some of the AST nodes were
corrupted) can apply the same repair process used dur-
ing the S phase to obtain the AST nodes required for their
batched ADDs.

Before the phase can end, the MAS of a replica

must contain the latest stable checkpoint. A slow replica
may be behind to obtain its checkpoint by executing
the agreed-upon write operations. However, the stable
checkpoint broadcast by those replicas that were up to
date allows a slow replica to append that state digest into
its MAS, thereby catching up with others and entering to
the next S phase.
Single-agreement Optimization: The design described
requires at least 2 f +1 PBFT invocations, one per BATCH,
during every U phase. In the worst case, each invocation
requires 3 network roundtrip times, potentially increas-
ing the latency of the U phase tasks, which increases
the minimum duration of the U phase, which in term re-
duces the availability of the system. Instead, the update
process can do preprocessing to create a PROPOSE mes-
sage containing at least 2 f + 1 BATCH messages and only
submit that proposal to PBFT. This optimization dupli-
cates the functionality of the PBFT primary by introduc-
ing a leader to collect the BATCH messages. At the cost of
greater complexity, this optimization can make use of all
available BATCH messages, not just the first 2f + 1 mes-
sages generated by replicas, and also reduce the worst-
case number of roundtrip times required. Our implemen-
tation uses this optimization.

Each replica packages up its pending Apps A and
the latest stable checkpoint C's obtained from the MAS
slot ¢. into a (BarcH,i,Cs, A); message, filtering out
those ApDs for already assigned keys, and broadcasts the
BATCH to R. Once a leader replica (defined below) col-
lects at least 2 f + 1 such messages including its own, it
packages them into a PROPOSE message, which it submits
to PBFT’s Invoke for Byzantine agreement. During the
Execute callback of PBFT, a replica ensures the PrRo-
POSEd set contains at least 2f + 1 batches from distinct
replicas. If so, it runs the function to update the service
state, and the rest of the U phase is the same.

During each U phase, the leader described above is the
replica (! = r mod N), where 7 is the current U phase
round number. A leader may misbehave, either by delay-
ing the transmission of a PROPOSE message, or by trans-
mitting an incorrect such message. The latter case can
be detected during the Execute PBFT callback, as de-
scribed above. A non-faulty replica can detect the former
case by setting a timer as soon as it multicasts its BATCH
message, which it uneventfully stops when it encounters
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its own BATCH as one of the batches included in a pro-
posal during the Execute callback; if the timer expires,
then the replica initiates a leader change. To avoid un-
necessary leader changes due to transient slowness, the
replica does exponential backoff for consecutive leader
change initiations.

Leader change is similar to proposal formation: to ini-
tiate change, a replica multicasts a LEADERCHANGE mes-
sage, which the next leader (I + 1 mod N) listens for.
When that leader has collected 2f + 1 such requests, it
packages them into a single LEADERCHANGEREQUEST,
which it submits to PBFT; execution of this request in-
crements [, completing the leader change. Note that the
leader role is similar but unrelated to the PBFT primary
role; PBFT’s internal operation, including primary as-
signment and view changes, is opaque to the U phase
functionality.

3.7 Correctness

Under the tiered fault assumption, Bonafide provides the
integrity property. Briefly, it is sufficient to show that any
binding committed is guaranteed to be safe in the future
(if returned, it is the correct binding) and live (if there
are at most f faulty replicas, as long as 2f + 1 replicas
have acknowledged receiving the ApD request, the bind-
ing will be added). We show this by connecting what the
client knows (2f + 1 tentative acknowledgments) to a
starting condition for the U phase, and from there to the
steps of the state machine replication. We defer the de-
tailed argument to Appendix A.

4 Experimental Evaluation

In this section, we present the implementation of
Bonafide and evaluate its performance.

4.1 Implementation

To validate our design, we developed a prototype
Bonafide implementation. We implemented the add/get,
background audit and repair, and the optimized version
of the update process of Bonafide (excluding leader elec-
tion) in C/C++ on Fedora Core 6. The client and server
communicate with SFS’s asynchronous implementation
of SUN RPC [47] in the sfslite library [3]. Client-server
communications are authenticated by signatures; we use
NTT’s ESIGN with 2048-bit keys.

The client uses a proxy, its Bonafide local stub code,
to perform Add/Get operations. The server maintains a
MAS, an AST, and a log for buffering Apps. MAS is
implemented as a library and it uses NTT’s ESIGN with
2048-bit keys for signatures as well. We use SHA-1 as a
secure hash function.

For Byzantine agreement during the U phase, we use
the PBFT library [14] ported to Fedora Core 6. PBFT
uses MACs for message authentication. During update,

Operation || Time (ms) Data loss Time (s)
Mean (std) (%) Mean (std)
Get 3.1(0.24) 0 554.5 (54.6)
Add 1.0 (0.21) 1 612.9 (30.3)
10 1147.6 (33.3)
100 3521.5 (201.6)

(@) (b)
Table 2: (a) Get and Add time. (b) Audit and repair time.

every node runs an update server and a PBFT repli-
cated state machine. The leader’s update server creates
a PrROPOSE message and invokes PBFT agreement on
the proposal to get consensus across the population on a
hash of the proposal. When consensus is achieved, every
replica fetches the proposal from the leader, and validates
against the agreed upon hash.

We store an AST and a log using Berkeley DB
4.5.20 [1].> We use a binary AST to minimize the size
of membership witnesses [35,58]. An AST is stored as
a Berkeley database with a BTREE format. Each AST
node is stored as a Berkeley DB record, which contains
a key, a value, a hash of its left child, and a hash of its
right child. The primary key of this DB is the key, and
the secondary key is the hash of the entire node content.
To search for a value given a key in the AST and to in-
sert a (key, value) binding to the AST while generating
a membership witness, we traverse the AST using sec-
ondary keys.

4.2 Performance

We evaluate how the fault-tolerance improvement of
Bonafide affects performance and availability. We ran
our experiments with four Bonafide replica nodes and
one client node. The nodes are outdated PCs with
1.8GHz-3.2GHz Pentium 4 processors, IGB RAM and
3Com 3C905C Ethernet cards. They are connected over
a dual speed 10/100Mbps 3Com switch. On a 1.8GHz
machine, ESIGN signature creation and verification of
20 bytes take on average 2565 and 194 s, respectively.
We did not opt for a more up-to-date infrastructure since,
by its nature, our application need not be deployed on
the bleeding edge of hardware. As we see next, even
with this obsolete collection of servers and switch, per-
formance is adequate.

Our experiments initially populate server ASTs with
one million bindings of a 128-byte key to a 20-byte SHA-
1 hash as the value.

ADD/GET Time: We use a simple micro-benchmark
client that sends 1000 ApD or GET requests. For ADDs,
servers store bindings to their logs and return tentative
acknowledgments. For GETs, servers search their ASTs
and return values, AST witnesses, and MAS attestations.

We measured Bonafide’s GET and ADD response

times, by averaging over 1000 requests of each types
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Action Time (s)
Mean (std)
Reboot 86.6 (2.1)
Proposal creation 8.0 (4.0)
Agreement 5.2 (1.0)
AST update/Checkpoint || 271.1 (24.8)
Total | 370.9 (24.0)

Table 3: U phase duration with 1000 new committed bindings.

with randomly selected keys. In average, GET takes
3.1ms, and ApD takes 1.0ms (Table 2(a)). GET takes
more time than ADD does since it involves accesses along
an AST path, which incurs multiple disk block accesses.
There is a start-up effect in processing GET requests,
roughly 100 requests’ long, while Bonafide caches top
AST levels.

Audit and Repair Time: We measured the average time
of a basic audit that does not perform any repair over five
runs. The disk drive we used was an IBM 40GB IDE disk
drive with rotation speed 7200 rpm, average seek time
8.5ms, and buffer size 2MB. The mean audit time of the
entire AST is 554.5 seconds and the standard deviation
15 9.9% of the mean.

To measure audit and repair time, we simulate random
data loss. We delete a fraction of AST nodes randomly
at a Bonafide replica and run an audit process. When
the audit process finds a lost AST node, the process re-
pairs it synchronously by fetching the AST node from
a randomly-chosen remote replica. Table 2(b) shows the
mean audit and repair time when a fraction of AST nodes
are lost. The more data loss, the longer the repair time
due to more access to remote nodes.

Note that our current prototype implementation is not
optimized. Several optimizations can improve our proto-
type performance. For example, more intelligent layout
of stored key-value bindings may reduce the random disk
access [58], thus improving audit time. Also, an audit and
repair process can collect missing AST nodes by fetching
them in parallel while performing auditing.

U Phase Duration: We measured the duration of the
U phase when 1000 new bindings were committed. Ta-
ble 3 shows the mean and standard deviation of the U
phase duration of the leader averaged over five runs; the
leader has the highest computation and network band-
width overhead. Proposal creation indicates time to col-
lect a BATCH certificate and to create a PROPOSE message.
Agreement indicates time to run a PBFT agreement,
and AST update/Checkpoint indicates time to update the
AST with new bindings and to execute remaining COM-
MIT protocol. Several optimizations can improve the U
phase duration. We can reduce reboot time, for example,
by using fast boot from the LinuxBIOS project [2].The
project claims three seconds boot time from power-on to
Linux console. Intelligent caching of AST nodes may re-
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Figure 6: Bonafide availability varying the U phase duration
and period. Note that the y-axis starts at 0.95.

duce the AST update time.

Availability: Finally, we analytically show that Bonafide
availability (the ratio of service time to service time plus
update time) is high enough for varying U phase dura-
tion and period in Figure 6. When the update period is 9
hours, availability is 0.998 and 0.983 for one-minute and
nine-minute U phase durations, respectively. Availability
decreases linearly as update duration increases. In addi-
tion, as we perform update more frequently (i.e., update
period decreases), availability decreases more rapidly.
For example, when update duration is nine minutes,
availability drops from 0.983 to 0.950 as update period
changes from 9 hours to 3 hours. However, when we per-
form update frequently, its duration may decrease since
fewer additions are collected, mitigating the effects of
unavailability. With one-minute update duration, avail-
ability becomes 0.994 despite three-hour periods.

5 Discussion

In this section, we discuss the tradeoffs between safety
and availability and extensions of Bonafide.

5.1 Safety, Availability, and Durability

Our approach implies an operation model that trades off
availability for safety, first by containing state changes
during small portions of the system’s timeline, and by
closing off access to the system by its clients while those
state changes are incorporated. Though different appli-
cations might fare differently with such a trade-off, we
believe that applications like Bonafide, including also
notarizing documents [23] and auditing for accountabil-
ity [24,58] are appropriate practical candidates.

Bonafide can have tradeoffs between durability and
availability. This can be tuned with the frequency of up-
date. Frequent update improves durability since it re-
duces the probability of N replica faults in an S phase,
but it reduces availability since the Bonafide service is
not available to clients during update.

Availability can be improved in two ways: (1) some-
how removing safely the exclusion of service requests
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during U phases and (2) increasing the frequency of U
phases without halting the service process.

First, it is possible to run the U phase at the same time
as a S phase, if the processes executing each can be ad-
equately isolated. For instance, a combination of virtu-
alization and trusted execution (e.g., Intel’s LaGrande
technology or AMD’s Presidio extensions) can ensure
that a new operating system image can be late-launched
(i.e., “booted”) in isolation of any currently running S
phase software in a separate execution domain. While the
U phase is running, the S phase executing in a separate
domain can still handle requests for the previous snap-
shot of the service. The same effect could be obtained in
perhaps less complexity by separating the U and S phases
into different physical machines.

Second, it is possible to increase the update frequency
without halting the service process by making update un-
synchronized, that is, without requiring that all replicas
enter the U phase at the same time. Without the need for
clock synchronization among all replicas, the duration of
U phases can be much shorter (since we no longer need
to accommodate global bounds on clock drift across all
nodes) and, as a result, U phases can be much more fre-
quent. We give a sketch of an alternative design for un-
synchronized U phases in the next section.

5.2 Extensions

fT-bound: The fault threshold for a single U phase in
Bonafide can be extended to a multi-phase f7-bound
model, in which the cumulative number of faults in 7T
consecutive U phases is bounded by f7' for some frac-
tion f, but there can be phases in which more than frac-
tion f replicas are faulty. Such a failure model may re-
quire multi-phase recovery and an extension of MAS
to hold, instead of individual registers, an append-only
queue with at least T" positions, akin to an A2M [16].
Early Commitment: Bonafide does not guarantee that
a mapping for which a client collects 2f + 1 tentative
acknowledgments in any S phase is committed during
the following U phase when there are more than f faults
during the S phase. By extending MAS, we can provide
early commitment that guarantees a mapping is commit-
ted during the following U phase. The attested storage
needs to bound the number of the entries appended dur-
ing a single S phase. Once this storage reaches its bound,
it does not accept more appends until it is flushed out
during the next U phase.

In early commitment, during the S phase, a replica ap-
pends ADDs to the bounded attested storage and sends
a TENTREPLY message with a MAS Lookup attestation
for each App. Essentially, the MAS is used as a trusted
un-erasable ApD buffer during an otherwise untrusted
S phase. As a result, unlike the protocol described ear-
lier, when the client collects 2f + 1 tentative Add ac-

knowledgements containing buffering MAS attestations,
it can complete the request immediately, since that ADD
is guaranteed to be reflected in the next AST addition.
Advanced Search: To focus on a tiered fault framework,
we present a long-term key-value service with a mini-
mal search interface. Extending the main data structure
for advanced search is possible. For example, recent re-
search shows a way for running generalized SQL queries
on authenticated databases [21].

Caching for S phases: Bonafide can employ caching
replicas that serve Get requests to increase throughput
and availability. These caching nodes can serve requests
continuously, i.e., they are available during both S and
U phases. They use digital signatures that are created
by Bonafide replicas to vouch for bindings whose fresh-
ness is approximately guaranteed with timestamps. The
caching nodes can grow and shrink dynamically depend-
ing on workload without manual intervention.
Unsynchronized U Phases: Our current design requires
a synchronized execution of all U phases in the entire
population, which requires bounds on the drift of all
nodes’ clocks, which in turn requires a long U phase (to
accommodate realistic clock drift bounds). As a result, U
phases are infrequent to be mostly off-line.

We are exploring an alternative design that does not
require a synchronized execution of all U phases. At a
high level, when a replica « in its U phase wishes to send
amessage m to another replica y that is not guaranteed to
be in its U phase, replica x asks y’s S phase to store that
message in an untrusted “mail box” for ’s subsequent U
phase. When at a later time replica y enters its U phase, it
checks its “mail box” for messages from other replicas’
U phases, which it uses to make progress.

There are several challenges with this approach. First,
the mail box is untrusted (it lives in the address space
of the S phase and is subject to the bottom tier of the
fault model) which means that messages stored in it may
be lost or corrupted. Second, whereas our current, syn-
chronized design executes an entire agreement protocol
exchange within a single U phase, this unsynchronized
design would have to take multiple rounds of U phases
at all involved replicas to complete each agreement pro-
tocol (one U phase at each replica to process all mes-
sages in its mail box and to transmit the next set of mes-
sages). On the other hand, given that there would be no
need for clock synchronization, an unsynchronized de-
sign can have more frequent but shorter U phases at each
replica (say one-second-long U phases every few min-
utes or so). We are currently adapting a protocol akin
to Byzantine Disk Paxos [7], a shared-memory version
of Byzantine Paxos that models well communication via
unreliable mail boxes.

Upgrades: Bonafide does not require that the crypto-
graphic tools it uses (hash functions, digital signatures)
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remain inviolate forever; as long as it is migrated to a
new algorithm for hashing or signing before the old al-
gorithm has been completely compromised, it can retain
its guarantees. Upgrades require an agreement (via the U
phase), using a special Upgrade request, handled simi-
larly to Add requests (buffered, then committed, then ex-
ecuted). Upgrades can include hardware upgrades (e.g.,
the migration of one MAS device on a particular replica
to a newer device, updating the replica membership and
public keys to all those who receive the upgrade), soft-
ware upgrades (e.g., the installation at a replica of a soft-
ware module for a new cryptographic function), regular
membership updates (switching public keys or locations
for a replica), or algorithms in use. The latter case re-
quires that all replicas have the new software for a new
algorithm; the system cannot migrate from RSA signa-
tures to a (fictional) new RSA++ algorithm until at least
a strong quorum of replicas speak RSA++. As a result,
an Upgrade request to algorithm RSA++ executes only
if all replicas in the membership list already have soft-
ware for the algorithm; otherwise, the request is replaced
by a no-op. For hash function upgrades, in particular, the
service state must be upgraded as well. This can be done
gradually, a small number of AST subtrees per U-phase,
by replacing node labels of nodes from tree leaves up
to the root. While this upgrade takes place, some tree
nodes will have labels computed with the old algorithm,
and some labels with the new algorithm, but that is not a
problem, until the old algorithm is ultimately and com-
pletely compromised.

6 Related Work
6.1 BFT Systems

Byzantine-fault tolerant state machine replication has
received much attention in the systems community
since PBFT [13]. Systems such as PBFT-PR [14] and
COCA [59] have employed proactive recovery to reduce
the vulnerability window. In these systems, a node is
periodically rejuvenated, checking and repairing service
state. COCA, in particular, shares a similar goal with
Bonafide, i.e., the maintenance of a mapping from names
to authenticators, but does not account for long-term op-
eration in its structure or assumptions.

Researchers have proposed few improvements on
PBFT to improve the 1/3 fault bound. Like PBFT,
BFT2F [34] provides safety and liveness with up to
1/3 faulty replicas and then only fork* consistency (a
weaker property than linearizability) when faults grow
up to 2/3 of the population. Although closer in spirit
to our work, since it acknowledges that multiple fault
thresholds might be useful towards different guarantees,
BFT2F requires state at the clients, which is unreason-
able for long-term preservation services, and offers fork*

consistency at its weakest fault threshold, which is inap-
propriate for an archival lookup service. Finally, our own
A2M-enabled BFT protocols [16] improve fault bounds
by using A2M. In particular, A2M-PBFT-EA provides
both safety and liveness with up to fewer than 1/2 faulty
replicas. In this work we use some of the insights we
gained in the A2M work, but focus instead on the notion
of the tiered fault framework in a long-term service.

A2M [16] is a trusted primitive that removes the abil-
ity of faulty components to equivocate—tell different lies
to different peers. Though a powerful primitive for BFT
protocols, A2M is lacking MAS’s mode bit, which is
critical for ensuring phase separations. In addition, A2M
has more complicated internal structures and interfaces
to account for linearizing requests and handling view
changes. A2M has a set of trusted, undeniable, ordered
logs, and it gives attestation of any entry or the last en-
try in the log or attestation vouching for some sequence
numbers are skipped. In contrast, MAS has a set of stor-
age slots with a simple write/read interface.

Recent work in Byzantine-fault tolerant storage sys-
tems has focused on developing efficient erasure-coding
based block storage protocols [12, 22, 26] that reduce
storage overhead. Hendricks, Ganger, and Reiter [26] de-
veloped the state-of-the-art BFT (m, n) erasure-coding
block storage protocol to optimize reads and large writes.
To tolerate f faults, the protocol requires m > f + 1 out
of n = m+2f servers. These block storage protocols do
not differentiate components of the systems and are not
designed for long-term operation.

6.2 Differentiating Trust Levels

Researchers have differentiated trust levels on system
components, failure types, and failure thresholds. The
wormholes model is a hybrid system model where the
system is decomposed into payload subsystems with
weak assumptions and wormhole subsystems with strong
assumptions and the two communicate through worm-
hole gateways [51, 53]. Wormholes such as the Timely
Computing Base (TCB) [52] and the Trusted Timely
Computing Base (TTCB) [17, 18, 41] provide concrete
services such as timely execution and trusted block
agreement to payload subsystems. TCB and TTCB are
synchronous and fail by crashing. Similarly, we hy-
bridize system components using tiers with different
functionalities but we distinguish components explicitly
for long-term operation and do in a finer granularity with
different fault thresholds and in a more general way.
Hybrid fault models differentiate failure types on ho-
mogeneous systems: some nodes can have benign faults
and others can have Byzantine faults [38, 50]. Further-
more, Byzantine faults are classified into malicious sym-
metric and malicious asymmetric faults [50]. Modified
versions of the classic agreement algorithms can lead to

USENIX Association

FAST ’09: 7th USENIX Conference on File and Storage Technologies 279



more flexible fault tolerance guarantees [9,29,50].

There has also been research on applying different
fault thresholds to different sites or clusters. The multi-
site threshold model differentiates two types of failures
— site failures and process failures — in multi-site sys-
tems [28]. The model uses a fault threshold for the num-
ber of sites and a vector of fault thresholds, each of which
is assigned to a site to account for a different process-
failure probability depending on sites. In our tiered fault
framework, each site is a tier. Yin et al. [57] proposed
an architecture that separates execution from agreement:
two groups of replicas—N agreement and M execution
replicas—by dividing functionalities. This architecture
can tolerate | -1 | faults and [ -1 | faults, thus assign-
ing different thresholds for the clusters. This partition is
done based on functionalities. In our framework, each
cluster is a tier. In Bonafide, we differentiate components
based on functionalities but do at a finer level.

6.3 Long-term Stores

Self-certifying bitstore systems such as Glacier [25],
PAST [44], OceanStore [31], Carbonite [15], and Antiq-
uity [55] have addressed durability comprehensively. Au-
thenticity is addressed by expecting all stored data to be
self-certifying: the name of the datum is an authenticator
for that datum, and can be used to verify its contents (e.g.,
via a cryptographic hash). However, such systems leave
out of scope where those authenticators come from. It is
precisely this gap that Bonafide seeks to fill: providing a
long-term store for non-self-certifying information.

The LOCKSS system [36] is a digital preservation sys-
tem not requiring an inviolable 1/3 fault bound. How-
ever, this system is probabilistic in nature and does not
provide hard safety or liveness guarantees as Bonafide
does. POTSHARDS [48] is a long-term storage system
that relies on multiple separately-managed archives. It
uses secret splitting and stores shares into the archives to
prevent accidental disclosure. Each object has a mapping
between its object identifier and a hash for integrity. In
POTSHARDS, each replica in an archive site is trusted
or untrusted in its entirety. In comparison, in our work,
only a small component at each replica is trusted (MAS),
the update software can fail at up to a third of the popula-
tion at the same time, and the service software can briefly
fail everywhere at the same time without affecting safety.

CATS [58] is a single-server service that provides
strong accountability of actions done by the server in a
single authority and clients. Its approach is not to mask
faults through replicated servers, but to detect faults
and punish actors responsible for the faults. Its auditing
scheme catches server rollback attacks probabilistically.
In comparison, Bonafide provides hard safety and live-
ness guarantees under its fault assumption and considers
replicated servers.

7 Conclusion

Long-term services that operate reliably are hard to con-
struct. This work represents a step towards understanding
better system structuring for long-term services that can
lead to safer solutions. We present a tiered fault frame-
work that partitions system components of nodes in dif-
ferent tiers, each enjoying a different fault threshold. We
have designed and implemented Bonafide, a long-term
key-value store that provides integrity under a three-tier
Byzantine fault model. We hope that our work provides a
framework for building more dependable long-term stor-
age services.
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Notes

"We use the terms fault bound and fault threshold interchangeably.

2The window of vulnerability varies depending on system condi-
tions. For example, if some replicas’ state is corrupted, the window
becomes large.

3This metaphor is usually attributed to Reagan Moore.

4With our recent A2M-PBFT-EA protocol [16], we can improve this
fault bound from 1/3 to 1/2. We leave the details out of this paper to
keep the exposition simple.

5We chose Berkeley DB since it was readily available, but our de-
sign would be compatible with any block-store such as Venti [43].

A Correctness Arguments

In this appendix, we prove that Bonafide provides the in-
tegrity property under the tiered Byzantine-fault model.
In the proof, we denote by s(r) the S phase of round r
and by p(r) the U phase after s(r). Without loss of gen-
erality consider a binding (k, v).

Lemma A.l. For every Add(k,v) request accepted by
2f 4+ 1 replicas during a S phase in which there is no
more than f faulty replicas out of 3f + 1 total replicas,
(k,v) appears in any valid BATCH certificate.

Proof. We say an Add(k,v) request is accepted if there
are at least 2 f 41 replicas that receive the request; a client
can ensure that the request is accepted by checking au-
thenticated tentative ADD responses. Let ), denote this
set of replicas. At the start of p(r), each replica multi-
casts a BATCH message to other replicas. The leader col-
lects 2 f 4 1 distinct BATCH messages that form a BATCH
certificate. Let (), denote the set of replicas that form
this certificate. Q, [ @ includes at least one non-faulty
replica that receives the ADD request since in the S phase
the number of faulty replicas is no more than f. There-
fore, the accepted request is contained in the BATCH cer-
tificate. O

Lemma A.2. A stable checkpoint certificate of the pre-
vious round appears in any valid BATCH certificate.

Proof. We show that at p(r) the BATCH certificate con-
tains the stable checkpoint (2 f + 1 matching MAS attes-
tations) of p(r — 1). At p(r — 1), there are at least 2f + 1
replicas, each of which creates a stable checkpoint cer-
tificate and puts the certificate to its MAS. Let @), de-
note this set of replicas. (), (| Qs intersects at at least
f + 1 replicas and hence includes at least one common
non-faulty replica between two quorums. This replica en-
sures that the stable checkpoint of the previous round is

included in the BATcH certificate. Therefore, the BATCH
certificate of p(r) contains the correct stable checkpoint
of p(r —1). O

Theorem A.3. If a binding (k,v) is accepted at s(r) and
k is not in the AST, the binding is correctly read (or tem-
porarily unavailable) at all s(r')(r' > r).

Proof. From Lemmas A.1 and A.2, we know that a PrRo-
POSE message with a valid BATCH certificate contains a
correct stable checkpoint certificate of the previous round
and bindings received during a S phase in which there is
no more than f faulty replicas. When the leader invokes
PBFT with the PRoPOSE message, PBFT ensures that all
non-faulty replicas agree on the PROPOSE message. Each
such replica checks that k& does not exist; if necessary, the
replica may perform state transfer for this validation. If
k does not exist, the replica inserts (k, v) into the AST,
computes a new AST digest, and appends it to MAS. Fi-
nally, each replica creates a stable checkpoint certificate
by collecting 2 f + 1 matching UCHECKPOINT messages
and appends the certificate to its MAS.

Now, suppose a client gets a reply certificate (f + 1
matching MAS attestations) of Get (k) at s(r + 1). The
reply certificate contains at least one up-to-date replica
since a non-faulty replica enters s(r + 1) only after cre-
ating a stable checkpoint certificate. Therefore, a client
correctly reads value v when it queries with k at s(r+1).

Once (k,v) is inserted into Bonafide at p(r), it is clear
that p(r + 1) carries (k, v) from p(r) correctly with the
same argument we make for p(r — 1) and p(r) above
since we have a correct AST digest. We can inductively
argue the same holds for p(r + ) and p(r 44 + 1) for all
1 > 0. Therefore, when a client gets a reply certificate for
Get (k) atall s(r 4 ¢) (i > 0), the client receives correct
(k,v). O
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