
USENIX Association 	 7th USENIX Conference on File and Storage Technologies	 125

Generating Realistic Impressions for File-System Benchmarking

Nitin Agrawal, Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau
Department of Computer Sciences, University of Wisconsin-Madison

{nitina, dusseau, remzi}@cs.wisc.edu

Abstract

The performance of file systems and related software de-
pends on characteristics of the underlying file-system im-
age (i.e., file-system metadata and file contents). Un-
fortunately, rather than benchmarking with realistic file-
system images, most system designers and evaluators
rely on ad hoc assumptions and (often inaccurate) rules
of thumb. Furthermore, the lack of standardization and
reproducibility makes file system benchmarking ineffec-
tive. To remedy these problems, we develop Impressions,
a framework to generate statistically accurate file-system
images with realistic metadata and content. Impressions
is flexible, supporting user-specified constraints on vari-
ous file-system parameters using a number of statistical
techniques to generate consistent images. In this paper
we present the design, implementation and evaluation
of Impressions, and demonstrate its utility using desktop
search as a case study. We believe Impressions will prove
to be useful for system developers and users alike.

1 Introduction

File system benchmarking is in a state of disarray. In
spite of tremendous advances in file system design, the
approaches for benchmarking still lag far behind. The
goal of benchmarking is to understand how the sys-
tem under evaluation will perform under real-world con-
ditions and how it compares to other systems; how-
ever, recreating real-world conditions for the purposes of
benchmarking file systems has proven challenging. The
two main challenges in achieving this goal are generat-
ing representative workloads, and creating realistic file-
system state.

While creating representative workloads is not an en-
tirely solved problem, significant steps have been taken
towards this goal. Empirical studies of file-system access
patterns [4, 19, 33] and file-system activity traces [38,
45] have led to work on synthetic workload genera-
tors [2, 14] and methods for trace replay [3, 26].

The second, and perhaps more difficult challenge, is to
recreate the file-system state such that it is representative

of the target usage scenario. Several factors contribute
to file-system state, important amongst them are the in-
memory state (contents of the buffer cache), the on-disk
state (disk layout and fragmentation) and the characteris-
tics of the file-system image (files and directories belong-
ing to the namespace and file contents).

One well understood contributor to state is the in-
memory state of the file system. Previous work has
shown that the contents of the cache can have signifi-
cant impact on the performance results [11]. Therefore,
system initialization during benchmarking typically con-
sists of a cache “warm-up” phase wherein the workload
is run for some time prior to the actual measurement
phase. Another important factor is the on-disk state of
the file system, or the degree of fragmentation; it is a
measure of how the disk blocks belonging to the file sys-
tem are laid out on disk. Previous work has shown that
fragmentation can adversely affect performance of a file
system [44]. Thus, prior to benchmarking, a file system
should undergo aging by replaying a workload similar to
that experienced by a real file system over a period of
time [44].

Surprisingly, one key contributor to file-system state
has been largely ignored – the characteristics of the file-
system image. The properties of file-system metadata
and the actual content within the files are key contrib-
utors to file-system state, and can have a significant im-
pact on the performance of a system. Properties of file-
system metadata includes information on how directories
are organized in the file-system namespace, how files are
organized into directories, and the distributions for vari-
ous file attributes such as size, depth, and extension type.
Consider a simple example: the time taken for a find
operation to traverse a file system while searching for a
file name depends on a number of attributes of the file-
system image, including the depth of the file-system tree
and the total number of files. Similarly, the time taken
for a grep operation to search for a keyword also de-
pends on the type of files (i.e., binary vs. others) and the
file content.

File-system benchmarking frequently requires this
sort of information on file systems, much of which is

126	 7th USENIX Conference on File and Storage Technologies	 USENIX Association

Paper Description Used to measure

HAC [17] File system with 17000 files totaling 150 MB Time and space needed to create a Glimpse index
IRON [36] None provided Checksum and metadata replication overhead;

parity block overhead for user files
LBFS [30] 10702 files from /usr/local, total size 354 MB Performance of LBFS chunking algorithm
LISFS [34] 633 MP3 files, 860 program files, 11502 man pages Disk space overhead; performance of search-like

activities: UNIX find and LISFS lookup
PAST [40] 2 million files, mean size 86 KB, median 4 KB, largest

file size 2.7 GB, smallest 0 Bytes, total size 166.6 GB
File insertion, global storage utilization in a P2P
system

Pastiche [9] File system with 1641 files, 109 dirs, 13.4 MB total size Performance of backup and restore utilities
Pergamum [47] Randomly generated files of “several” megabytes Data transfer performance
Samsara [10] File system with 1676 files and 13 MB total size Data transfer and querying performance, load dur-

ing querying
Segank [46] 5-deep directory tree, 5 subdirs and 10 8 KB files per

directory
Performance of Segank: volume update, creation
of read-only snapshot, read from new snapshot

SFS read-
only [15]

1000 files distributed evenly across 10 directories and
contain random data

Single client/single server read performance

TFS [7] Files taken from /usr to get “realistic” mix of file sizes Performance with varying contribution of space
from local file systems

WAFL
backup [20]

188 GB and 129 GB volumes taken from the Engineer-
ing department

Performance of physical and logical backup, and
recovery strategies

yFS [49] Avg. file size 16 KB, avg. number of files per directory
64, random file names

Performance under various benchmarks (file cre-
ation, deletion)

Table 1: Choice of file system parameters in prior research.

available in the form of empirical studies of file-system
contents [1, 12, 21, 29, 41, 42]. These studies focus on
measuring and modeling different aspects of file-system
metadata by collecting snapshots of file-system images
from real machines. The studies range from a few ma-
chines to tens of thousands of machines across different
operating systems and usage environments. Collecting
and analyzing this data provides useful information on
how file systems are used in real operating conditions.

In spite of the wealth of information available in file-
system studies, system designers and evaluators continue
to rely on ad hoc assumptions and often inaccurate rules
of thumb. Table 1 presents evidence to confirm this hy-
pothesis; it contains a (partial) list of publications from
top-tier systems conferences in the last ten years that re-
quired a test file-system image for evaluation. We present
both the description of the file-system image provided in
the paper and the intended goal of the evaluation.

In the table, there are several examples where a new
file system or application design is evaluated on the eval-
uator’s personal file system without describing its prop-
erties in sufficient detail for it to be reproduced [7, 20,
36]. In others, the description is limited to coarse-grained
measures such as the total file-system size and the num-
ber of files, even though other file-system attributes (e.g.,
tree depth) are relevant to measuring performance or
storage space overheads [9, 10, 17, 30]. File systems are
also sometimes generated with parameters chosen ran-
domly [47, 49], or chosen without explanation of the sig-
nificance of the values [15, 34, 46]. Occasionally, the

parameters are specified in greater detail [40], but not
enough to recreate the original file system.

The important lesson to be learnt here is that there
is no standard technique to systematically include infor-
mation on file-system images for experimentation. For
this reason, we find that more often than not, the choices
made are arbitrary, suited for ease-of-use more than ac-
curacy and completeness. Furthermore, the lack of stan-
dardization and reproducibility of these choices makes it
near-impossible to compare results with other systems.

To address these problems and improve one important
aspect of file system benchmarking, we develop Impres-
sions, a framework to generate representative and statis-
tically accurate file-system images. Impressions gives
the user flexibility to specify one or more parameters
from a detailed list of file system parameters (file-system
size, number of files, distribution of file sizes, etc.). Im-
pressions incorporates statistical techniques (automatic
curve-fitting, resolving multiple constraints, interpola-
tion and extrapolation, etc.) and uses statistical tests for
goodness-of-fit to ensure the accuracy of the image.

We believe Impressions will be of great use to sys-
tem designers, evaluators, and users alike. A casual user
looking to create a representative file-system image with-
out worrying about carefully selecting parameters can
simply run Impressions with its default settings; Impres-
sions will use pre-specified distributions from file-system
studies to create a representative image. A more sophisti-
cated user has the power to individually control the knobs
for a comprehensive set of file-system parameters; Im-

USENIX Association 	 7th USENIX Conference on File and Storage Technologies	 127

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

Orig
ina

l

Cac
he

d

Frag
men

ted

Flat
 Tree

Dee
p T

ree

Re
la

tiv
e

O
ve

rh
ea

d
Time taken for "find" operation

Figure 1: Impact of directory tree structure. Shows
impact of tree depth on time taken by find. The file systems are created
by Impressions using default distributions (Table 2). To exclude effects
of the on-disk layout, we ensure a perfect disk layout (layout score 1.0)
for all cases except the one with fragmentation (layout score 0.95).
The flat tree contains all 100 directories at depth 1; the deep tree has
directories successively nested to create a tree of depth 100.

pressions will carefully work out the statistical details to
produce a consistent and accurate image. In both cases,
Impressions ensures complete reproducibility of the im-
age, by reporting the used distributions, parameter val-
ues, and seeds for random number generators.

In this paper we present the design, implementation
and evaluation of the Impressions framework (§3), which
we intend to release for public use in the near future. Im-
pressions is built with the following design goals:

• Accuracy: in generating various statistical con-
structs to ensure a high degree of statistical rigor.

• Flexibility: in allowing users to specify a number of
file-system distributions and constraints on parame-
ter values, or in choosing default values.

• Representativeness: by incorporating known distri-
butions from file-system studies.

• Ease of use: by providing a simple, yet powerful,
command-line interface.

Using desktop search as a case study, we demonstrate the
usefulness and ease of use of Impressions in quantifying
application performance, and in finding application poli-
cies and bugs (§4). To bring the paper to a close, we
discuss related work (§5), and finally conclude (§6).

2 Extended Motivation

We begin this section by asking a basic question: does
file-system structure really matter? We then describe the
goals for generating realistic file-system images and dis-
cuss existing approaches to do so.

2.1 Does File-System Structure Matter?
Structure and organization of file-system metadata mat-
ters for workload performance. Let us take a look at
the simple example of a frequently used UNIX utility:

find. Figure 1 shows the relative time taken to run
“find /” searching for a file name on a test file sys-
tem as we vary some parameters of file-system state.

The first bar represents the time taken for the run on
the original test file system. Subsequent bars are normal-
ized to this time and show performance for a run with the
file-system contents in buffer cache, a fragmented ver-
sion of the same file system, a file system created by flat-
tening the original directory tree, and finally one by deep-
ening the original directory tree. The graph echoes our
understanding of caching and fragmentation, and brings
out one aspect that is often overlooked: structure really
matters. From this graph we can see that even for a sim-
ple workload, the impact of tree depth on performance
can be as large as that with fragmentation, and varying
tree depths can have significant performance variations
(300% between the flat and deep trees in this example).

Assumptions about file-system structure have often
trickled into file system design, but no means exist to
incorporate the effects of realistic file-system images in
a systematic fashion. As a community, we well under-
stand that caching matters, and have begun to pay atten-
tion to fragmentation, but when it comes to file-system
structure, our approach is surprisingly laissez faire.

2.2 Goals for Generating FS Images
We believe that the file-system image used for an evalua-
tion should be realistic with respect to the workload; the
image should contain a sufficient degree of detail to real-
istically exercise the workload under consideration. An
increasing degree of detail will likely require more effort
and slow down the process. Thus it is useful to know
the degree sufficient for a given evaluation. For exam-
ple, if the performance of an application simply depends
on the size of files in the file system, the chosen file-
system image should reflect that. On the other hand, if
the performance is also sensitive to the fraction of binary
files amongst all files (e.g., to evaluate desktop search in-
dexing), then the file-system image also needs to contain
realistic distributions of file extensions.

We walk through some examples that illustrate the dif-
ferent degrees of detail needed in file-system images.

• At one extreme, a system could be completely
oblivious to both metadata and content. An exam-
ple of such a system is a mirroring scheme (RAID-
1 [35]) underneath a file system, or a backup util-
ity taking whole-disk backups. The performance of
such schemes depends solely on the block traffic.

Alternately, systems could depend on the attributes of the
file-system image with different degrees of detail:

• The performance of a system can depend on the
amount of file data (number of files and directories,
or the size of files and directories, or both) in any

128	 7th USENIX Conference on File and Storage Technologies	 USENIX Association

given file system (e.g., a backup utility taking whole
file-system snapshots).

• Systems can depend on the structure of the file sys-
tem namespace and how files are organized in it
(e.g., a version control system for a source-code
repository).

• Finally, many systems also depend on the actual
data stored within the files (e.g., a desktop search
engine for a file system, or a spell-checker).

Impressions is designed with this goal of flexibility
from the outset. The user is given complete control
of a number of file-system parameters, and is provided
with an easy to use interface. Transparently, Impressions
seamlessly ensures accuracy and representativeness.

2.3 Existing Approaches
One alternate approach to generating realistic file-system
images is to randomly select a set of actual images from
a corpus, an approach popular in other fields of computer
science such as Information Retrieval, Machine Learning
and Natural Language Processing [32]. In the case of file
systems the corpus would consist of a set of known file-
system images (e.g., tarballs). This approach arguably
has several limitations which make it difficult and un-
suitable for file systems research. First, there are too
many parameters required to accurately describe a file-
system image that need to be captured in a corpus. Sec-
ond, without precise control in varying these parameters
according to experimental needs, the evaluation can be
blind to the actual performance dependencies. Finally,
the cost of maintaining and sharing any realistic corpus
of file-system images would be prohibitive. The size of
the corpus itself would severely restrict its usefulness es-
pecially as file systems continue to grow larger.

Unfortunately, these limitations have not deterred re-
searchers from using their personal file systems as a (triv-
ial) substitute for a file-system corpus.

3 The Impressions Framework

In this section we describe the design, implementation
and evaluation of Impressions: a framework for gener-
ating file-system images with realistic and statistically
accurate metadata and content . Impressions is flexible
enough to create file-system images with varying config-
urations, guaranteeing the accuracy of images by incor-
porating a number of statistical tests and techniques.

We first present a summary of the different modes of
operation of Impressions, and then describe the individ-
ual statistical constructs in greater detail. Wherever ap-
plicable, we evaluate their accuracy and performance.

Parameter Default Model & Parameters
Directory count w/ depth Generative model
Directory size (subdirs) Generative model
File size by count Lognormal-body

(α1=0.99994, µ=9.48, σ=2.46)
Pareto-tail (k=0.91,Xm=512MB)

File size by containing Mixture-of-lognormals
bytes (α1=0.76, µ1=14.83, σ1=2.35

α2=0.24, µ2=20.93, σ2=1.48)
Extension popularity Percentile values
File count w/ depth Poisson (λ=6.49)
Bytes with depth Mean file size values
Directory size (files) Inverse-polynomial

(degree=2, offset=2.36)
File count w/ depth Conditional probabilities
(w/ special directories) (biases for special dirs)
Degree of Fragmentation Layout score (1.0)

or Pre-specified workload

Table 2: Parameters and default values in Impres-
sions. List of distributions and their parameter values used in the
Default mode.

3.1 Modes of Operation
A system evaluator can use Impressions in different
modes of operation, with varying degree of user input.

Sometimes, an evaluator just wants to create a repre-
sentative file-system image without worrying about the
need to carefully select parameters. Hence, in the auto-
mated mode, Impressions is capable of generating a file-
system image with minimal input required from the user
(e.g., the size of the desired file-system image), relying
on default settings of known empirical distributions to
generate representative file-system images. We refer to
these distributions as original distributions.

At other times, users want more control over the im-
ages, for example, to analyze the sensitivity of perfor-
mance to a given file-system parameter, or to describe a
completely different file-system usage scenario. Hence,
Impressions supports a user-specified mode, where a
more sophisticated user has the power to individually
control the knobs for a comprehensive set of file-system
parameters; we refer to these as user-specified distribu-
tions. Impressions carefully works out the statistical de-
tails to produce a consistent and accurate image.

In both the cases, Impressions ensures complete repro-
ducibility of the file-system image by reporting the used
distributions, their parameter values, and seeds for ran-
dom number generators.

Impressions can use any dataset or set of parameter-
ized curves for the original distributions, leveraging a
large body of research on analyzing file-system proper-
ties [1, 12, 21, 29, 41, 42]. For illustration, in this pa-
per we use a recent static file-system snapshot dataset
made publicly available [1]. The snapshots of file-system
metadata were collected over a five-year period repre-
senting over 60, 000 Windows PC file systems in a large

USENIX Association 	 7th USENIX Conference on File and Storage Technologies	 129

corporation. These snapshots were used to study dis-
tributions and temporal changes in file size, file age,
file-type frequency, directory size, namespace structure,
file-system population, storage capacity, and degree of
file modification. The study also proposed a generative
model explaining the creation of file-system namespaces.

Impressions provides a comprehensive set of individ-
ually controllable file system parameters. Table 2 lists
these parameters along with their default selections. For
example, a user may specify the size of the file-system
image, the number of files in the file system, and the dis-
tribution of file sizes, while selecting default settings for
all other distributions. In this case, Impressions will en-
sure that the resulting file-system image adheres to the
default distributions while maintaining the user-specified
invariants.

3.2 Basic Techniques
The goal of Impressions is to generate realistic file-
system images, giving the user complete flexibility and
control to decide the extent of accuracy and detail. To
achieve this, Impressions relies on a number of statistical
techniques.

In the simplest case, Impressions needs to create sta-
tistically accurate file-system images with default distri-
butions. Hence, a basic functionality required by Im-
pressions is to convert the parameterized distributions
into real sample values used to create an instance of a
file-system image. Impressions uses random sampling to
take a number of independent observations from the re-
spective probability distributions. Wherever applicable,
such parameterized distributions provide a highly com-
pact and easy-to-reproduce representation of observed
distributions. For cases where standard probability dis-
tributions are infeasible, a Monte Carlo method is used.

A user may want to use file system datasets other than
the default choice. To enable this, Impressions provides
automatic curve-fitting of empirical data.

Impressions also provides the user with the flexibil-
ity to specify distributions and constraints on parame-
ter values. One challenge thus is to ensure that multi-
ple constraints specified by the user are resolved con-
sistently. This requires statistical techniques to ensure
that the generated file-system images are accurate with
respect to both the user-specified constraints and the de-
fault distributions.

In addition, the user may want to explore values of file
system parameters, not captured in any dataset. For this
purpose, Impressions provides support for interpolation
and extrapolation of new curves from existing datasets.

Finally, to ensure the accuracy of the generated im-
age, Impressions contains a number of built-in statisti-
cal tests, for goodness-of-fit (e.g., Kolmogorov-Smirnov,
Chi-Square, and Anderson-Darling), and to estimate er-

ror (e.g., Confidence Intervals, MDCC, and Standard Er-
ror). Where applicable, these tests ensure that all curve-
fit approximations and internal statistical transformations
adhere to the highest degree of statistical rigor desired.

3.3 Creating Valid Metadata
The simplest use of Impressions is to generate file-
system images with realistic metadata. This process is
performed in two phases: first, the skeletal file-system
namespace is created; and second, the namespace is pop-
ulated with files conforming to a number of file and di-
rectory distributions.

3.3.1 Creating File-System Namespace
The first phase in creating a file system is to create the
namespace structure or the directory tree. We assume
that the user specifies the size of the file-system image.
The count of files and directories is then selected based
on the file system size (if not specified by the user). De-
pending on the degree of detail desired by the user, each
file or directory attribute is selected step by step until all
attributes have been assigned values. We now describe
this process assuming the highest degree of detail.

To create directory trees, Impressions uses the gener-
ative model proposed by Agrawal et al. [1] to perform a
Monte Carlo simulation. According to this model, new
directories are added to a file system one at a time, and
the probability of choosing each extant directory as a par-
ent is proportional to C(d)+2, where C(d) is the count of
extant subdirectories of directory d. The model explains
the creation of the file system namespace, accounting
both for the size and count of directories by depth, and
the size of parent directories. The input to this model is
the total number of directories in the file system. Direc-
tory names are generated using a simple iterative counter.

To ensure the accuracy of generated images, we com-
pare the generated distributions (i.e., created using the
parameters listed in Table 2), with the desired distribu-
tions (i.e., ones obtained from the dataset discussed pre-
viously in §3.1). Figure 2 shows in detail the accuracy
for each step in the namespace and file creation process.
For almost all the graphs, the y-axis represents the per-
centage of files, directories, or bytes belonging to the cat-
egories or bins shown on the x-axis, as the case may be.

Figures 2(a) and 2(b) show the distribution of directo-
ries by depth, and directories by subdirectory count, re-
spectively. The y-axis in this case is the percentage of di-
rectories at each level of depth in the namespace, shown
on the x-axis. The two curves representing the generated
and the desired distributions match quite well, indicating
good accuracy and reaffirming prior results [1].

3.3.2 Creating Files
The next phase is to populate the directory tree with files.
Impressions spends most of the total runtime and effort

130	 7th USENIX Conference on File and Storage Technologies	 USENIX Association

(a) (b) (c)

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18

 0 2 4 6 8 10 12 14 16

%
 o

f d
ire

ct
or

ie
s

Namespace depth (bin size 1)

Directories by Namespace Depth

D
G

 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14 16C
um

ul
at

iv
e

%
 o

f d
ire

ct
or

ie
s

Count of subdirectories

Directories by Subdirectory Count

D
G

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12

0 8 2K 512K 512M 64G

%
 o

f f
ile

s

File Size (bytes, log scale, power-of-2 bins)

Files by Size

D
G

(d) (e) (f)

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12

0 8 2K 512K 512M128G

%
 o

f b
yt

es

File Size (bytes, log scale, power-of-2 bins)

Files by Containing Bytes

D
G

 0

 0.2

 0.4

 0.6

 0.8

 1

Desired Generated

Fr
ac

tio
n

of
 fi

le
s

Top Extensions by Count

cppdllexe
gifh
htm
jpgnulltxt

others

cppdllexe
gifh
htm
jpgnulltxt

others

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16

 0 2 4 6 8 10 12 14 16

%
 o

f f
ile

s

Namespace depth (bin size 1)

Files by Namespace Depth

D
G

(g) (h)

16KB
64KB

256KB
768KB

2MB

 0 2 4 6 8 10 12 14 16

M
ea

n
by

te
s

pe
r f

ile

(lo
g

sc
al

e)

Namespace depth (bin size 1)

Bytes by Namespace Depth

D
G

 0
 0.05
 0.1

 0.15
 0.2

 0.25

 0 2 4 6 8 10 12 14 16

%
 o

f f
ile

s

Namespace depth (bin size 1)

Files by Namespace Depth
 (with Special Directories)

D
G

Figure 2: Accuracy of Impressions in recreating file system properties. Shows the accuracy of the entire set of file system
distributions modeled by Impressions. D: the desired distribution; G: the generated distribution. Impressions is quite accurate in creating realistic
file system state for all parameters of interest shown here. We include a special abscissa for the zero value on graphs having a logarithmic scale.

during this phase, as the bulk of its statistical machinery
is exercised in creating files. Each file has a number of
attributes such as its size, depth in the directory tree, par-
ent directory, and file extension. Similarly, the choice of
the parent directory is governed by directory attributes
such as the count of contained subdirectories, the count
of contained files, and the depth of the parent directory.
Analytical approximations for file system distributions
proposed previously [12] guided our own models.

First, for each file, the size of the file is sampled
from a hybrid distribution describing file sizes. The
body of this hybrid curve is approximated by a lognor-
mal distribution, with a Pareto tail distribution (k=0.91,
Xm=512MB) accounting for the heavy tail of files with
size greater than 512 MB. The exact parameter values
used for these distributions are listed in Table 2. These
parameters were obtained by fitting the respective curves
to file sizes obtained from the file-system dataset previ-
ously discussed (§3.1). Figure 2(c) shows the accuracy
of generating the distribution of files by size. We initially

used a simpler model for file sizes represented solely by
a lognormal distribution. While the results were accept-
able for files by size (Figure 2(c)), the simpler model
failed to account for the distribution of bytes by contain-
ing file size; coming up with a model to accurately cap-
ture the bimodal distribution of bytes proved harder than
we had anticipated. Figure 2(d) shows the accuracy of
the hybrid model in Impressions in generating the distri-
bution of bytes. The pronounced double mode observed
in the distribution of bytes is a result of the presence of
a few large files; an important detail that is otherwise
missed if the heavy-tail of file sizes is not accurately ac-
counted for.

Once the file size is selected, we assign the file name
and extension. Impressions keeps a list of percentile val-
ues for popular file extensions (i.e., top 20 extensions by
count, and by bytes). These extensions together account
for roughly 50% of files and bytes in a file system ensur-
ing adequate coverage for the important extensions. The
remainder of files are given randomly generated three-

USENIX Association 	 7th USENIX Conference on File and Storage Technologies	 131

Parameter MDCC
Directory count with depth 0.03
Directory size (subdirectories) 0.004
File size by count 0.04
File size by containing bytes 0.02
Extension popularity 0.03
File count with depth 0.05
Bytes with depth 0.12 MB*
File count w/ depth w/ special dirs 0.06

Table 3: Statistical accuracy of generated images.
Shows average accuracy of generated file-system images in terms of
the MDCC (Maximum Displacement of the Cumulative Curves) repre-
senting the maximum difference between cumulative curves of gener-
ated and desired distributions. Averages are shown for 20 trials. (*)
For bytes with depth, MDCC is not an appropriate metric, we instead
report the average difference in mean bytes per file (MB). The numbers
correspond to the set of graphs shown in Figure 2 and reflect fairly
accurate images.

character extensions. Currently filenames are generated
by a simple numeric counter incremented on each file
creation. Figure 2(e) shows the accuracy of Impressions
in creating files with popular extensions by count.

Next, we assign file depth d, which requires satisfying
two criteria: the distribution of files with depth, and the
distribution of bytes with depth. The former is modeled
by a Poisson distribution, and the latter is represented
by the mean file sizes at a given depth. Impressions
uses a multiplicative model combining the two criteria,
to produce appropriate file depths. Figures 2(f) and 2(g)
show the accuracy in generating the distribution of files
by depth, and the distribution of bytes by depth, respec-
tively.

The final step is to select a parent directory for the
file, located at depth d − 1, according to the distribution
of directories with file count, modeled using an inverse-
polynomial of degree 2. As an added feature, Impres-
sions supports the notion of “Special” directories con-
taining a disproportionate number of files or bytes (e.g.,
“Program Files” folder in the Windows environment). If
required, during the selection of the parent directory, a
selection bias is given to these special directories. Fig-
ure 2(h) shows the accuracy in supporting special direc-
tories with an example of a typical Windows file system
having files in the web cache at depth 7, in Windows
and Program Files folders at depth 2, and System
files at depth 3.

Table 3 shows the average difference between the gen-
erated and desired images from Figure 2 for 20 trials.
The difference is measured in terms of the MDCC (Max-
imum Displacement of the Cumulative Curves). For
instance, an MDCC value of 0.03 for directories with
depth, implies a maximum difference of 3% on an av-
erage, between the desired and the generated cumulative
distributions. Overall, we find that the models created
and used by Impressions for representing various file-

system parameters produce fairly accurate distributions
in all the above cases. While we have demonstrated the
accuracy of Impressions for the Windows dataset, there
is no fundamental restriction limiting it to this dataset.
We believe that with little effort, the same level of accu-
racy can be achieved for any other dataset.

3.4 Resolving Arbitrary Constraints
One of the primary requirements for Impressions is to al-
low flexibility in specifying file system parameters with-
out compromising accuracy. This means that users are al-
lowed to specify somewhat arbitrary constraints on these
parameters, and it is the task of Impressions to resolve
them. One example of such a set of constraints would be
to specify a large number of files for a small file system,
or vice versa, given a file size distribution. Impressions
will try to come up with a sample of file sizes that best
approximates the desired distribution, while still main-
taining the invariants supplied by the user, namely the
number of files in the file system and the sum of all file
sizes being equal to the file system used space.

Multiple constraints can also be implicit (i.e., arise
even in the absence of user-specified distributions). Due
to random sampling, different sample sets of the same
distribution are not guaranteed to produce exactly the
same result, and consequently, the sum of the elements
can also differ across samples. Consider the previous ex-
ample of file sizes again: the sum of all file sizes drawn
from a given distribution need not add up to the desired
file system size (total used space) each time. More for-
mally, this example is represented by the following set of
constraints:

N = {Constant1 ∨ x : x ∈ D1(x)}

S = {Constant2 ∨ x : x ∈ D2(x)}

F = {x : x ∈ D3(x; µ, σ)}; |
N�

i=0

Fi − S | ≤ β ∗ S

where N is the number of files in the file system; S is
the desired file system used space; F is the set of file
sizes; and β is the maximum relative error allowed. The
first two constraints specify that N and S can be user
specified constants or sampled from their corresponding
distributions D1 and D2. Similarly, F is sampled from
the file size distribution D3. These attributes are further
subject to the constraint that the sum of all file sizes dif-
fers from the desired file system size by no more than the
allowed error tolerance, specified by the user. To solve
this problem, we use the following two techniques:

• If the initial sample does not produce a result satisfy-
ing all the constraints, we oversample additional values
of F from D3, one at a time, until a solution is found, or
the oversampling factor α/N reaches λ (the maximum

132	 7th USENIX Conference on File and Storage Technologies	 USENIX Association

(a) (b) (c)

30K

60K

90K

 0 200 400 600 800 1000

Su
m

 o
f F

ile
 S

iz
es

Number of Oversamples

Process of Convergence

Desired Sum
5% error line

 0

 0.05

 0.1

 0.15

8 2K 512K 8M

%
 o

f f
ile

s

File Size (bytes, log scale, power-of-2 bins)

Accuracy of Constrained Distribution

O
C

 0

 0.05

 0.1

 0.15

 0.2

8 2K 512K 8M

%
 o

f b
yt

es

File Size (bytes, log scale, power-of-2 bins)

Accuracy of Constrained Distribution

O
C

Figure 3: Resolving Multiple Constraints. (a) Shows the process of convergence of a set of 1000 file sizes to the desired file
system size of 90000 bytes. Each line represents an individual trial. A successful trial is one that converges to the 5% error line in less than 1000
oversamples. (b) Shows the difference between the original distribution of files by size, and the constrained distribution after resolution of multiple
constraints in (a). O: Original; C: Constrained. (c) Same as (b), but for distribution of files by bytes instead.

Num. files Sum of file sizes File size distribution Avg. β Avg. β Avg. α Avg. D Avg. D Success
N S (bytes) D3 Initial Final Count Bytes

1000 30000 (µ=8.16, σ=2.46) 21.55% 2.04% 5.74% 0.043 0.050 100%
1000 60000 (µ=8.16, σ=2.46) 20.01% 3.11% 4.89% 0.032 0.033 100%
1000 90000 (µ=8.16, σ=2.46) 34.35% 4.00% 41.2% 0.067 0.084 90%

Table 4: Summary of resolving multiple constraints. Shows average rate and accuracy of convergence after resolving multiple
constraints for different values of desired file system size. β: % error between the desired and generated sum, α: % of oversamples required, D is
the test statistic for the K-S test representing the maximum difference between generated and desired empirical cumulative distributions. Averages
are for 20 trials. Success is the number of trials having final β ≤ 5%, and D passing the K-S test.

oversampling factor). α is the count of extra samples
drawn from D3. Upon reaching λ without finding a so-
lution, we discard the current sample set and start over.

• The number of elements in F during the oversampling
stage is N + α. For every oversampling, we need to find
if there exists FSub, a subset of F with N elements, such
that the sum of all elements of FSub (file sizes) differs
from the desired file system size by no more than the
allowed error. More formally stated, we find if:

∃ FSub = {X : X ⊆ P(F), |X | = N , |F| = N + α,

|
N�

i=0

Xi − S | ≤ β ∗ S, α ∈ N ∧
α

N
≤ λ}

The problem of resolving multiple constraints as for-
mulated above, is a variant of the more general “Subset
Sum Problem” which is NP-complete [8]. Our solution
is thus an approximation algorithm based on an existing
O(n log n) solution [37] for the Subset Sum Problem.

The existing algorithm has two phases. The first phase
randomly chooses a solution vector which is valid (the
sum of elements is less than the desired sum), and maxi-
mal (adding any element not already in the solution vec-
tor will cause the sum to exceed the desired sum). The
second phase performs local improvement: for each el-
ement in the solution, it searches for the largest element
not in the current solution which, if replaced with the cur-
rent element, would reduce the difference between the
desired and current sums. The solution vector is updated
if such an element is found, and the algorithm proceeds

with the next element, until all elements are compared.
Our problem definition and the modified algorithm

differ from the original in the following ways:

• First, in the original problem, there is no restriction on
the number of elements in the solution subset FSub. In
our case, FSub can have exactly N elements. We modify
the first phase of the algorithm to set the initial FSub

as the first random permutation of N elements selected
from F such that their sum is less than S.

• Second, the original algorithm either finds a solution
or terminates without success. We use an increasing
sample size after each oversampling to reduce the error,
and allow the solution to converge.

• Third, it is not sufficient for the elements in FSub to
have a numerical sum close to the desired sum S, but
the distribution of the elements must also be close to the
original distribution in F . A goodness-of-fit test at the
end of each oversampling step enforces this requirement.
For our example, this ensures that the set of file sizes
generated after resolving multiple constraints still follow
the original distribution of file sizes.

The algorithm terminates successfully when the differ-
ence between the sums, and between the distributions,
falls below the desired error levels. The success of the
algorithm depends on the choice of the desired sum, and
the expected sum (the sum due to the choice of parame-
ters, e.g., µ and σ); the farther the desired sum is from
the expected sum, the lesser are the chances of success.

Consider an example where a user has specified a de-
sired file system size of 90000 bytes, a lognormal file

USENIX Association 	 7th USENIX Conference on File and Storage Technologies	 133

size distribution (µ=8.16, σ=2.46), and 1000 files. Fig-
ure 3(a) shows the convergence of the sum of file sizes
in a sample set obtained with this distribution. Each line
in the graph represents an independent trial, starting at a
y-axis value equal to the sum of its initially sampled file
sizes. Note that in this example, the initial sum differs
from the desired sum by more than a 100% in several
cases. The x-axis represents the number of extra itera-
tions (oversamples) performed by the algorithm. For a
trial to succeed, the sum of file sizes in the sample must
converge to within 5% of the desired file system size. We
find that in most cases λ ranges between 0 and 0.1 (i.e.,
less than 10% oversampling); and in almost all cases,
λ ≤ 1.

The distribution of file sizes in FSub must be close
to the original distribution in F . Figure 3(b) and 3(c)
show the difference between the original and constrained
distributions for file sizes (for files by size, and files
by bytes), for one successful trial from Figure 3(a).
We choose these particular distributions as examples
throughout this paper for two reasons. First, file size is
an important parameter, so we want to be particularly
thorough in its accuracy. Second, getting an accurate
shape for the bimodal curve of files by bytes presents
a challenge for Impressions; once we get our techniques
to work for this curve, we are fairly confident of its ac-
curacy on simpler distributions.

We find that Impressions resolves multiple constraints
to satisfy the requirement on the sum, while respecting
the original distributions. Table 4 gives the summary for
the above example of file sizes for different values of the
desired file system size. The expected sum of 1000 file
sizes, sampled as specified in the table, is close to 60000.
Impressions successfully converges the initial sample set
to the desired sum with an average oversampling rate α
less than 5%. The average difference between the desired
and achieved sum β is close to 3%. The constrained dis-
tribution passes the two-sample K-S test at the 0.05 sig-
nificance level, with the difference between the two dis-
tributions being fairly small (the D statistic of the K-S
test is around 0.03, which represents the maximum dif-
ference between two empirical cumulative distributions).

We repeat the above experiment for two more choices
of file system sizes, one lower than the expected mean
(30K), and one higher (90K); we find that even when the
desired sum is quite different from the expected sum, our
algorithm performs well. Only for 2 of the 20 trials in the
90K case, did the algorithm fail to converge. For these
extreme cases, we drop the initial sample and start over.

3.5 Interpolation and Extrapolation
Impressions requires knowledge of the distribution of
file system parameters necessary to create a valid im-
age. While it is tempting to imagine that Impressions has

Figure 4: Piecewise Interpolation of File Sizes. Piece-
wise interpolation for the distribution of files with bytes, using file sys-
tems of 10 GB, 50 GB and 100 GB. Each power-of-two bin on the x-
axis is treated as an individual segment for interpolation (inset). Final
curve is the composite of all individual interpolated segments.

Distribution FS Region D K-S Test
(I/E) Statistic (0.05)

File sizes by count 75GB (I) 0.054 passed
File sizes by count 125GB (E) 0.081 passed
File sizes by bytes 75GB (I) 0.105 passed
File sizes by bytes 125GB (E) 0.105 passed

Table 5: Accuracy of interpolation and extrapolation.
Impressions produces accurate curves for file systems of size 75 GB and
125 GB, using interpolation (I) and extrapolation (E), respectively.

perfect knowledge about the nature of these distributions
for all possible values and combinations of individual pa-
rameters, it is often impossible.

First, the empirical data is limited to what is observed
in any given dataset and may not cover the entire range
of possible values for all parameters. Second, even with
an exhaustive dataset, the user may want to explore re-
gions of parameter values for which no data point exists,
especially for “what if” style of analysis. Third, from an
implementation perspective, it is more efficient to main-
tain compact representations of distributions for a few
sample points, instead of large sets of data. Finally, if
the empirical data is statistically insignificant, especially
for outlying regions, it may not serve as an accurate rep-
resentation. Impressions thus provides the capability for
interpolation and extrapolation from available data and
distributions.

Impressions needs to generate complete new curves
from existing ones. To illustrate our procedure, we de-
scribe an example of creating an interpolated curve; ex-
tensions to extrapolation are straightforward. Figure 4
shows how Impressions uses piece-wise interpolation for
the distribution of files with containing bytes. In this ex-
ample, we start with the distribution of file sizes for file
systems of size 10 GB, 50 GB and 100 GB, shown in the
figure. Each power-of-two bin on the x-axis is treated
as an individual segment, and the available data points
within each segment are used as input for piece-wise in-
terpolation; the process is repeated for all segments of the
curve. Impressions combines the individual interpolated
segments to obtain the complete interpolated curve.

To demonstrate the accuracy of our approach, we in-

134	 7th USENIX Conference on File and Storage Technologies	 USENIX Association

(a) (b) (c) (d)

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12

8 2K 512K 128M 32G

%
 o

f f
ile

s

File Size (bytes, log scale, power-of-2 bins)

Interpolation (75 GB)

R
I

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12

8 2K 512K 128M 32G

%
 o

f b
yt

es

File Size (bytes, log scale, power-of-2 bins)

Interpolation (75 GB)

R
I

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12

8 2K 512K 128M 32G

%
 o

f f
ile

s

File Size (bytes, log scale, power-of-2 bins)

Extrapolation (125 GB)

R
E

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12

8 2K 512K 128M 32G

%
 o

f b
yt

es

File Size (bytes, log scale, power-of-2 bins)

Extrapolation (125 GB)

R
E

Figure 5: Accuracy of Interpolation and Extrapolation. Shows results of applying piece-wise interpolation to generate file size
distributions (by count and by bytes), for file systems of size 75 GB (a and b, respectively), and 125 GB (c and d, respectively).

terpolate and extrapolate file size distributions for file
systems of sizes 75 GB and 125 GB, respectively. Fig-
ure 5 shows the results of applying our technique, com-
paring the generated distributions with actual distribu-
tions for the file system sizes (we removed this data from
the dataset used for interpolation). We find that the sim-
pler curves such as Figure 5(a) and (c) are interpolated
and extrapolated with good accuracy. Even for more
challenging curves such as Figure 5(b) and (d), the re-
sults are accurate enough to be useful. Table 5 con-
tains the results of conducting K-S tests to measure the
goodness-of-fit of the generated curves. All the gener-
ated distributions passed the K-S test at the 0.05 signifi-
cance level.

3.6 File Content
Actual file content can have substantial impact on the
performance of an application. For example, Post-
mark [24], one of the most popular file system bench-
marks, tries to simulate an email workload, yet it pays
scant attention to the organization of the file system, and
is completely oblivious of the file data. Postmark fills
all the “email” files with the same data, generated using
the same random seed. The evaluation results can range
from misleading to completely inaccurate, for instance
in the case of content-addressable storage (CAS). When
evaluating a CAS-based system, the disk-block traffic
and the corresponding performance will depend only on
the unique content – in this case belonging to the largest
file in the file system. Similarly, performance of Desktop
Search and Word Processing applications is sensitive to
file content.

In order to generate representative file content, Im-
pressions supports a number of options. For human-
readable files such as .txt, .html files, it can populate
file content with random permutations of symbols and
words, or with more sophisticated word-popularity mod-
els. Impressions maintains a list of the relative popularity
of the most popular words in the English language, and
a Monte Carlo simulation generates words for file con-
tent according to this model. However, the distribution
of word popularity is heavy-tailed; hence, maintaining
an exhaustive list of words slows down content genera-
tion. To improve performance, we use a word-length fre-

quency model [43] to generate the long tail of words, and
use the word-popularity model for the body alone. The
user has the flexibility to select either one of the mod-
els in entirety, or a specific combination of the two. It
is also relatively straightforward to add extensions in the
future to generate more nuanced file content. An exam-
ple of such an extension is one that carefully controls the
degree of content similarity across files.

In order to generate content for typed files, Impres-
sions either contains enough information to generate
valid file headers and footers itself, or calls into a third-
party library or software such as Id3v2 [31] for mp3;
GraphApp [18] for gif, jpeg and other image files;
Mplayer [28] for mpeg and other video files; asciidoc
for html; and ascii2pdf for PDF files.

3.7 Disk Layout and Fragmentation
To isolate the effects of file system content, Impressions
can measure the degree of on-disk fragmentation, and
create file systems with user-defined degree of fragmen-
tation. The extent of fragmentation is measured in terms
of layout score [44]. A layout score of 1 means all files
in the file system are laid out optimally on disk (i.e., all
blocks of any given file are laid out consecutively one
after the other), while a layout score of 0 means that no
two blocks of any file are adjacent to each other on disk.

Impressions achieves the desired degree of fragmenta-
tion by issuing pairs of temporary file create and delete
operations, during creation of regular files. When ex-
perimenting with a file-system image, Impressions gives
the user complete control to specify the overall layout
score. In order to determine the on-disk layout of files,
we rely on the information provided by debugfs. Thus
currently we support layout measurement only for Ext2
and Ext3. In future work, we will consider several al-
ternatives for retrieving file layout information across a
wider range of file systems. On Linux, the FIBMAP
and FIEMAP ioctl()s are available to map a logical
block to a physical block [23]. Other file system-specific
methods exist, such as the XFS IOC GETBMAP ioctl
for XFS.

The previous approach however does not account for
differences in fragmentation strategies across file sys-
tems. Impressions supports an alternate specification

USENIX Association 	 7th USENIX Conference on File and Storage Technologies	 135

Time taken (seconds)
FS distribution (Default) Image1 Image2

Directory structure 1.18 1.26
File sizes distribution 0.10 0.28
Popular extensions 0.05 0.13
File with depth 0.064 0.29
File and bytes with depth 0.25 0.70
File content (Single-word) 0.53 1.44
On-disk file/dir creation 437.80 1394.84
Total time 473.20 1826.12

(8 mins) (30 mins)

File content (Hybrid model) 791.20 –
Layout score (0.98) 133.96 –

Table 6: Performance of Impressions. Shows time taken
to create file-system images with break down for individual features.
Image1: 4.55 GB, 20000 files, 4000 dirs. Image2: 12.0 GB, 52000
files, 4000 dirs. Other parameters are default. The two entries for
additional parameters are shown only for Image1 and represent times
in addition to default times.

for the degree of fragmentation wherein it runs a pre-
specified workload and reports the resulting layout score.
Thus if a file system employs better strategies to avoid
fragmentation, it is reflected in the final layout score af-
ter running the fragmentation workload.

There are several alternate techniques for inducing
more realistic fragmentation in file systems. Factors such
as burstiness of I/O traffic, out-of-order writes and inter-
file layout are currently not accounted for; a companion
tool to Impressions for carefully creating fragmented file
systems will thus be a good candidate for future research.

3.8 Performance
In building Impressions, our primary objective was to
generate realistic file-system images, giving top priority
to accuracy, instead of performance. Nonetheless, Im-
pressions does perform reasonably well. Table 6 shows
the breakdown of time taken to create a default file-
system image of 4.55 GB. We also show time taken for
some additional features such as using better file content,
and creating a fragmented file system. Overall, we find
that Impressions creates highly accurate file-system im-
ages in a reasonable amount of time and thus is useful in
practice.

4 Case Study: Desktop Search

In this section, we use Impressions to evaluate desktop
searching applications. Our goals for this case study are
two-fold. First, we show how simple it is to use Impres-
sions to create either representative images or images
across which a single parameter is varied. Second, we
show how future evaluations should report the settings
of Impressions so that results can be easily reproduced.

We choose desktop search for our case study because
its performance and storage requirements depend not
only on the file system size and structure, but also on the

type of files and the actual content within the files. We
evaluate two desktop search applications: open-source
Beagle [5] and Google’s Desktop for Linux (GDL) [16].
Beagle supports a large number of file types using 52
search-filters; it provides several indexing options, trad-
ing performance and index size with the quality and
feature-richness of the index. Google Desktop does not
provide as many options: a web interface allows users to
select or exclude types of files and folder locations for
searching, but does not provide any control over the type
and quality of indexing.

4.1 Representative Images
Developers of data-intensive applications frequently
need to make assumptions about the properties of file-
system images. For example, file systems and applica-
tions can often be optimized if they know properties such
as the relative proportion of meta-data to data in repre-
sentative file systems. Previously, developers could infer
these numbers from published papers [1, 12, 41, 42], but
only with considerable effort. With Impressions, devel-
opers can simply create a sample of representative im-
ages and directly measure the properties of interest.

Table 6 lists assumptions we found in GDL and Beagle
limiting the search indexing to partial regions of the file
system. However, for the representative file systems in
our data set, these assumptions omit large portions of the
file system. For example, GDL limits its index to only
those files less than ten directories deep; our analysis of
typical file systems indicates that this restriction causes
10% of all files to be missed. We believe that instead of
arbitrarily specifying hard values, application designers
should experiment with Impressions to find acceptable
choices.

We note that Impressions is useful for discovering
these application assumptions and for isolating perfor-
mance anomalies that depend on the file-system image.
Isolating the impact of different file systems feature is
easy using Impressions: evaluators can use Impressions
to create file-system images in which only a single pa-
rameter is varied, while all other characteristics are care-
fully controlled.

This type of discovery is clearly useful when one is
using closed-source code, such as GDL. For example,
we discovered the GDL limitations by constructing file-
system images across which a single parameter is var-
ied (e.g., file depth and file size), measuring the percent-
age of indexed files, and noticing precipitous drops in
this percentage. This type of controlled experimenta-
tion is also useful for finding non-obvious performance
interactions in open-source code. For instance, Beagle
uses the inotify mechanism [22] to track each directory
for change; since the default Linux kernel provides 8192
watches, Beagle resorts to manually crawling the directo-

136	 7th USENIX Conference on File and Storage Technologies	 USENIX Association

App Parameter & Value Comment on Validity
GDL File content < 10 deep 10% of files and 5% of bytes > 10 deep

(content in deeper namespace is growing)
GDL Text file sizes < 200 KB 13% of files and 90% of bytes > 200 KB
Beagle Text file cutoff < 5 MB 0.13% of files and 71% of bytes > 5 MB
Beagle Archive files < 10 MB 4% of files and 84% of bytes > 10 MB
Beagle Shell scripts < 20 KB 20% of files and 89% of bytes > 20 KB

Figure 6: Debunking Application Assumptions. Examples of assumptions made by Beagle and GDL, along with details of the
amount of file-system content that is not indexed as a consequence.

 0.01

 0.1

Beagle GDL

Ind
ex

 S
ize

/F
S

siz
e

Index Size Comparison

Text (1 Word)
Text (Model)

Binary

Figure 7: Impact of file content. Com-
pares Beagle and GDL index time and space
for wordmodels and binary files. Google has a
smaller index for wordmodels, but larger for bi-
nary. Uses Impressions default settings, with FS
size 4.55 GB, 20000 files, 4000 dirs.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

Orig
ina

l

Tex
tCac

he

DisD
ir

DisF
ilte

rR
el

at
iv

e
Ti

m
e

O
ve

rh
ea

d Beagle: Time to Index

Default
Text

Image
Binary

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

Orig
ina

l

Tex
tCac

he

DisD
ir

DisF
ilte

r

R
el

at
iv

e
In

de
x

Si
ze

Beagle: Index Size

Default
Text

Image
Binary

Figure 8: Reproducible images: impact of content. Using Impressions to make
results reproducible for benchmarking search. Vertical bars represent file systems created with
file content as labeled. The Default file system is created using Impressions default settings, and
file system size 4.55 GB, 20000 files, 4000 dirs. Index options: Original – default Beagle index.
TextCache – build text-cache of documents used for snippets. DisDir – don’t add directories to
the index. DisFilter – disable all filtering of files, only index attributes.

ries once their count exceeds 8192. This deterioration in
performance can be easily found by creating file-system
images with varying numbers of directories.

4.2 Reproducible Images
The time spent by desktop search applications to crawl
a file-system image is significant (i.e., hours to days);
therefore, it is likely that different developers will inno-
vate in this area. In order for developers to be able to
compare their results, they must be able to ensure they
are using the same file-system images. Impressions al-
lows one to precisely control the image and report the
parameters so that the exact same image can be repro-
duced.

For desktop search, the type of files (i.e., their exten-
sions) and the content of files has a significant impact on
the time to build the index and its size. We imagine a
scenario in which the Beagle and GDL developers wish
to compare index sizes. To make a meaningful compar-
ison, the developers must clearly specify the file-system
image used; this can be done easily with Impressions by
reporting the size of the image, the distributions listed
in Table 2, the word model, disk layout, and the random
seed. We anticipate that most benchmarking will be done
using mostly default values, reducing the number of Im-
pressions parameters that must be specified.

An example of the reporting needed for reproducible
results is shown in Figure 7. In these experiments, all dis-
tributions of the file system are kept constant, but only ei-
ther text files (containing either a single word or with the
default word model) or binary files are created. These
experiments illustrate the point that file content signif-

icantly affects the index size; if two systems are com-
pared using different file content, obviously the results
are meaningless. Specifically, different file types change
even the relative ordering of index size between Beagle
and GDL: given text files, Beagle creates a larger index;
given binary files, GDL creates a larger index.

Figures 8 gives an additional example of reporting Im-
pressions parameters to make results reproducible. In
these experiments, we discuss a scenario in which differ-
ent developers have optimized Beagle and wish to mean-
ingfully compare their results. In this scenario, the orig-
inal Beagle developers reported results for four different
images: the default, one with only text files, one with
only image files, and one with only binary files. Other
developers later create variants of Beagle: TextCache to
display a small portion of every file alongside a search
hit, DisDir to disable directory indexing, and DisFilter
to index only attributes. Given the reported Impressions
parameters, the variants of Beagle can be meaningfully
compared to one another.

In summary, Impressions makes it extremely easy to
create both controlled and representative file-system im-
ages. Through this brief case study evaluating desktop
search applications, we have shown some of the advan-
tages of using Impressions. First, Impressions enables
developers to tune their systems to the file system char-
acteristics likely to be found in their target user popu-
lations. Second, it enables developers to easily create
images where one parameter is varied and all others are
carefully controlled; this allows one to assess the impact
of a single parameter. Finally, Impressions enables dif-
ferent developers to ensure they are all comparing the

USENIX Association 	 7th USENIX Conference on File and Storage Technologies	 137

same image; by reporting Impressions parameters, one
can ensure that benchmarking results are reproducible.

5 Related Work

We discuss previous research in four areas related to file
system benchmarking and usage of file system metadata.

First, Impressions enables file system measurement
studies to be put into practice. Besides the metadata
studies on Windows workstations [1, 12], previous work
in non-Windows environment includes Satyanarayanan’s
study of a Digital PDP-10 [41], Irlam’s and Mullender’s
studies of Unix systems [21, 29], and the study of HP-UX
systems at Hewlett-Packard [42]. These studies provide
valuable data for designers of file systems and related
software, and can be easily incorporated in Impressions.

Second, several models have been proposed to ex-
plain observed file-system phenomena. Mitzenmacher
proposed a generative model, called the Recursive For-
est File model [27] to explain the behavior of file size
distributions. The model accounts for the hybrid distri-
bution of file sizes with a lognormal body and Pareto tail.
Downey’s Multiplicative File Size model [13] is based on
the assumption that new files are created by using older
files as templates e.g., by copying, editing or filtering an
old file. The size of the new file in this model is given by
the size of the old file multiplied by an independent fac-
tor. These models provide an intuitive understanding of
the underlying phenomena, and are also easier for com-
puter simulation. In future, Impressions can be enhanced
by incorporating more such models.

Third, a number of tools and techniques have been
proposed to improve the state of the art of benchmark-
ing. Chen and Patterson proposed a “self-scaling” bench-
mark that scales with the I/O system being evaluated, to
stress the system in meaningful ways [6]. TBBT is a
NFS trace replay tool that derives the file-system image
underlying a trace [50]. It extracts the file system hi-
erarchy from a given trace in depth-first order and uses
that during initialization for a subsequent trace replay.
While this ensures a consistent file-system image for re-
play, it does not solve the more general problem of cre-
ating accurately controlled images for all types of file
system benchmarking. The Auto-Pilot tool [48] provides
an infrastructure for running tests and analysis tools to
automate the benchmarking process.

Finally, workload is an important piece of the bench-
marking puzzle. The SynRGen file reference genera-
tor by Ebling and Satyanarayan [14] generates synthetic
equivalents for real file system users. The volumes or
images in their work make use of simplistic assumptions
about the file system distributions as their focus is on user
access patterns. Roselli et al. collected dynamic file sys-
tem usage patterns in UNIX and Windows NT environ-

ments and studied file system access behavior [39]. Re-
cent work on file system workloads includes a study of
network file system usage at NetApp [25].

6 Conclusion

File system benchmarking is in a state of disarray. One
key aspect of this problem is generating realistic file-
system state, with due emphasis given to file-system
metadata and file content. To address this problem, we
develop Impressions, a statistical framework to generate
realistic and configurable file-system images. Impres-
sions provides the user flexibility in selecting a compre-
hensive set of file system parameters, while seamlessly
ensuring accuracy of the underlying images, serving as a
useful platform for benchmarking.

In our experience, we find Impressions easy to use
and well suited for a number of tasks. It enables ap-
plication developers to tune their systems to the file
system characteristics likely found in their target users.
Impressions also makes it feasible to compare perfor-
mance of systems by standardizing and reporting all
used parameters, a requirement necessary for bench-
marking. We believe Impressions will prove to be a
valuable tool for system developers and users alike; we
intend to release it for public use in the near future.
Please check http://www.cs.wisc.edu/adsl/
Software/Impressions/ to obtain a copy.

7 Acknowledgments

We are grateful to Bill Bolosky for providing us with a
copy of the five-year metadata dataset from Microsoft.
Lakshmi Bairavasundaram provided many useful discus-
sions and gave valuable comments on earlier drafts of
this paper. Finally, we would like to thank Valerie Aurora
Henson (our shepherd) and the anonymous reviewers for
their excellent feedback and comments.

This material is based upon work supported by the Na-
tional Science Foundation under the following grants:
CCF-0621487, CNS-0509474, as well as by generous
donations from Network Appliance and Sun Microsys-
tems. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF
or other institutions.

References
[1] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A

Five-Year Study of File-System Metadata. In FAST ’07, San Jose,
CA, February 2007.

[2] D. Anderson and J. Chase. Fstress: A flexible network file service
benchmark. In TR, Duke University, May 2002.

138	 7th USENIX Conference on File and Storage Technologies	 USENIX Association

[3] E. Anderson, M. Kallahalla, M. Uysal, and R. Swaminathan. But-
tress: A toolkit for flexible and high fidelity I/O benchmarking.
In FAST ’04, San Francisco, CA, April 2004.

[4] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and J. Ousterhout.
Measurements of a Distributed File System. In SOSP ’91, pages
198–212, Pacific Grove, CA, October 1991.

[5] Beagle Project. Beagle Desktop Search. http://www.
beagle-project.org/.

[6] P. M. Chen and D. A. Patterson. A New Approach to I/O Perfor-
mance Evaluation–Self-Scaling I/O Benchmarks, Predicted I/O
Performance. In SIGMETRICS ’93, pages 1–12, Santa Clara, CA,
May 1993.

[7] J. Cipar, M. D. Corner, and E. D. Berger. Tfs: a transparent
file system for contributory storage. In FAST ’07, pages 28–28,
Berkeley, CA, USA, 2007. USENIX Association.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. In-
troduction to Algorithms. MIT Press and McGraw-Hill, second
edition, 2001. 35.5: The subset-sum problem.

[9] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: making
backup cheap and easy. SIGOPS Oper. Syst. Rev., 36, 2002.

[10] L. P. Cox and B. D. Noble. Samsara: honor among thieves in
peer-to-peer storage. In SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems principles, pages 120–
132, New York, NY, USA, 2003. ACM.

[11] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson.
Cooperative Caching: Using Remote Client Memory to Improve
File System Performance. In OSDI ’94, Monterey, CA, Novem-
ber 1994.

[12] J. R. Douceur and W. J. Bolosky. A large-scale study of file-
system contents. In Proceedings of the 1999 Joint International
Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS), pages 59–70, Atlanta, GA, May 1999.

[13] A. B. Downey. The structural cause of file size distributions. In
Ninth MASCOTS’01, Los Alamitos, CA, USA, 2001.

[14] M. R. Ebling and M. Satyanarayanan. Synrgen: an extensible
file reference generator. In SIGMETRICS ’94: Proceedings of
the 1994 ACM SIGMETRICS conference on Measurement and
modeling of computer systems, New York, NY, 1994.

[15] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure
distributed read-only file system. ACM Trans. Comput. Syst.,
20(1):1–24, 2002.

[16] Google Corp. Google Desktop for Linux. http://desktop.
google.com/linux/index.html.

[17] B. Gopal and U. Manber. Integrating content-based access mech-
anisms with hierarchical file systems. In OSDI ’99: Third sym-
posium on Operating Systems Design and Implementation, 1999.

[18] GraphApp. GraphApp Toolkit. http://enchantia.com/
software/graphapp/.

[19] S. D. Gribble, G. S. Manku, D. S. Roselli, E. A. Brewer, T. J.
Gibson, and E. L. Miller. Self-similarity in file systems. In Pro-
ceedings of the 1998 Joint International Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS), pages
141–150, Madison, WI, June 1998.

[20] N. C. Hutchinson, S. Manley, M. Federwisch, G. Harris, D. Hitz,
S. Kleiman, and S. O’Malley. Logical vs. Physical File System
Backup. In OSDI ’99, New Orleans, LA, February 1999.

[21] G. Irlam. Unix file size survey – 1993. Available at
http://www.base.com/gordoni/ufs93.html.

[22] John McCutchan and Robert Love. inotify for linux. http:
//www.linuxjournal.com/article/8478.

[23] Jonathan Corbet. LWN Article: SEEK HOLE or FIEMAP?
http://lwn.net/Articles/260795/.

[24] J. Katcher. PostMark: A New File System Benchmark. Technical
Report TR-3022, Network Appliance Inc., October 1997.

[25] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller.
Measurement and Analysis of Large-Scale Network File System
Workloads. In Proceedings of the USENIX Annual Technical
Conference, Boston, MA, June 2008.

[26] M. P. Mesnier, M. Wachs, R. R. Sambasivan, J. Lopez, J. Hen-
dricks, G. R. Ganger, and D. O’Hallaron. trace: parallel trace
replay with approximate causal events. In FAST ’07, San Jose,
CA, February 2007.

[27] M. Mitzenmacher. Dynamic models for file sizes and double
pareto distributions. In Internet Mathematics, 2002.

[28] Mplayer. The MPlayer movie player. http://www.
mplayerhq.hu/.

[29] S. J. Mullender and A. S. Tanenbaum. Immediate files.
Software—Practice and Experience, 14(4):365–368, April 1984.

[30] A. Muthitacharoen, B. Chen, and D. Mazières. A Low-
Bandwidth Network File System. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP-01),
pages 174–187, Banff, Canada, October 2001.

[31] Myers Carpenter. Id3v2: A command line editor for id3v2 tags.
http://id3v2.sourceforge.net/.

[32] NIST. Text retrieval conference (trec) datasets.
http://trec.nist.gov/data, 2007.

[33] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze,
M. Kupfer, and J. G. Thompson. A Trace-Driven Analysis of the
UNIX 4.2 BSD File System. In SOSP ’85, pages 15–24, Orcas
Island, WA, December 1985.

[34] Y. Padioleau and O. Ridoux. A logic file system. In USENIX
Annual Technical Conference, San Antonio, TX, June 2003.

[35] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant
Arrays of Inexpensive Disks (RAID). In SIGMOD ’88, pages
109–116, Chicago, IL, June 1988.

[36] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gu-
nawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. IRON
File Systems. In SOSP ’05, pages 206–220, Brighton, UK, Octo-
ber 2005.

[37] B. Przydatek. A Fast Approximation Algorithm for the Subset-
sum Problem. International Transactions in Operational Re-
search, 9(4):437–459, 2002.

[38] E. Riedel, M. Kallahalla, and R. Swaminathan. A Framework for
Evaluating Storage System Security. In FAST ’02, pages 14–29,
Monterey, CA, January 2002.

[39] D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparison of File
System Workloads. In USENIX ’00, pages 41–54, San Diego,
CA, June 2000.

[40] A. Rowstron and P. Druschel. Storage Management and Caching
in PAST, A Large-scale, Persistent Peer-to-peer Storage Utility.
In SOSP ’01, Banff, Canada, October 2001.

[41] M. Satyanarayanan. A study of file sizes and functional lifetimes.
In Proceedings of the 8th ACM Symposium on Operating Systems
Principles (SOSP), pages 96–108, Pacific Grove, CA, December
1981.

[42] T. F. Sienknecht, R. J. Friedrich, J. J. Martinka, and P. M. Frieden-
bach. The implications of distributed data in a commercial envi-
ronment on the design of hierarchical storage management. Per-
formance Evaluation, 20(1–3):3–25, May 1994.

[43] B. Sigurd, M. Eeg-Olofsson, and J. van de Weijer. Word length,
sentence length and frequency – Zipf revisited. Studia Linguis-
tica, 58(1):37–52, 2004.

[44] K. Smith and M. I. Seltzer. File System Aging. In Proceedings
of the 1997 Sigmetrics Conference, Seattle, WA, June 1997.

[45] SNIA. Storage network industry association: Iotta repository.
http://iotta.snia.org, 2007.

[46] S. Sobti, N. Garg, F. Zheng, J. Lai, Y. Shao, C. Zhang, W. Ziskind,
and A. Krishnamurthy. Segank: A Distributed Mobile Storage
System. In FAST ’04, pages 239–252, San Francisco, CA, April
2004.

[47] M. W. Storer, K. M. Greenan, E. L. Miller, and K. Voruganti.
Pergamum: replacing tape with energy efficient, reliable, disk-
based archival storage. In FAST’08: Proceedings of the 6th
USENIX Conference on File and Storage Technologies, pages 1–
16, Berkeley, CA, USA, 2008. USENIX Association.

[48] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and E. Zadok.
Auto-pilot: A platform for system software benchmarking.
In Proceedings of the Annual USENIX Technical Conference,
FREENIX Track, Anaheim, CA, April 2005.

[49] Z. Zhang and K. Ghose. yfs: A journaling file system design for
handling large data sets with reduced seeking. In FAST ’03, pages
59–72, Berkeley, CA, USA, 2003. USENIX Association.

[50] N. Zhu, J. Chen, and T.-C. Chiueh. Tbbt: scalable and accu-
rate trace replay for file server evaluation. In Proceedings of
the 4th conference on USENIX Conference on File and Storage
Technologies, pages 24–24, Berkeley, CA, USA, 2005. USENIX
Association.

