-T' 6" USENIX Conference on USENIX
FH s File and Storage Technologies
’08 FEBERUARY 26-29, 2008 | SAN JOSE, CALIFORNIA

Sponsorad by USENIX in cooperation with ACM SIGOPS, IEEE Mass Storage Systems Technical Committes (MSSTC), and |IEEE TCOS

Computer Architecture and Systems Group
Department of Computer Science

University Carlos Ill of Madrid

Fco Javier Garcia Blas, Florin Isaila & Jesus Carretero

View-based collective I/O for MPI-10

View-based I/O

We propose and evaluate an alternative to the
two-phase collective I/O (TP 1/0O)
implementation of ROMIO called view-based
collective I/0 (VB 1/0).

View based I/O targets the following goals:
Reducing the cost of data scatter-gather operations,
Minimizing the overhead of file metadata transfer,

Decreasing the number of conservative collective
communication and synchronization operations.

View-based I/O

Differences between two-phase 1/0 and view-based /O :

At view declaration, VB I/O sends the view data type to
aggregators, while TP I/O stores it locally at the application
nodes.

VB /O assigns statically the file domain to aggregators, while TP
I/0O dynamically.

At access time, TP I/O sends the offset-lists to the aggregators,
while view I/O transfers only the view access interval extremities.

The collective buffers of VB I/O are cached across collective
operations. A collective read following a write, may find the data
already at the aggregator.

The collective buffers of VB I/O are written to the file system
when the collective buffer pool is full or when the file is closed.
For TP 1/O, the collective buffers are flushed to the file system
when they are full or at the end of each write operation.

Overview

Compute Node J0

- Compute Node 1
JEEEEEEEEE

| Comiute Node 2.

Compute Node 3
EEEEEEEN

‘Aggregator Node Q
| |

Aggregator Node 1
| |

Evaluation

Evaluated on CACAU (HLRS Stuttgart)

MPICH2

File system tested: PVFS 2.6.3 with 8 /O
Servers

The communication protocol of PVFS2 and
MPICH2 was TCP/IP on top of the native
Infinlband communication library

1 process per node

View-based I/O had a collective buffer pool
of maximum 64 Mbytes

BTIO, coll perf and MPI_TILE_I1O

BTIO benchmark

Use 4 to 64 processes and two classes of data
set sizes: B (1697.93 Mbytes) and C (6802.44
MBytes).

BTIO explicitly sets the size of write collective
buffer to 1 Mbytes

The benchmark reports the total time including
the time spent to write the solution to the file.

However, the verification phase time containing
the reading of data from files is not included in

tha rannrtad tntal timao

BTIO benchmark

BTIO Class B Write time BTIO Class B Overall execution
140 time
% zzi 1 500
g 8o — g 40
‘é’ EE T = i T EWiiteTP § 300 +—
(5 o F P — o B _i EWrite VB ‘é’ 200 — — i— 1 ‘ —— mTotal TP
o ‘ } | | ‘ + 100 ‘f i— S B S = Totalve
& g 16 25 36 49 6y o | | | |
Mumber of processes A 9 16 25 26 49 64
Number of processes
BTIO Class B Read time
120
a 100
t 22 QO Writes were between 89% and 121%
7 L0 readtr | 1 Reads were between 3% to 109%
F 20 readve | [QOverral time was between 8% to 50%
0

4 9 16 25 36 49 64

Number of processes

BTIO breakdown

Breakdowns: total time spent in computation,
communication and file access of collective write and read

operations, for class B from 4 to 64 processes.

Time {seconds)

g0 H

40

BTIO Class B Write breakdown

Tkl

4 9 16 25 36 49 64
Two-phaselfO

& 9 16 25 36 49 64
View-based IfO

H Computation B Communication ® Fileaccess

Time {seconds)

100

oo
&

eat
o]

£
o

b
s}

<&

BTIO Class B Read breakdown

& 9 16 25 36 49 64
Two-phase I/0

& 9 16 25 36 49 64
View-based I/

B Computation ®Communication ® Fileaccess

o)

Conclusions

Avoids the necessity of transferring large lists of offset-length pairs
at file access time as the present implementation of two-phase 1/0.

Reduces the total run time of a data intensive parallel application,
by reducing both 1/O cost and implicit synchronization cost.

The write-on-close approach brings satisfactory results in all
cases.

Future work

Adding lazy view 1/O
Views and data are sent together in write/read primitives
Views are sent if the aggregators do not have the data view

Including two data staging strategies for prefetching and flushing the
collective I/O buffer cache:

The prefetch is done in coordinate manner, by aggregating the view
information of several processes and reading ahead whole blocks. Based on
MPI-10 views.

The flushing strategy allows for overlapping the computation and [/O.
Reduces also the rates at which the buffer cache becomes full with dirty file
blocks, which may clog the computation to go on.

Currently:

We have already implemented the mechanisms for enforcing these two
strategies and are estimating the efficiency of this approach for large scale
scientific parallel application.

We are investigating the trade-off between the contradictory goals of
promoting data by prefetching, demoting the data by flushing and temporal
locality.

6™ USENIX Conference on USENIX

F H S I File and Storage Technologies
I
08 FEERUARY 26-29, 2008 | SAN JOSE, CALIFORMNIA

Sponsorad by USENIX in cooperation with ACM SIGOPS, IEEE Mass Storage Systems Technical Committes (MSSTC), and |IEEE TCOS

Thanks for all

