
MIRAGE: Storage provisioning in large data centers using

balanced component utilizations

ABSTRACT

This paper presents MIRAGE, an architecture for data center

storage provisioning that takes the approach of maintaining

storage services for applications by ensuring well-balanced

utilizations in all internal components of the storage

infrastructure. We implemented MIRAGE on our local storage

infrastructure and observed the sensitivity of the MIRAGE load-

balancing algorithm to a combination of performance and

heterogeneity skews. We also evaluated MIRAGE by deploying it

on a financial data center. We reduced the service times of

resource-constrained storage pools by an average of 68%.

1. Introduction
The promise of storage area networks (SAN) was to separate

storage from application servers and to develop storage as a first-

class entity that would provide services to applications. However

today’s storage area networks are very complex because of both

scale and heterogeneity of its components. A typical SAN could

comprise of thousands of application servers, tens of thousands of

storage volumes and a few hundred thousand data paths between

the servers and the storage volumes. The growth of storage data is

now estimated at around 50% per year [1] and challenges the

financial resources of an organization to keep up with the demand.

Thus data center administrators are increasingly using storage

provisioning techniques of migration and consolidation to

optimize capacity allocation instead of over-provisioning. It is not

possible for a human or a set of human administrators to take

decisions about complex SAN using manual tools, neither is it

possible to guarantee that the decisions will achieve storage

service requirements.

While it is tempting to argue that well-balanced and low

component utilizations do not necessarily guarantee storage

service requirements, it is worthwhile to note that the vast

majority of storage quality of service requirements are punitive in

nature and caused by utilization threshold violations by a storage

infrastructure component. Furthermore, today’s applications are

complex and resemble logic circuit boards and it is difficult to

derive non-punitive storage quality of service requirements for

these applications. MIRAGE is complementary to traditional

approaches to storage service maintenance that observe

application service times and dynamically tune resource

allocations to meet storage service requirements.

2. Architecture
MIRAGE can be described as a modular analytic engine that

gathers data from the storage environment and generates

configuration actions, reports, and display actions. The goal of the

MIRAGE analytic engine is to provide long-term decision making

support for three storage provisioning tasks: allocation, migration

and consolidation. The figure below details the component

architecture of MIRAGE.

The Collector component gathers configuration and performance

data from the data bus on a periodic basis and stores the data in an

internal repository. The Analyzer gathers performance traces and

predicts the behavior of the traces into a pre-determined time into

the future. The Analyzer interacts with the Model Adapter module

that provides performance simulation for devices in the storage

infrastructure. The Planner aggregates the utilizations and

performs a graph-analysis to isolate resource constraints in the

storage infrastructure. Following this, the Planner component uses

a load-balancing algorithm to reallocate workloads in the storage

infrastructure and generates several candidate plans. The Effector

component is another plug-in module that allows the user to

decide what to do with the candidate plans.

3. Load-balancing Algorithm
The load-balancing algorithm is central to all decision making in

MIRAGE. The goal of the algorithm is to ensure that performance

utilizations are balanced across all components in the storage

infrastructure (SAN). Our paper proposes the use of component

utilizations as metrics to extract the best application service times

from the storage subsystem. In particular, the minimization

objective considered is the sum of the mean and the standard

deviation of the performance utilizations of storage components.

Prior research [2] has studied the relationship between component

utilizations and application service times and shown that the

service times are monotonic with the component utilizations.

The output of the load-balancing algorithm is a set of migration

tuples where each tuple is of the form: <V, SP, TP, C, B> where

V is the volume to be migrated, SP is the source pool, TP is the

target pool, C is the cost of migration and B is the benefit in

migration.

Steps of Algorithm are:

1. The storage pools are ordered using a pool ranking

mechanism

2. Select the pool with the highest rank as a candidate

source pool.

3. Choose the pool with the lowest rank as a candidate

target pool

4. The volumes in the source pool are ranked by a volume

ranking mechanism

Data Bus

User-pluggable

Model

Collector Planner Analyzer Effector

Storage Environment

Mirage

Command

Server

Model Adapter

Mirage

Simulation script

Custo

m

Report

Display

Configuration Engine

5. A candidate re-allocation plan is created where the

highest ranked storage volume is selected for migration

from the source storage pool to the target storage pool.

6. We add the candidate re-allocation plan to the target

storage pool to the master list of re-allocations.

7. Re-compute the utilizations of the pools based on the

re-allocation plan and apply a stopping criterion.

The goal of the pool ranking mechanism is to order the storage

pools for consideration in a migration plan. The suitability of a

storage pool for a migration plan is determined by two principal

factors: the aggregate performance utilization of the storage pool

and the space utilization of the storage pool. The performance

capabilities of the storage pool are determined by the pool

composition, so aggregate performance utilization is a function of

max and hierarchical utilizations of the individual and shared

components of the pool. Another important challenge in devising

an adaptive scheme is to correctly infer the relative weight between

performance and space as an incorrect inference might yield a sub-

optimal migration that limits the possible reduction in the

aggregate performance utilization of a storage pool. We develop an

adaptive mechanism for inferring the relative weight between the

aggregate performance and space utilization of a storage pool. In

this algorithm, the rank of an individual storage pool p with an

aggregate performance utilization pU and space utilization pS is

determined by the equation:

)()(

)(
,)1(

pSpacepPerf

pPerf

pp
SfUf

Uf
kSkkU

+
=−+















∂

−
=

)(U

UU
Nf

p

Perf















∂

−
+

−
=

)(100

100

S

SS
N

S
f

p

P
Space

Here, the factorsU , S and)(U∂ ,)(S∂ represent the mean and

standard deviation of the population of aggregate performance and

space utilizations of storage pools in the storage infrastructure, and N

is a linear scaling function to remove negative values. Figure 1(a) and

(b). Results comparing the behavior of FirstFit(FF), Perf and

Adaptive(Adp) algorithms for space and performance constrained

configurations (x-axis) in terms of the reduction in the standard

deviation of storage pool aggregate performance utilizations (y-axis).

FirstFit results are not shown if there is an increase in the standard

deviation.

1(a)

0

20

40

60

80

16 space-constrained configurations

R
e
d
u
c
ti
o
n

FF Perf Adp

1(b)

0

20

40

60

80

20 performance constrained

configurations

R
e
d
u
c
ti
o
n

FF Perf Adp

The goal of the volume ranking algorithm is to rank the storage

volumes in the source storage pool as candidates for migration.

There are two important considerations for selecting a volume: the

size of the storage volume and the workload on the storage

volume. The goal of the stopping criterion is to determine when

the storage pools are balanced in terms of utilization. The

stopping criterion is important as the cost of migrating storage

volumes between storage pools is high and we need to consider

the incremental benefit of a migration decision.

4. Data Center Study
We evaluated MIRAGE in a larger SAN in a financial service

firm. We imported a week’s worth of configuration and

performance data from the storage management tools deployed in

the storage infrastructure, and fed the imported data into

MIRAGE. The SAN comprised of 6 storage controllers (4 IBM

DS8000 and 2 IBM DS6000), 240 storage pools and 3678 storage

volumes. The aggregate performance and space utilization of the

storage pools had a mean of 50.13% and 51.58% respectively,

with a standard deviation of 23.85% and 6.255% respectively.

After the application of the migration plan, the service times for

bottlenecked storage pools were reduced from 10.919ms to

3.575ms, a reduction of 68%.

Results show the sorted aggregate performance utilization

(y-axis) of the 240 storage pools in a financial data center (x-

axis) before and after MIRAGE was applied.

5. References
[1] R.Villars, What do I keep and how do I keep it?, IDC

Directions Conference, April, 2007

[2] An Analytic performance model of disk arrays. Edward K.

Lee and Randy H. Katz. SIGMETRICS Performance

Evaluation Review, 1993.

0

10

20

30

40

50

60

70

80

90

100

Storage Pools

A
g
g
re
g
a
te
 P
e
rf
o
rm

a
n
c
e
 U
ti
li
z
a
ti
o
n
s

Initial Configuration Final Configuration after MIRAGE Threshold

