Check out the new USENIX Web site.
USENIX, The Advanced Computing Systems Association

FAST '08 – Abstract

Pp. 253–267 of the Proceedings

Write Off-Loading: Practical Power Management for Enterprise Storage

Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron, Microsoft Research Ltd.

Abstract

In enterprise data centers power usage is a problem impacting server density and the total cost of ownership. Storage uses a significant fraction of the power budget and there are no widely deployed power-saving solutions for enterprise storage systems. The traditional view is that enterprise workloads make spinning disks down ineffective because idle periods are too short. We analyzed block-level traces from 36 volumes in an enterprise data center for one week and concluded that significant idle periods exist, and that they can be further increased by modifying the read/write patterns using write off-loading. Write off-loading allows write requests on spun-down disks to be temporarily redirected to persistent storage elsewhere in the data center.

The key challenge is doing this transparently and efficiently at the block level, without sacrificing consistency or failure resilience. We describe our write off-loading design and implementation that achieves these goals. We evaluate it by replaying portions of our traces on a rack-based testbed. Results show that just spinning disks down when idle saves 28–36% of energy, and write off-loading further increases the savings to 45–60%.

  • View the full text of this paper in HTML and PDF. Listen to the presentation in MP3 format.
    The Proceedings are published as a collective work, © 2008 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.
To become a USENIX member, please see our Membership Information.

Last changed: 7 May 2008 mn