
Amino: Extending ACID Semantics to the File System
Charles P. Wright, Richard Spillane, Gopalan Sivathanu, and Erez Zadok

An organization’s data is often its most valuable asset, but
today’s file systems provide few facilities to ensure its safety.
Databases, on the other hand, have long provided transactions.
Transactions are useful because they provide atomicity, consis-
tency, isolation, and durability (ACID). Many applications could
make use of these semantics, but databases have a wide vari-
ety of non-standard interfaces. As a result, applications like
mail servers currently perform elaborate error handling to ensure
atomicity and consistency, because it is easier and more portable
than using a DBMS. Most editors write changes to a temporary
file, and then rename the temporary file over the original to re-
place the content atomically, but there is no standard method to
atomically update two related files (e.g., /etc/shadow and
/etc/passwd). A transaction-oriented programming model
provides three key benefits: (1) complex error-handling code is
avoided, because failed operations can simply be aborted; (2)
concurrent accesses behave as if they were serialized (thereby
preventing time-of-check-time-of-use security vulnerabilities);
and (3) once a transaction is committed, it will not be lost due to
software or hardware failures.

We believe that file systems should export transactions as a
first-class service. In this way, applications can continue to use
the simple, flexible, and pervasive POSIX API to access their
data, but do so in a transactionally protected environment. Fur-
thermore, other applications, which may not need such transac-
tional protections can still access the data, without any changes.
To support transactions properly, both file systems and the OS
itself must handle transactions. File systems must log redo and
undo information, so that transactions can be applied or aborted.
The OS also needs to support transactions: traditional caches
(e.g., the page cache or directory-name-lookup cache) return
data to user space applications without consulting the file sys-
tem. This creates several problems for transactional file sys-
tems. If the database management system does not mitigate all
accesses, then the ACID properties cannot be guaranteed. If a
transaction was aborted, then the OS caches will contain stale
data—violating atomicity. If the database is not consulted be-
fore accessing an object, then it can’t perform proper locking—
violating isolation. This dictates that an OS which supports
transactions must have database-managed caches.

On further examination, database-managed caches are only a
first step. When accesses are mitigated through the database’s
caches, the file system is consistent and the user-level application
can interact with it transactionally, but other OS components do
not share this consistent state. For example, if a file is created by
opening it with the O CREAT option, then a new file descriptor is
created and inserted into the OS’s process control block (PCB). If
the transaction is later aborted, then the PCB will point to a file
descriptor for a non-existent file. Clearly, these issues demand
support for transactions in the OS proper. This means that it
is useful for the OS to extend transactions as far as possible,
including to the application so that its data structures can be kept
consistent with the file system.

Status. We have designed a prototype file system that exports
ACID transactions to user-level applications, while preserving
the ubiquitous and convenient POSIX interface. In our proto-
type ACID file system, called Amino, unmodified applications
operate without any changes. For these unmodified applications,
each system call is transaction protected. Using Amino, applica-
tion developers can protect an arbitrary sequence of system calls
using transactions by inserting simple BEGIN, COMMIT, and
ABORT calls. Other transactional file systems such as QuickSil-
ver [3] only run on specialized OSes designed from the ground
up for transactions, or change the file access API (e.g, QuickSil-
ver cannot randomly write to a file and WinFS [1] changes the
file access API to one that uses items instead of files), preventing
existing applications from accessing the data.

We built our prototype on top of the Berkeley Database
(BDB), a time-tested and reliable embedded database. Our pro-
totype intercepts system calls at the ABI-level via a ptrace
monitor to provide OS services to any application from user-
level. Because we intercept operations at the ABI, any existing
application can be run through our monitor. More importantly,
we are operating above the OS, so that we can use database-
managed caches, and transactionally protect all of the relevant
file system structures (including PCBs). To protect these struc-
tures, we developed a recoverable virtual memory (RVM) [2]
system for our monitor and user applications. Our RVM system
improves on previous systems by allowing nested transactions
and transparently logging updates via page-protection.

Our performance evaluation shows that ACID semantics can
be added to applications with acceptable overheads. When
Amino adds atomicity, consistency, and isolation functionality
to an application, it has an overhead of 15.4% over Ext3 due to
overhead of the monitoring infrastructure. When atomicity, con-
sistency, isolation and durability are provided, it is up to 26.6%
faster than Ext3, because BDB’s balance tree structure has im-
proved locality and is optimized for durable performance.

Our ongoing research can be divided into three main cate-
gories. First, we are focusing on improving performance, partic-
ularly under data-intensive workloads. Second, we are investi-
gating the relationship between the four database isolation levels
and performance. Third, we are investigating improvedptrace
primitives to reduce the overhead of our monitoring infrastruc-
ture.

References
[1] Microsoft Corporation. Microsoft MSDN WinFS Documenta-

tion. http://msdn.microsoft.com/data/winfs/, Oc-
tober 2004.

[2] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere, and
J. J. Kistler. Lightweight recoverable virtual memory. ACM Trans-
actions on Computer Systems, 12(1):33–57, 1994.

[3] F. Schmuck and J. Wylie. Experience with transactions in Quick-
Silver. In Proceedings of the 13th ACM Symposium on Operating
Systems Principles (SOSP ’91), pages 239–253, Pacific Grove, CA,
October 1991. ACM Press.


