
POSIX I/O High Performance
Computing Extensions

Brent Welch (Speaker)
Panasas

www.pdl.cmu.edu/posix/
December 14, 2005

Slide 2 January 3, 2006 Panasas

APIs for HPC IO

POSIX IO APIs (open, close, read, write, stat) have semantics that can
make it hard to achieve high performance when large clusters of
machines access shared storage.

A working group (see next slide) of HPC users is drafting some proposed
API additions for POSIX that will provide standard ways to achieve
higher performance.

Primary approach is either to relax semantics that can be expensive, or
to provide more information to inform the storage system about access
patterns.

Slide 3 January 3, 2006 Panasas

Contributors

Lee Ward - Sandia National Lab

Bill Lowe, Tyce McLarty – Lawrence Livermore National Lab

Gary Grider, James Nunez – Los Alamos National Lab

Rob Ross, Rajeev Thakur, William Gropp - Argonne National Lab

Roger Haskin – IBM

Brent Welch, Marc Unangst - Panasas

Garth Gibson- CMU/Panasas

Alok Choudhary – Northwestern U

Tom Ruwart- U of Minnesota/IO Performance

Others

www.pdl.cmu.edu/posix/

Slide 4 January 3, 2006 Panasas

POSIX Introduction

POSIX is the IEEE Portable Operating System Interface for Computing
Environments.

“POSIX defines a standard way for an application program to obtain
basic services from the operating system”

The Open Group (http://www.opengroup.org/)

POSIX was created when a single computer owned its own file system.

Network file systems like NFS chose not to implement strict POSIX semantics
in all cases (e.g., lazy access time propagation)

Heavily shared files (e.g., from clusters) can be very expensive for file
systems that provide POSIX semantics, or have undefined contents for file
systems that bend the rules

The goal is to create a standard way to provide high performance and
good semantics

Slide 5 January 3, 2006 Panasas

Current HPC POSIX Enhancement Areas

Ordering (stream of bytes idea needs to move towards distributed
vectors of units)

readx(), writex()

Coherence – (last writer wins and other such things can be optional)

lazyio_propogate(), lazyio_synchronize()

Metadata (lazy attributes issues)

statlite()

Locking schemes for cooperating processes

lockg()

Shared file descriptors (group file opens)

openg(), sutoc()

Portability of hinting for layouts and other information (file system
provides optimal access strategy in standard call)

? (no API yet)

Slide 6 January 3, 2006 Panasas

statlite, fstatlite,lstatlite – Optional Attributes

Syntax

int statlite(const char *file_name, struct statlite *buf);
int fstatlite(int filedes, struct statlite *buf);
int lstatlite(const char *file_name, struct statlite *buf);

Description

This family of stat calls, the lite family, is provided to allow for file I/O
performance not to be compromised by frequent use of stat information
lookup. Some information can be expensive to obtain when a file is busy.

They all return a statlite structure, which has all the normal fields from the stat
family of calls but some of the fields (e.g., file size, modify time) are optionally
not guaranteed to be correct.

There is a litemask field that can be used to specify which of the optional
fields you require to be completely correct values returned.

Slide 7 January 3, 2006 Panasas

statlite, fstatlite,lstatlite (cont.)

Syntax

int statlite(const char *file_name, struct statlite *buf);
int fstatlite(int filedes, struct statlite *buf);
int lstatlite(const char *file_name, struct statlite *buf);

Description

statlite stats the file pointed to by file_name and fills in buf.

lstatlite is identical to statlite, except in the case of a symbolic link, where
the link itself is statlite-ed, not the file that it refers to.

fstatlite is identical to stat, only the open file pointed to by filedes (as
returned by open(2)) is statlited-ed in place of file_name.

Slide 8 January 3, 2006 Panasas

struct statlite

struct statlite {

 dev_t st_dev; /* device */

 ino_t st_ino; /* inode */

 mode_t st_mode; /* protection */

 nlink_t st_nlink; /* number of hard links */

 uid_t st_uid; /* user ID of owner */

 gid_t st_gid; /* group ID of owner */

 dev_t st_rdev; /* device type (if inode device)*/

 unsigned long st_litemask; /* bit mask for optional field accuracy */

 /* Fields below here are optionally provided and are

 guaranteed to be correct only if there corresponding bit

 is set to 1 in the manditory st_litemask field, with the lite

 versions of the stat family of calls */

 off_t st_size; /* total size, in bytes */

 blksize_t st_blksize; /* blocksize for filesystem I/O */

 blkcnt_t st_blocks; /* number of blocks allocated */

 time_t st_atime; /* time of last access */

 time_t st_mtime; /* time of last modification */

 time_t st_ctime; /* time of last change */

 /* End of optional fields */

};

Mask
indicates
what is
valid:

Sizes and
Times

Optional

Slide 9 January 3, 2006 Panasas

POSIX ACLs –> New NFSv4 Semantics

Legitimize NFSv4 ACLs in POSIX, allowing users to choose
methodology and over time maybe POSIX ACLs will fade away.

Note that “POSIX ACLS” are really only a proposed part of the standard and
not widely implemented or used

NFSv4 ACLs are aligned with the Windows ACL model, which is more widely
used and more sensible

The two models differ in how ACLs are inherited, and in the rules for
processing a long set of ACE (access control entries)

Old POSIX ACL model often considered broken
draft-falkner-nfsv4-acls-00.txt is an Internet Draft from Sun that explains
how they are exposing NFSv4 ACLs for Solaris 10.

Slide 10 January 3, 2006 Panasas

NFSv4 ACLS

Permission letter mapping:
r - NFS4_ACE_READ_DATA
w - NFS4_ACE_WRITE_DATA
a - NFS4_ACE_APPEND_DATA
x - NFS4_ACE_EXECUTE
d - NFS4_ACE_DELETE
l - NFS4_ACE_LIST_DIRECTORY
f - NFS4_ACE_ADD_FILE
s - NFS4_ACE_ADD_SUBDIRECTORY
n - NFS4_ACE_READ_NAMED_ATTRS
N - NFS4_ACE_WRITE_NAMED_ATTRS
D - NFS4_ACE_DELETE_CHILD
t - NFS4_ACE_READ_ATTRIBUTES
T - NFS4_ACE_WRITE_ATTRIBUTES
c - NFS4_ACE_READ_ACL
C - NFS4_ACE_WRITE_ACL
o - NFS4_ACE_WRITE_OWNER
y - NFS4_ACE_SYNCHRONIZE

Slide 11 January 3, 2006 Panasas

lockg – Share mode lock for cluster apps

Syntax
 int lockg(int fd, int cmd, lgid_t *lgid);

Description

Apply, test, remove, or join a POSIX group lock on an open file. Group locks
are exclusive, whole-file locks that limit file access to a specified group of
processes. The file is specified by fd, a file descriptor open for writing and the
action by cmd.

The first process to call lockg() passes a cmd of F_LOCK and an initialized
value for lgid. Obtaining the lock is performed exactly as though a lockf() with
pos of 0 and len of 0 were used (i.e. defining a lock section that encompasses
a region from byte position zero to present and future end-of-tile positions).
An opaque lock group id is returned in lgid. This lgid may be passed to other
processes for the purpose of allowing them to join the group lock.

Slide 12 January 3, 2006 Panasas

lockg (Continued)

Description (Continued)

Processes wishing to join the group lock call lockg() with a cmd of F_LOCK
and the lgid returned to the first process. On success this process has
registered itself as a member of the group of the group lock.

Valid operations are given below:

F_LOCK Set an exclusive lock

F_TLOCK Same as F_LOCK but the call never blocks

F_ULOCK Unlock the indicated file.

F_TEST Test the lock

Slide 13 January 3, 2006 Panasas

readdirplus & readdirlite – read dir and attributes

Syntax

struct dirent_plus *readdirplus(DIR *dirp);

int readdirplus_r(DIR *dirp, struct dirent_plus *entry, struct dirent_plus **result);

struct dirent_lite *readdirlite(DIR *dirp);

int readdirlite_r(DIR *dirp, struct dirent_lite *entry, struct dirent_lite **result);

Description

readdirplus(2) and readdirplus_r(2) return a directory entry plus lstat(2)
results (like the NFSv3 READDIRPLUS command)

readdirlite(2) and readdirlite_r(2) return a directory entry plus lstatlite(2)
results

Slide 14 January 3, 2006 Panasas

readdirplus & readdirlite (Continued)

Description (Continued)

Results are returned in the form of a dirent_plus or dirent_lite structure:
struct dirent_plus {

 struct dirent d_dirent; /* dirent struct for this entry */

 struct stat d_stat; /* attributes for this entry */

 int d_stat_err;/* errno for d_stat, or 0 */

};

struct dirent_lite {

 struct dirent d_dirent; /* dirent struct for this entry */

 struct statlite d_stat; /* attributes for this entry */

 int d_stat_err;/* errno for d_stat, or 0 */

};

If d_stat_err is 0, d_stat field contains lstat(2)/lstatlite(2) results

If readdir(2) phase succeeds but lstat(2) or lstatlite(2) fails (file deleted,
unavailable, etc.) d_stat_err field contains errno from stat call

readdirplus_r(2)/readdirlite_r(2) variants provide thread-safe API, similar to
readdir_r(2)

Slide 15 January 3, 2006 Panasas

Lazy I/O data integrity

Specify O_LAZY in flags argument to open(2)

Requests lazy I/O data integrity

Allows network filesystem to relax data coherency requirements to improve
performance for shared-write file

Writes may not be visible to other processes or clients until
lazyio_propagate(2), fsync(2), or close(2) is called

Reads may come from local cache (ignoring changes to file on backing
storage) until lazyio_synchronize(2) is called

Does not provide synchronization across processes or nodes – program must
use external synchronization (e.g., pthreads, XSI message queues, MPI) to
coordinate actions

This is a hint only

if filesystem does not support lazy I/O integrity, does not have to do anything
differently

Slide 16 January 3, 2006 Panasas

lazyio_{propagate,synchronize}

Syntax

int lazyio_propagate(int fd, off_t offset, size_t count);

int lazyio_synchronize(int fd, off_t offset, size_t count);

Description

lazyio_propagate(2) ensures that any cached writes in the specified region
have been propagated to the shared copy of the backing file.

lazyio_synchronize(2) ensures that the effects of completed propagations in
the specified region from other processes or nodes, on any file descriptor of
the backing file, will be reflected in subsequent read(2) and stat(2) calls on
this node.

Some implementations may accomplish this by invalidating all cached data and
metadata associated with the specified region, causing it to be re-fetched from the
shared backing file on subsequent accesses.

However, cache invalidation is not guaranteed, and a compliant implementation may
choose to only re-fetch data and metadata actually modified by another node.

If offset and count are both 0, the operation is performed on the entire file.
Otherwise, the operation may (but is not guaranteed to) be restricted to the
specified region.

Slide 17 January 3, 2006 Panasas

Lazy I/O Example

 fd = open("/shared/file", O_RDWR | O_LAZY);
 for(i = 0; i < niters; i++) {
 /*
 * some computation generating data for the
 * shared file
 */
 compute(buf, buflen);
 /*
 * in the intended use concurrent writes on
 * different file descriptors are applied to
 * non-overlapping regions
 */
 lseek(fd, output_base+(node*i*buflen),
 SEEK_SET);
 write(fd, buf, buflen);
 /*
 * before any other file descriptor can be
 * certain that the backing file is up to
 * date, changes associated with all file
 * descriptors must be propagated
 */
 lazyio_propagate(fd,
 output_base+(node*i*buflen), buflen);
 non_filesystem_provided_barrier();

 /*
 * before any file descriptor can be
 * certain that it can see all propagated
 * changes it must be certain that it is
 * not caching stale data or metadata
 */
 lazyio_synchronize(fd,
 input_base+(node*i), buflen);
 lseek(fd, input_base+(node*i), SEEK_SET);
 read(fd, buf, buflen);
 compute(buf, buflen);
 /*
 * must barrier() returning to the write
 * phase at the top of the loop to avoid
 * overwriting a region of the shared file
 * still being read through another
 * file descriptor.
 */
 non_filesystem_provided_barrier();
 }
 close(fd);

Slide 18 January 3, 2006 Panasas

openg – Map file name to portable file handle

Syntax

int openg(char *path, int mode, fh_t *handle);

Description

The openg() function opens a file named by path according to mode (e.g.,
O_RDWR). It returns an opaque file handle corresponding to a file descriptor.
The intent is that the file handle can be transferred to cooperating processes
and converted to a file descriptor with sutoc().

The lifetime of the file handle is implementation specific. For example, it may
not be valid once all open file descriptors derived from the handle with sutoc()
have been closed.

Slide 19 January 3, 2006 Panasas

sutoc (or fhtofd) – map file handle to file descriptor

Syntax

int sutoc(fh_t *fh);

Description

The sutoc() function shall establish the connection between a file handle and
a file descriptor. It shall create an open file description that refers to a file and
a file descriptor that refers to that open file description. The file descriptor is
used by other I/O functions to refer to that file. The fh argument points to a file
handle referring to the file.

The sutoc() function shall return a file descriptor for the referred file that is the
lowest file descriptor not currently open for that process. The open file
description is new, and therefore the file descriptor shall not share it with any
other process in the system. The FD_CLOEXEC file descriptor flag
associated with the new file descriptor shall be cleared.

Slide 20 January 3, 2006 Panasas

sutoc (or fhtofd)

Syntax

int sutoc(fh_t *fh);

Description

The file offset used to mark the current position within the file shall be set to
the beginning of the file.

The file status flags and file access modes of the open file description shall be
set according to those given in the accompanying openg().

The largest value that can be represented correctly in an object of type off_t
shall be established as the offset maximum in the open file description.

Slide 21 January 3, 2006 Panasas

readx writex – memory vector to/from file vector

Syntax
ssize_t readx(int fd, const struct iovec *iov, size_t iov_count, struct xtvec *xtv,
size_t xtv_count);

ssize_t writex(int fd, const struct iovec *iov, size_t iov_count, struct xtvec *xtv,
size_t xtv_count);

Description
Generalized file vector to memory vector transfer. Existing readv(), writev()
specify a memory vector and do serial IO. The new readx(), writex() calls
also read/write strided vectors to/from files.

The readx() function reads xtv_count blocks described by xtv from the file
associated with the file descriptor fd into the iov_count multiple buffers
described by iov. The file offset is not changed.

The writex() function writes at most xtv_count blocks described by xtv into
the file associated with the file descriptor fd from the iov_count multiple
buffers described by iov. The file offset is not changed.

Slide 22 January 3, 2006 Panasas

readx writex (Continued)

Description (Continued)
The file referenced by fd must be capable of seeking. The pointer iov points
to a struct iovec
struct iovec {

 void *iov_base; /* Starting address */

 size_t iov_len; /* Number of bytes */

};

The pointer xtv points to a struct xtvec defined as
struct xtvec {

 off_t xtv_off; /* Starting file offset */

 size_t xtv_len; /* Number of bytes */

};

The offsets described in xtv are relative to the start of the file. It is not
required that iov and xtv have the same number of elements. Elements in iov
and xtv may overlap. Regions are processed in any order.

Slide 23 January 3, 2006 Panasas

Layout control

Standard way to tell the file system how the file should be laid out
geometrically, like width, stripe, depth, RAID level, etc.

Stripe width: number of storage devices in a RAID stripe

Stripe unit size: number of bytes written to one storage device before
advancing to the next device in the stripe

Depth: how much data to write to a particular storage device (i.e., how many
stripes) before picking a different set of devices for the next group of stripes

Stride: interleaving distance of expected access patterns

RAID-level. Mirroring, RAID 5, RAID-0, RAID-10, Double-parity, etc.

No API defined so far

Slide 24 January 3, 2006 Panasas

POSIX HPC IO

readx, writex – memory vector to/from file vector

lazyio_propogate, lazyio_synchronize, O_LAZY

lockg – share mode lock for cluster applications

openg, sutoc – expose file handles to applications

readdirplus, readdirlite – expose NFS op to
applications

statlite, fstatlite – optional attributes

www.pdl.cmu.edu/posix/

