
A Centralized Failure Handler
for

File Systems

Vijayan Prabhakaran

Andrea C. Arpaci-Dusseau

Remzi H. Arpaci-Dusseau



Failure handling diffusion

• Failure handling in file systems is broken
– Assumes that disks fail in a fail-stop manner
– Portions of a disk can fail: latent sector errors, block

corruption

• File system I/O calls are distributed
– System calls (open, stat, etc), flush daemons, journal

• Along with I/O, failure handling is also diffused
– Detection and recovery for each I/O code



Problems due to diffusion

• Illogically inconsistent policies
– Different techniques even under similar fault scenarios

• Tangled policies and mechanisms
– Harder to separate failure policies from detection and recovery

mechanisms
– Policy decision: “To protect using parity or replica?”
– Mechanisms: “How to implement parity protection?”

• Diffusion of bugs
– Several bugs in failure handling code
– Since bugs are repeated, hard to fix them all



Centralized Failure Handler

• Centralized failure handler
– Detects and recovers with well defined failure policies

• Component of file system like cache manager or
journaling layer

• Controls all I/O initiation and completion

• Detects I/O failures and invokes specified
recovery policy



Benefits of Centralized Failure Handler

• Eliminate inconsistent policies

• Easy to add new functions
– No need to write a failure handler for each function

• Can separate failure polices from mechanisms

• Fine grained failure policy: diff block types & I/O contexts
– Applications can specify their own failure policies
– E.g., “replicate an important directory but no need for temp file.”



Issues in Centralized Failure Handler

• Information
– I/O for different block types and contexts
– Failure handler needs semantic information about I/O
– Maps: block types and I/O contexts to failure policies

• Architecture
– Interacts with core file system, journal, cache
– Two sub components: file system specific and generic

• Machinery
– All I/O calls go through Centralized Failure Handler
– I/O calls: time critical, completion specified in interrupt context
– Contains machinery to separate completion path from failure handling


