
HPC storage benchmarking

Mike Mesnier (Intel/CMU)

James Hendricks, Raja R. Sambasivan, Brock Taylor (Intel),
Matthew Wachs, Greg Ganger, Garth Gibson

 Parallel Data Lab
 Carnegie Mellon University



2

Motivation

• HPC apps must be smart about their I/O
• Massively parallel access

• Collective I/O, strided accesses

• May adapt to strengths of the storage system

• Consequently, storage system evaluation
• Can be difficult for complex applications

• Can be expensive (time and money)

• HPC storage benchmarking is one solution

Generating representative I/O is the challenge



3

Representative I/O??

• Traces
• Asynchronous (deterministic) playback

• Increasing playback speed is not realistic

• Micro-benchmarks
• Good for testing specific scenarios (e.g., iozone)

• Macro-benchmarks
• Useful, but too domain specific (e.g., TPC-C)

• Is any one benchmark “representative?”
• Computational chemistry, biology, earth sciences ,

oil/gas, pharmaceuticals, … (probably not)



4

Our approach: “rapid prototyping”

1. Profile the primary I/O phases of an app
• Parallelism, write ratio, randomness, etc.

2. Automatically generate I/O processes
• A distributed workload generator (e.g., b_eff_io)

3. Generate I/O against system
• Good for measuring first-order effects

RP is common among distributed systems:
• Graphical tools for visualizing/analyzing workflow

• Languages for rapid prototyping (e.g, EMSL)

• Compilers to generate synthetic processes



5

Example icons for rapid prototyping

R
E
A
D

E
X
E

W
R
IT
E

DISK

Speed
Matching
buffer

PIPE

I/O
Bucket

• Read, execute or write process

 
• Input or output

 
• Allows for parallelism between two processes 

• Producer/consumer buffer (no parallelism)

• IPC between two nodes



6

Example (computational chemistry)

• For all nodes do
• Read in basis sets (atomic orbitals)

• Compute atomic integrals

• Write atomic integrals to disk

Basis
sets R

D

E
X
E

Integrals

W
R
T

Integrals
Basis
sets

Must specify characteristics of each process
(e.g., request size, access pattern, passes over data)



7

Next steps

• Select a modeling environment
• Graphical tools, language, compiler

• E.g., FileBench from Wednesday’s BOF

• Extend modeling environment for HPC
• Multiple processes, parallel I/O, barriers and

synchronization, strided access, …

• Provide “reference” profiles for common apps
• Computational chemistry, oil/gas, etc.

Questions?


