
Functionality Composition Across Layers in a Storage System

Florentina I. Popovici, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
Computer Sciences Department, University of Wisconsin, Madison�

popovici, dusseau, remzi � @cs.wisc.edu

1 Problem Statement
To ease development, modern systems are often built in
layers. However, it is common for the same functional-
ity to be duplicated at several layers. Let us consider, as
an example, a Web server that is deployed in a virtualized
hosting environment. In this setup, caching, prefetching,
and scheduling decisions are made at several layers: ap-
plication layer (web server), kernel, virtual machine layer,
RAID system, and finally at the disk.

This duplication results in suboptimal system behavior.
For example, in caching, the same block can be cached
simultaneously at the kernel level and RAID, thus result-
ing in an underutilization of the available resources. The
desired situation is exclusive caching. Similar problems
can occur in the case of other functionalities. Other stud-
ies ([1], [2]) have also noticed this problem, though, they
concentrated mainly on caching, and they considered the
presence of only two layers.

Because of its complexity and influence on the over-
all performance of the storage system we focus on IO
scheduling, and then plan to extend observations to other
functionalities, such as caching, prefetching, and layout.

We are pursuing the answers to the following questions:

� How is the performance of the system influenced by
a certain combination of scheduling decisions? For
example, if a layer implements the classic C-LOOK
algorithm, and another layer underneath implements
C-LOOK also, what is the final performance of the
system? Would the answer change if the algorithm is
SATF?

� What is the best place to implement an algorithm?
For example, if the SATF algorithm can be placed at
several layers, where is the best place to have it?

� How are QoS schedulers influenced by a hierarchy of
layers? How ’good’ is the decision of a QoS sched-
uler at an upper layer, when requests could be re-
ordered at the lower layers?

� If a layer makes a bad scheduling decision, can a
scheduler at a layer underneath ’fix’ the bad deci-
sions?

� What are the parameters that influence the perfor-
mance of an algorithm? For example, how sensitive
are schedulers to queue length variations, and request
sizes.

� How would workload characteristics influence the
answers to the above?

2 Approach
We study the answers to the above questions by building a
simulator environment. The simulator is able to simulate
the composition of a configurable number of layers, each
implementing a specified scheduling policy.

We plan on exploring combinations of policies, such as:
FCFS (no reordering), SSTF (reorders requests according
to the shortest seek time relative to the block distance),
C-LOOK (elevator-like variant of SSTF, that reorders re-
quests only in one direction), SATF (reorders requests ac-
cording to the shortest access time), anticipatory schedul-
ing (reorders requests while considering the process that
issued the requests and what is the expected process think
time and access time).

To this date, we have implemented a scaled down ver-
sion of the simulator, that supports a subset of the sched-
ulers we plan to study. We have a set of preliminary re-
sults that uncover the answer to some of the questions. For
example, our results show that SATF schedulers should
be placed as close to the disk as possible, and that queue
space should rather be given to a scheduler at one layer,
rather than split it between two schedulers at two layers.

References
[1] Z. Chen, Y. Zhang, Y. Zhou, H. Scott, and B. Schiefer. Em-

pirical evaluation of Multi-level Buffer Cache Collabora-
tion for Storage System. In Proceedings of the 2005 ACM
SIGMETRICS Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS ’05), Banff, Canada,
June 2005.

[2] T. M. Wong and J. Wilkes. My Cache or Yours? Making
Storage More Exclusive. In Proceedings of the USENIX An-
nual Technical Conference (USENIX ’02), Monterey, Cali-
fornia, June 2002.

1

