
Controlling File System Write Ordering

Nathan C. Burnett, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
Computer Sciences Department, University of Wisconsin – Madison

1 Introduction
Traditional operating system kernels present a relatively
narrow interface to applications for I/O. This inter-
face typically consists ofopen(), close(), read(),
write(), lseek()andfsync(). Some applications,
however, require more control than this limited interface
allows. For example, a database management system such
as Oracle or PostgreSQL, performs write-ahead logging
to provide transactional semantics to users. In order to
ensure that the database can be brought to a consistent
state in the event of a crash, the DBMS must ensure that
updates to the log are committed to disk strictly before
updates to the data itself. So, the DBMS needs to control
the order in which data is committed to stable storage for
correctness.

In current operating systems, there are essentially two
ways to control disk write ordering. In the first, the ap-
plication accesses the raw storage device, bypassing the
filesystem and kernel buffer cache. This provides the de-
sired control, but at the cost of application portability,
complexity and system managability. The second way is
to use synchronous I/O, such asfsync(). This also pro-
vides the required control, but this time at the cost of per-
formance. A third, degenerate, option is to forego control-
ling write ordering entirely. This solution is fast, simple
and portable, but can be disastrous in the event of a sys-
tem crash. Any application with complex, on-disk data
structures will have a similar set of trade-offs.

In this work, we seek to provide a new interface which
allows the application to control the order in which data
is written to disk. This interface should be fast (i.e. as
asynchronous as possible), and simple enough that it will
be easy to standardize to facilitate portability.

2 Approach
Our approach is to allow an application to specify order-
ing dependencies between write operations. We propose
two alternative methods for allowing this type of control,
file system barriersandasynchronous graphs.

2.1 File System Barriers
File system barriers entail the addition of a new sys-
tem call, barrier(). This call guarantees that the
data from anywrite() calls madeprevious to the
barrier() call will be commited to stable storage
strictly beforethe data from any subsequent calls towrite.
barrier() is global in scope, that is, the ordering
is imposed on all write operations, without regard to
which process requested them. This interface makes it
easy to convert existing applications to use the new in-
terface, simply replace calls tofsync() andsync()
with calls to barrier(). For example, a DBMS

would callwrite() to update the write-ahead log, call
barrier() and finally callwrite() to update the data
itself. This ensures that the on-disk log will be updated
before the on-disk data is updated.

We have implemented file system barriers in FreeBSD
5.4. Unfortunately, we found that if the workload nor-
mally issues only a few writes betweenbarrier()
calls, the disk scheduler and buffer cache manager be-
come overly constrained and performance suffers.

2.2 Asynchronous Graphs
After our experience with file system barriers, we realized
that the application needed to be able to specify order-
ing constraints at a finer granularity than barriers allowed.
Thus, we proposeasynchronous graphs. In this scheme,
each time an application callswrite() the kernel as-
signs a unique identifier to that write operation and re-
turns it to the application. When making subsequent calls
to write(), the application can use these identifiers to
inform the kernel that the data from the latestwrite()
operation should be committed to stable storage onlyafter
the data from the specified writes. This allows an appli-
cation to express ordering constraints only where order-
ing matters, instead of imposing global constraints on all
of the writes in the system. The kernel is free to reorder
writes arbitrarily if no ordering constraint was specified.
This gives the application the power to specify its order-
ing requirements, while allowing the operating system to
use its normal I/O optimizations for all other I/O.

Using our example of a DBMS again, the DBMS calls
write() to update the log, and is given an identifier for
that write. It then callswrite() a number of times to
update the data, each time passing in the identifier for the
log write to ensure that the data updates are written to disk
after the log updates.

3 Current Status
So far, we have been exploring the asynchronous graph
concept within a simple simulator. Our simulator sim-
ulates the buffer cache itself, and distinguishes between
sequential and non-sequential disk accesses. That is, se-
quential accesses are fast and non-sequential accesses are
slow. So far we have been able to show that asynchronous
graphs require fewer writes and, in particular, fewer non-
sequential writes than using fsync or filesystem barriers
for ordering with a TPC-B-like workload.

In the near future we are extending our simulator to take
into account clustered writes, the buffer cleaning daemon
and a more accurate disk model. In the following months,
we plan to implement the asynchronous graph interface in
FreeBSD and evaluate its performance on real and syn-
thetic workloads.


