
A Logic of File Systems
Muthian Sivathanu∗, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Somesh Jha
Google Inc. Computer Sciences Department, University of Wisconsin, Madison

muthian@google.com, {dusseau, remzi, jha}@cs.wisc.edu

Abstract
Years of innovation in file systems have been highly success-
ful in improving their performance and functionality, but at the
cost of complicating their interaction with the disk. A variety of
techniques exist to ensure consistency and integrity of file sys-
tem data, but the precise set of correctness guarantees provided
by each technique is often unclear, making them hard to com-
pare and reason about. The absence of a formal framework has
hampered detailed verification of file system correctness.
We present a logical framework for modeling the interaction

of a file system with the storage system, and show how to ap-
ply the logic to represent and prove correctness properties. We
demonstrate that the logic provides three main benefits. First, it
enables reasoning about existing file system mechanisms, allow-
ing developers to employ aggressive performance optimizations
without fear of compromising correctness. Second, the logic
simplifies the introduction and adoption of new file system func-
tionality by facilitating rigorous proof of their correctness. Fi-
nally, the logic helps reason about smart storage systems that
track semantic information about the file system.
A key aspect of the logic is that it enables incremental mod-

eling, significantly reducing the barrier to entry in terms of its
actual use by file system designers. In general, we believe that
our framework transforms the hitherto esoteric and error-prone
“art” of file system design into a readily understandable and for-
mally verifiable process.

1 Introduction
Reliable data storage is the cornerstone of modern com-
puter systems. File systems are responsible for managing
persistent data, and it is therefore essential to ensure that
they function correctly.
Unfortunately, modern file systems have evolved into
extremely complex pieces of software, incorporating so-
phisticated performance optimizations and features. Be-
cause disk I/O is the key bottleneck in file system perfor-
mance, most optimizations aim at minimizing disk access,
often at the cost of complicating the interaction of the file
system with the storage system; while early file systems
adopted simple update policies that were easy to reason
about [11], modern file systems have significantly more
complex interaction with the disk, mainly stemming from
asynchrony in updates to metadata [2, 6, 8, 12, 18, 22, 23].

∗Work done while at the University of Wisconsin-Madison

Reasoning about the interaction of a file system with
disk is paramount to ensuring that the file system never
corrupts or loses data. However, with complex update
policies, the precise set of guarantees that the file system
provides is obscured, and reasoning about its behavior of-
ten translates into a manual intuitive exploration of vari-
ous scenarios by the developers; such ad hoc exploration
is arduous [23], and possibly error-prone. For example,
recent work [24] has found major correctness errors in
widely used file systems such as ext3, ReiserFS and JFS.
In this paper, we present a formal logic for modeling
the interaction of a file system with the disk. With for-
mal modeling, we show that reasoning about file system
correctness is simple and foolproof. The need for such
a formal model is illustrated by the existence of simi-
lar frameworks in many other areas where correctness
is paramount; existing models for authentication proto-
cols [4], database reliability [7], and database recovery [9]
are a few examples. While general theories for model-
ing concurrent systems exist [1, 10], such frameworks are
too general to model file systems effectively; a domain-
specific logic greatly simplifies modeling [4].
A logic of file systems serves three important purposes.
First, it enables us to prove properties about existing file
system designs, resulting in better understanding of the set
of guarantees and enabling aggressive performance opti-
mizations that preserve those guarantees. Second, it sig-
nificantly lowers the barrier to providing newmechanisms
or functionality in the file system by enabling rigorous
reasoning about their correctness; in the absence of such a
framework, designers tend to stick with “time-tested” al-
ternatives. Finally, the logic helps design functionality in
new class of storage systems [20] by facilitating precise
characterization and proof of their properties.
A key goal of the logic framework is simplicity; in or-
der to be useful to general file system designers, the bar-
rier to entry in terms of applying the logic should be low.
Our logic achieves this by enabling incremental model-
ing. One need not have a complete model of a file system
before starting to use the logic; instead, one can simply
model a particular piece of functionality or mechanism in
isolation and prove properties about it.
Through case studies, we demonstrate the utility and
efficacy of our logic in reasoning about file system cor-

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 1

FAST ’05: 4th USENIX Conference on File and Storage Technologies

rectness properties. First, we represent and prove the
soundness of important guarantees provided by existing
techniques for file system consistency, such as soft up-
dates and journaling. We then use the logic to prove that
the Linux ext3 file system is needlessly conservative in
its transaction commits, resulting in sub-optimal perfor-
mance; this case study demonstrates the utility of the logic
in enabling aggressive performance optimizations.
To illustrate the utility of the logic in developing new
file system functionality, we propose a new file system
mechanism called generation pointers to enable consis-
tent undelete of files. We prove the correctness of our
design by incremental modeling of this mechanism in our
logic, demonstrating the simplicity of the process. We
then implement the mechanism in the Linux ext3 file sys-
tem, and verify its correctness. As the logic indicates, we
empirically show that inconsistency does indeed occur in
undeletes in the absence of our mechanism.
The rest of the paper is organized as follows. We first
present an extended motivation (§2), and a background on
file systems (§3). We present the basic entities in our logic
(§4) and the formalism (§5), and represent some common
file system properties using the logic (§6). We then use the
logic to prove consistency properties of existing systems
(§7), prove the correctness of an unexploited performance
optimization in ext3 (§8), and reason about a new tech-
nique for consistent undeletes (§9). We then apply our
logic to semantic disks (§10). Finally, we present related
work (§11) and conclude (§12).

2 Extended Motivation
A systematic framework for reasoning about the interac-
tion of a file system with the disk has multifarious bene-
fits. We describe three key applications of the framework.

2.1 Reasoning about existing file systems
An important usage scenario for the logic is to model ex-
isting file systems. There are three key benefits to such
modeling. First, it enables a clear understanding of the
precise guarantees that a given mechanism provides, and
the assumptions under which those guarantees hold. Such
an understanding enables correct implementation of func-
tionality at other system layers such as the disk system by
ensuring that they do not adversely interact with the file
system assumptions. For example, write-back caching in
disks often results in reordering of writes to the media;
this can negate the assumptions journaling is based on.
Second, the logic enables aggressive performance op-
timizations. When reasoning about complex interactions
becomes hard, file system developers tend to be conserva-
tive (e.g., perform unnecessarily more waits). Our logic
helps remove this barrier, enabling developers to be ag-
gressive in their performance optimizations while still be-
ing confident of their correctness. In Section 8, we ana-
lyze a real example of such an opportunity for optimiza-

tion in the Linux ext3 file system, and show that the logic
framework can help prove its correctness.
The final benefit of the logic framework is its potential
use in implementation-level model checkers [24]; having
a clear model of expected behavior against which to val-
idate an existing file system would perhaps enable more
comprehensive and efficient model checking, instead of
the current technique of relying on the fsck mechanism
which is quite expensive; the cost of an fsck on every ex-
plored state limits the scalability of such model checking.

2.2 Building new file system functionality
Recovery and consistency are traditionally viewed as
“tricky” issues to reason about and get right. A classic
illustration of this view arises in database recovery; the
widely used ARIES [13] algorithm pointed to correctness
issues with many earlier proposals. Ironically, the success
of ARIES stalled innovation in database recovery, due to
the difficulty in proving the correctness of new techniques.
Given that most innovation within the file system deals
with its interaction with the disk and can have correctness
implications, this inertia against changing “time-tested”
alternatives stifles the incorporation of new functionality
in file systems. A systematic framework to reason about a
new piece of functionality can greatly reduce this barrier
to entry. In Section 9, we propose new file system func-
tionality and use our logic to prove its correctness. To fur-
ther illustrate the efficacy of the logic in reasoning about
new functionality, we examine in Section 7.2.1 a common
file system feature, i.e., journaling, and show that starting
from a simple logical model of journaling, we can system-
atically arrive at the various corner cases that need to be
handled, some of which involve complex interactions as
described by the developers of Linux Ext3 [23].

2.3 Designing semantically-smart disks
The logic framework also significantly simplifies rea-
soning about a new class of storage systems called
semantically-smart disk systems that provide enhanced
functionality by inferring file system operations [20]. In-
ferring information accurately underneath modern file
systems is known to be quite complex [21], especially be-
cause it is dependent on dynamic file system properties. In
Section 10, we show that the logic can simplify reasoning
about a semantic disk; this can in turn enable aggressive
functionality in them.

3 Background
A file system organizes disk blocks into logical files and
directories. In order to map blocks to logical entities such
as files, the file system tracks various forms of metadata.
In this section, we first describe the forms of metadata that
file systems track, and then discuss the issue of file system
consistency. Finally, we describe the asynchrony of file

USENIX Association2

systems, a major source of complexity in its interaction
with disk.

3.1 File system metadata
File system metadata can be classified into three types:
Directories: Directories map a logical file name to
per-file metadata. Since the file mapped for a name can
be a directory itself, directories enable a hierarchy of files.
When a user opens a file specifying its path name, the file
system locates the per-file metadata for the file, reading
each directory in the path if required.
File metadata: File metadata contains information
about a specific file. Examples of such information are
the set of disk blocks that comprise the file, file size, and
so on. In certain file systems such as FAT, file metadata is
embedded in the directory entries, while in most other file
systems, file metadata is stored separately (e.g., inodes)
and is pointed to by the directory entries. The pointers
from file metadata to the disk blocks can sometimes be
indirected through indirect pointer blocks in the case of
large files.
Allocation structures: File systems manage various
resources on disk such as the set of free blocks that can
be allocated to new files. To track such resources, file
systems maintain structures (e.g., bitmaps, free lists) that
point to free resource instances.
In addition, file systems track other metadata (e.g., su-
per block), but we mainly focus on the above three types.

3.2 File system consistency
For proper operation, the internal metadata of the file sys-
tem and its data blocks should be in a consistent state.
By metadata consistency, we mean that the state of the
various metadata structures obeys a set of invariants that
the file system relies on. For example, a directory entry
should only point to a valid file metadata structure; if a
directory points to file metadata that is uninitialized (i.e.,
marked free), the file system is said to be inconsistent.
Most file systems provide metadata consistency, since
that is crucial to correct operation. A stronger form of
consistency is data consistency, where the file system
guarantees that data block contents always correspond to
the file metadata structures that point to them. We discuss
this issue in Section 7.1. Many modern file systems such
as Linux ext3 and ReiserFS provide data consistency.

3.3 File system asynchrony
An important characteristic of most modern file systems
is the asynchrony they exhibit during updates to data and
metadata. Updates are simply buffered in memory and
are written to disk only after a certain delay interval, with
possible reordering among those writes. While such asyn-
chrony is crucial for performance, it complicates consis-
tency management. Due to asynchrony, a system crash
leads to a state where an arbitrary subset of updates has

been applied on disk, potentially leading to an inconsis-
tent on-disk state. Asynchrony of updates is the principal
reason for complexity in the interaction of a file system
with the disk, and hence the raison d’etre of our logic.

4 Basic entities and notations
In this section, we define the basic entities that constitute
a file system in our logic, and present their notations. In
the next section, we build upon these entities to present
our formalism of the operation of a file system.

4.1 Basic entities
The basic entities in our model are containers, pointers,
and generations. A file system is simply a collection of
containers. Containers are linked to each other through
pointers. Each file system differs in the exact types of
containers it defines and the relationship it allows between
those container types; we believe that this abstraction
based on containers and pointers is general to describe any
file system.
Containers in a file system can be freed and reused; a
container is considered to be free when it is not pointed to
by any other container; it is live otherwise. The instance
of a container between a reuse and the next free is called a
generation; thus, a generation is a specific incarnation of
a container. Generations are never reused. When a con-
tainer is reused, the previous generation of that container
is freed and a new generation of the container comes to
life. A generation is thus fully defined by its container
plus a logical generation number that tracks how many
times the container was reused. Note that generation does
not refer to the contents of a container, but is an abstrac-
tion for its current incarnation; contents can change with-
out affecting the generation.
We illustrate the notion of containers and generations
with a simple example from a typical UNIX-based file
system. If the file system contains a fixed set of desig-
nated inodes, each inode slot is a container. At any given
point, an inode slot in use is associated with an inode gen-
eration that corresponds to a specific file. When the file
is deleted, the corresponding inode generation is deleted
(forever), but the inode container is simply marked free.
A different file created later can reuse the same inode con-
tainer for a logically different inode generation.
Note that a single container (e.g., an inode) can point to
multiple containers (e.g., data blocks). A single container
can also be sometimes pointed to by multiple containers
(e.g., hard links in UNIX file systems).
4.2 Notations
The notations used to depict the basic entities and the rela-
tionships across them are listed in Table 1. Note that many
notations in the table are defined only later in the section.
Containers are denoted by upper case letters, while gen-
erations are denoted by lower case letters. An “entity”
in the description represents a container or a generation.

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 3

FAST ’05: 4th USENIX Conference on File and Storage Technologies

Symbol Description

&A set of entities that point to container A
∗A set of entities pointed to by containerA
|A| container that tracks if container A is live
&a set of entities that point to generation a
∗a set of entities pointed to by generation a
A → B denotes that container A has a pointer to B
&A = ∅ denotes that no entity points to A
Ak the kth epoch of container A
t(Ak) type of kth epoch of container A
g(Ak) generation of the kth epoch of containerA
C(a) container associated with generation a
Ak generation k of container A

Table 1: Notations on containers and generations.

A pointer is denoted by the → symbol; A → B indi-
cates that container A has a pointer to container B, i.e.,
(A ∈ &B) ∧ (B ∈ ∗A). For most of this paper, we only
consider pointers from and to containers that are live. In
Section 9, we will relax this assumption and introduce a
new notation for pointers involving dead containers.

4.3 Attributes of containers
To make the logic expressive for modern file systems, we
extend its vocabulary with attributes on a container; a gen-
eration has the same attributes as its container.

4.3.1 Epoch
The epoch of a container is defined as follows: every time
the contents of a container change in memory, its epoch is
incremented. For example, if the file system sets different
fields in an inode one after the other, each step results in
a new epoch of the inode container. Since the file system
can batch multiple changes to the contents due to buffer-
ing, the set of epochs visible at the disk is a subset of
the total set of epochs a container goes through. We de-
note an epoch by the superscript notation; Ak denotes the
kth epoch of A. Note that our definition of epoch is only
used for expressivity of our logic; it does not imply that
the file system tracks such an epoch. Also note the dis-
tinction between an epoch and a generation; a generation
change occurs only on a reuse of the container, while an
epoch changes on every change in contents or when the
container is reused.

4.3.2 Type
Containers can have a certain type associated with them.
The type of a container can either be static, i.e., it does not
change during the lifetime of the file system, or can be dy-
namic, where the same container can belong to different
types at different points in time. For example, in FFS-
based file systems, inode containers are statically typed,
while block containers may change their type between
data, directory, and indirect pointers. We denote the type
of a container A by the notation t(A).

4.3.3 Shared vs. unshared
A container that is pointed to by more than one container
is called a shared container; a container that has exactly
one pointer leading into it is unshared. By default, we
assume that containers are shared. We denote unshared
containers with the⊕ operator. ⊕A indicates thatA is un-
shared. Note that being unshared is a property of the con-
tainer type that the file system always ensures; a container
belonging to a type that is unshared will always have only
one pointer pointing into it. For example, most file sys-
tems designate data block containers to be unshared.

4.4 Memory and disk versions of containers
A file system needs to manage its structures across two
domains: volatile memory and disk. Before accessing
the contents of a container, the file system needs to read
the on-disk version of the container into memory. Sub-
sequently, the file system makes modifications to the in-
memory copy of the container, and suchmodified contents
are periodically written to disk. Thus, until the file system
writes a modified container to disk, the contents of the
container in memory will be different from that on disk.

5 The Formalism
We now present our formal model of the operation of a file
system. We first formulate the logic in terms of beliefs and
actions, and then introduce the operators in the logic, our
proof system, and the basic axioms in the logic.

5.1 Beliefs
The state of the system is modeled using beliefs. A belief
represents a certain state in memory or disk.
Any statement enclosed within {} represents a belief.
Beliefs can be either in memory beliefs or on disk beliefs,
and are denoted as either {}M or {}D respectively. For
example {A → B}M indicates that A → B is a belief in
the file system memory, i.e., container A currently points
to B in memory, while {A → B}D means it is a disk
belief. The timing of when such a belief begins to hold is
determined in the context of a formula in our logic, as we
describe in the next subsection; in brief terms, the timing
of a belief is defined relative to other beliefs or actions
specified in the formula. An isolated belief in itself thus
has no temporal dimension.
While memory beliefs just represent the state the file
system tracks in memory, on-disk beliefs are defined as
follows: a belief holds on disk at a given time, if on a
crash, the file system can conclude with the same belief
purely based on a scan of on-disk state at that time. On-
disk beliefs are thus solely dependent on on-disk data.
Since the file systemmanages free and reuse of contain-
ers, its beliefs can be in terms of generations; for example
{Ak → Bj}M is valid (note that Ak refers to generation k
of container A). However, on-disk beliefs can only deal
with containers, since generation information is lost at the

USENIX Association4

disk. In Sections 9 and 10, we propose techniques to ex-
pose generation information to the disk, and show that it
enables improved guarantees.

5.2 Actions
The other component of our logic is actions, which result
in changes to system state; actions thus alter the set of
beliefs that hold at a given time. There are two actions
defined in our logic:

• read(A) – This operation is used by the file system
to read the contents of an on-disk container (and thus,
its current generation) into memory. The file system
needs to have the container in memory before it can
modify it. After a read, the contents ofA in memory
and on-disk are the same, i.e., {A}M = {A}D.

• write(A) – This operation results in flushing the cur-
rent contents of a container to disk. After this oper-
ation, the contents of A in memory and on-disk are
the same, i.e., {A}D = {A}M .

5.3 Ordering of beliefs and actions
A fundamental aspect of the interaction of a file system
with disk is the ordering among its actions. The order-
ing of actions also determines the order in which beliefs
are established. To order actions and the resulting beliefs,
we use the before (�) and after (�) operators. Thus,
α � β means that α occurred before β in time. Note
that by ordering beliefs, we are using the {} notation as
both a way of indicating the event of creation of the be-
lief, and the state of existence of a belief. For example,
the belief {B → A}M represents the event where the file
system assigns A as one of the pointers from B.
We also use a special ordering operator called precedes
(≺). Only a belief can appear to the left of a ≺ operator.
The ≺ operator is defined as follows: α ≺ β means that
belief α occurs before β (i.e., α ≺ β ⇒ α � β); further,
it means that belief α holds at least until β occurs. This
implies there is no intermediate action or event between α
and β that invalidates belief α.
The operator ≺ is not transitive; α ≺ β ≺ γ does not
imply α ≺ γ, because belief α needs to hold only until
β and not necessarily until γ (note that α ≺ β ≺ γ is
simply a shortcut for (α ≺ β) ∧ (β ≺ γ) (note that this
implies α � γ).
Beliefs can be grouped using parentheses, which has
the following semantics with precedes:

(α ≺ β) ≺ γ ⇒ (α ≺ β) ∧ (α ≺ γ) ∧
(β ≺ γ) (1)

If a group of beliefs precedes a certain other belief α,
every belief within the parentheses precedes belief α.

5.4 Proof system
Given our primitives for sequencing beliefs and actions,
we can define rules or formulas in our logic in terms of

an implication of one event sequence given another se-
quence. We use the traditional operators:⇒ (implication)
and⇔ (double implication, i.e., if and only if). We also
use logical AND (∧) and OR (∨) to combine sequences.
An example of a logical rule is: α � β ⇒ γ. This
notation means that every time an event or action β oc-
curs after α, event γ occurs at the point of occurrence of
β. The rule does not say anything about when α or β oc-
curs in absolute time; all it says is whenever they occur
in that order, γ occurs. Thus, the above rule would be
valid if α � β never occurred at all. In general, if the
left hand side of the rule involves a more complex expres-
sion, say a disjunction of two components, the belief on
the RHS holds at the point of occurrence of the first event
that makes the LHS true; in the example above, the occur-
rence of β makes the sequence α � β true.
Another example of a rule is α � β ⇒ α � γ � β ;
this rule denotes that every time β occurs after α, γ should
have occurred sometime between α and β. Note that in
such a rule where the same event occurs in both sides, the
event constitutes a temporal reference point by referring
to the same time instant in both the LHS and RHS. This
temporal interpretation of identical events is crucial to the
above rule serving the intended implication; otherwise the
RHS could refer to some other instant where α � β.
Rules such as the above can be used in logical proofs
by event sequence substitution; for example, with the rule
α � β ⇒ γ, whenever the subsequence α � β occurs
in a sequence of events, it logically implies the event γ.
We could then apply the above rule to any event sequence
by replacing any subsequence that matches the left half of
the rule, with the right half; thus, with the above rule, we
have the following postulate: α � β � δ ⇒ γ � δ.
Thus, our proof system enables deriving new invariants
about the file system, building on basic axioms.

5.5 Basic axioms
In this subsection, we present the axioms that govern the
transition of beliefs across memory and disk.
• If a container B points to A in memory, its current
generation also points to A in memory.

{Bx → A}M ⇔ {g(Bx) → A}M (2)

• If B points to A in memory, a write of B will lead
to the disk belief that B points to A.

{B → A}M ≺ write(B) ⇒ {B → A}D (3)

The converse states that the disk belief implies that
the same belief first occurred in memory.

{B → A}D ⇒ {B → A}M � {B → A}D (4)

• Similarly, if B points to A on disk, a read of B will
result in the file system inheriting the same belief.

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 5

FAST ’05: 4th USENIX Conference on File and Storage Technologies

{B → A}D ≺ read(B) ⇒ {B → A}M (5)

• If the on-disk contents of container A pertain to
epoch y, some generation c should have pointed to
generation g(Ay) in memory, followed bywrite(A).
The converse also holds:

{Ay}D ⇒ {c → g(Ay)}M ≺ write(A) � {Ay}D (6)

{c → Ak}M ≺ write(A) ⇒ {Ay}D ∧ (g(Ay) = k) (7)

Note thatAk refers to some generation k ofA, and is
used in the above rule to indicate that the generation
c points to is the same as that of Ay .

• If {b → Ak} and {c → Aj} hold in memory at two dif-
ferent points in time, container A should have been
freed between those instants.

{b → Ak}M � {c → Aj}M ∧ (k 6= j)

⇒ {b → Ak}M � {&A = ∅}M ≺ {c → Aj}M(8)

Note that the rule includes the scenario where an in-
termediate generationAl occurs betweenAk andAj .

• If container B pointed to A on disk, and subse-
quently the file system removes the pointer from B
to A in memory, a write of B will lead to the disk
belief that B does not point to A.

{B → A}D ≺ {A /∈ ∗B}M ≺ write(B)

⇒ {A /∈ ∗B}D (9)

Further, if A is an unshared container, the write of B
will lead to the disk belief that no container points to
A, i.e., A is free.

⊕A ∧ ({B → A}D ≺ {&A = ∅}M ≺ write(B))

⇒ {&A = ∅}D (10)

• If A is a dynamically typed container, and its type at
two instants are different, A should have been freed
in between.

({t(A) = x}M � {t(A) = y}M) ∧ (x 6= y)

⇒ {t(A) = x}M � {&A = ∅}M ≺ {t(A) = y}M (11)

5.6 Completeness of notations
The various notations we have discussed in this section
cover a wide range of the set of behaviors that we would
want to model in a file system. However, this is by no
means a complete set of notations that can model every
aspect of a file system. As we show in Section 7.2 and
Section 9, certain specific file system features may require
new notations. The main contribution of this paper lies in
putting forth a framework to formally reason about file

system correctness. Although new notations may some-
times need to be introduced for certain specific file sys-
tem features, much of the framework will apply without
any modification.

5.7 Connections to Temporal Logic
Our logic bears some similarity to linear temporal logic.
The syntax of Linear Temporal Logic (LTL) [5, 15] is de-
fined as follows:
• A formula p ∈ AP is an LTL formula, where AP is
a set of atomic propositions.

• Given two LTL formulas f and g, ¬f , f ∧ g, f ∨ g,
X f ,F f ,G f , f U g, and f R g are LTL formulas.
In the definition given aboveX(“next time”), F(“in the
future”), G(“always”), U(“until”), and R(“release”) are
temporal operators. Our formalism is a fragment of LTL,
where the set of atomic propositionsAP consists of mem-
ory and disk beliefs and actions and only temporal opera-
tors F andU are allowed. In our formalism, α � β and
α ≺ β are equivalent to α F β and α U β, respectively.
Given an execution π, which is a sequence of states,
and an LTL formula f , π |= f denotes that f is true in
the execution π. A system S satisfies an LTL formula f
if all its executions satisfy f . The precise semantics of
the satisfaction relation (the meaning of |=) can be found
in [5, Chapter 3]. Thus the semantics for our formalism
follows from the standard semantics of LTL.
In our proof system, we are given set of axioms A
(given in Section 5.5) and a desired property f (such as
the data consistency property described in Section 7.1),
and we want to prove that f follows from the axioms in
A (denoted by A → f), i.e., if a file system satisfies all
properties in the set A, it will also satisfy property f .

6 File System Properties
Various file systems provide different guarantees on their
update behavior. Each guarantee translates into new rules
to the logical model of the file system, and can be used to
complement our basic rules when reasoning about that file
system. In this section, we discuss three such properties.

6.1 Container exclusivity
A file system exhibits container exclusivity if it guarantees
that for every on-disk container, there is at most one dirty
copy of the container’s contents in the file system cache. It
also requires the file system to ensure that the in-memory
contents of a container do not change while the container
is being written to disk. Many file systems such as BSD
FFS, Linux ext2 and VFAT exhibit container exclusivity;
some journaling file systems like ext3 do not exhibit this
property. In our equations, when we refer to containers in
memory, we refer to the latest epoch of the container in
memory, in the case of file systems that do not obey con-
tainer exclusivity. For example, in eq. 10, {&A = ∅}M

means that at that time, there is no container whose latest

USENIX Association6

epoch in memory points to A; similarly, write(B) means
that the latest epoch of B at that time is being written.
When referring to a specific version, we use the epoch
notation. Of course, if container exclusivity holds, only
one epoch of any container exists in memory.
Under container exclusivity, we have a stronger con-
verse for eq. 3:

{B → A}D ⇒ {B → A}M ≺ {B → A}D (12)

If we assume that A is unshared, we have a stronger
equation following from equation 12, because the only
way the disk belief {B → A}D can hold is ifB was written
by the file system. Note that many containers in typical
file systems (such as data blocks) are unshared.

{B → A}D ⇒ {B → A}M ≺
(write(B) � {B → A}D) (13)

6.2 Reuse ordering
A file system exhibits reuse ordering if it ensures that be-
fore reusing a container, it commits the freed state of the
container to disk. For example, if A is pointed to by gen-
eration b in memory, later freed (i.e., &A = ∅), and then
another generation c is made to point to A, the freed state
of A (i.e., the container of generation b, with its pointer
removed) is written to disk before the reuse occurs.

{b → A}M ≺ {&A = ∅}M ≺ {c → A}M

⇒ {&A = ∅}M ≺ write(C(b)) � {c → A}M

Since every reuse results in such a commit of the freed
state, we could extend the above rule as follows:

{b → A}M � {&A = ∅}M ≺ {c → A}M

⇒ {&A = ∅}M ≺ write(C(b)) � {c → A}M (14)

FFS with soft updates [6] and Linux ext3 are two ex-
amples of file systems that exhibit reuse ordering.

6.3 Pointer ordering
A file system exhibits pointer ordering if it ensures that
before writing a containerB to disk, the file system writes
all containers that are pointed to by B.

{B → A}M ≺ write(B)

⇒ {B → A}M ≺ (write(A) � write(B)) (15)

FFS with soft updates is an example of a file system
that exhibits pointer ordering.

7 Modeling Existing Systems
Having defined the basic formalism of our logic, we pro-
ceed to using the logic to model and reason about file sys-
tem behaviors. In this section, we present proofs for two
properties important for file system consistency. First, we
discuss the data consistency problem in a file system. We
then model a journaling file system and reason about the
non-rollback property in a journaling file system.

7.1 Data consistency
We first consider the problem of data consistency of the
file system after a crash. By data consistency, we mean
that the contents of data block containers have to be con-
sistent with the metadata that references the data blocks.
In other words, a file should not end up with data from a
different file when the file system recovers after a crash.
Let us assume thatB is a file metadata container (i.e. con-
tains pointers to the data blocks of the respective file), and
A is a data block container. Then, if the disk belief that
Bx points to A holds, and the on-disk contents of A were
written when k was the generation of A, then epoch Bx

should have pointed (at some time in the past) exactly to
the kth generation of A in memory, and not a different
generation. The following rule summarizes this:

{Bx → A}D ∧ {Ay}D ⇒ ({Bx → Ak}M � {Bx → A}D)

∧ (k = g(Ay))

We prove below that if the file system exhibits reuse
ordering and pointer ordering, it never suffers a data con-
sistency violation. We also show that if the file system
does not obey any such ordering, data consistency could
be compromised on crashes.
For simplicity, let us make a further assumption that
the data containers in our file system are nonshared (⊕A),
i.e., different files do not share data block pointers. Let
us also assume that the file system obeys the container
exclusivity property. Many modern file systems such as
ext2 and VFAT have these properties. Since under block
exclusivity {Bx → A}D ⇒ {Bx → A}M ≺ {Bx → A}D (by
eq. 12), we can rewrite the above rule as follows:

({Bx → Ak}M ≺ {Bx → A}D) ∧ {Ay}D

⇒ (k = g(Ay)) (16)

If this rule does not hold, it means that the file repre-
sented by the generation g(Bx) points to a generation k
of A, but the contents of A were written when its genera-
tion was g(Ay), clearly a case of data corruption.
To show that this rule does not always hold, we assume
the negation and prove that it is reachable as a sequence
of valid file system actions (α ⇒ β ≡ ¬(α ∧ ¬β)).
From eq. 6, we have {Ay}D ⇒ {c → g(Ay)}M ≺

write(A). Thus, we have two event sequences implied by
the LHS of eq. 16:

i. {Bx → Ak}M ≺ {Bx → A}D

ii. {c → g(Ay)}M ≺ write(A)

Thus, in order to prove eq. 16, we need to prove that
every possible interleaving of the above two sequences,
together with the clause (k 6= g(Ay)) is invalid. To dis-
prove eq. 16, we need to prove that at least one of the
interleavings is valid.
Since (k 6= g(Ay)), and since {Bx → Ak}M ≺ {Bx →

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 7

FAST ’05: 4th USENIX Conference on File and Storage Technologies

A}D , the event {c → g(Ay)}M cannot occur in between
those two events, due to container exclusivity and because
A is unshared. Similarly {Bx → Ak}M cannot occur be-
tween {c → g(Ay)}M ≺ write(A). Thus, we have only two
interleavings:

1. {Bx → Ak}M ≺ {Bx → A}D � {c → g(Ay)}M ≺ write(A)

2. {c → g(Ay)}M ≺ write(A) � {Bx → Ak}M ≺ {Bx → A}D

Case 1:
Applying eq. 2,

⇒ {g(Bx) → Ak}M ≺ {Bx → A}D

� {c → g(Ay)}M ≺ write(A) ∧ (k 6= g(Ay))

Applying eq. 8,

⇒ {g(Bx) → Ak}M ≺ {Bx → A}D

� {&A = ∅}M ≺ {c → g(Ay)}M ≺ write(A)(17)

Since step 17 is a valid sequence in file system execu-
tion, where generationAk could be freed due to a delete of
the file represented by generation g(Bx) and then a sub-
sequent generation of the block is reallocated to the file
represented by generation c in memory, we have shown
that this violation could occur.
Let us now assume that our file system obeys reuse or-
dering, i.e., equation 14. Under this additional constraint,
equation 17 would imply the following:

⇒ {g(Bx) → Ak}M ≺ {Bx → A}D ≺
{&A = ∅}M ≺ write(B) �
{c → g(Ay)}M ≺ write(A)

By eq. 10,
⇒ {g(Bx) → Ak}M ≺ {Bx → A}D ≺

{&A = ∅}D � {c → g(Ay)}M ≺
write(A)

⇒ {&A = ∅}D ∧ {Ac}D (18)

This is however, a contradiction under the initial
assumption we started off with, i.e. {&A = B}D. Hence,
under reuse ordering, we have shown that this particular
scenario does not arise at all.

Case 2: {c → g(Ay)}M ≺ write(A) � {Bx → Ak}M ≺
{Bx → A}D ∧ (k 6= g(Ay))

Again, applying eq. 2,

⇒ (k 6= g(Ay)) ∧ {c → g(Ay)}M ≺ write(A) �
{g(Bx) → Ak}M ≺ {Bx → A}D

By eqn 8,
⇒ {c → g(Ay)}M ≺ write(A) � {&A = ∅}M

≺ {g(Bx) → Ak}M ≺ {Bx → A}D (19)

Again, this is a valid file system sequence where file
generation c pointed to data block generation g(Ay), the
generation g(Ay) gets deleted, and a new generation k of

container A gets assigned to file generation g(Bx). Thus,
consistency violation can also occur in this scenario.
Interestingly, when we apply eq. 14 here, we get

⇒ {c → g(Ay)}M ≺ write(A) � {&A = ∅}M

≺ write(C(c)) � {g(Bx) → Ak}M

≺ {Bx → A}D

However, we cannot apply eq. 10 in this case because
the belief {C → A}D need not hold. Even if we did
have a rule that led to the belief {&A = ∅}D immedi-
ately after write(C(c)), that belief will be overwritten by
{Bx → A}D later in the sequence. Thus, eq. 14 does
not invalidate this sequence; reuse ordering thus does not
guarantee data consistency in this case.
Let us now make another assumption, that the file sys-
tem also obeys pointer ordering (eq. 15).
Since we assume that A is unshared, and that container
exclusivity holds, we can apply eq. 13 to equation 19.

⇒ {c → g(Ay)}M ≺ write(A) � {&A = ∅}M ≺
{g(Bx) → Ak}M ≺ write(B) � {Bx → A}D (20)

Now applying the pointer ordering rule (eqn 15.),

⇒ {c → g(Ay)}M ≺ write(A) � {&A = ∅}M ≺
{g(Bx) → Ak}M ≺ write(A) � write(B)

� {Bx → A}D

By eq. 7,

⇒ {c → A}M ≺ write(A) � {&A = ∅}M ≺
{Ay}D � write(B) � {Bx → A}D ∧ (k = g(Ay))

⇒ {Ay}D ∧ {Bx → A}D ∧ (k = g(Ay)) (21)

This is again a contradiction, since this implies that the
contents of A on disk belong to the same generation Ak,
while we started out with the assumption that g(Ay) 6= k.
Thus, under reuse ordering and pointer ordering, the
file system never suffers a data consistency violation. If
the file system does not obey any such ordering (such as
ext2), data consistency could be compromised on crashes.
Note that this inconsistency is fundamental, and cannot
be fixed by scan-based consistency tools such as fsck. We
also verified that this inconsistency occurs in practice; we
were able to reproduce this case experimentally on an ext2
file system.

7.2 Modeling file system journaling
We now extend our logic with rules that define the behav-
ior of a journaling file system. We then use the model to
reason about a key property in a journaling file system.
Journaling is a technique commonly used by file sys-
tems to ensure metadata consistency. When a single
file system operation spans multiple changes to metadata
structures, the file system groups those changes into a
transaction and guarantees that the transaction commits
atomically, thus preserving consistency. To provide atom-
icity, the file system first writes the changes to a write-

USENIX Association8

ahead log (WAL), and propagates the changes to the actual
on-disk location only after the transaction is committed to
the log. A transaction is committed when all changes are
logged, and a special “commit” record is written to log
indicating completion of the transaction. When the file
system recovers after a crash, a checkpointing process re-
plays all changes that belong to committed transactions.
To model journaling, we consider a logical “transac-
tion” object that determines the set of log record contain-
ers that belong to that transaction, and thus logically con-
tains pointers to the log copies of all containers modified
in that transaction. We denote the log copy of a journaled
container by the ˆ symbol on top of the container name;
Âx is thus a container in the log, i.e., journal of the file
system (note that we assume physical logging, such as the
block-level logging in ext3). The physical realization of
the transaction object is the “commit” record, since it log-
ically points to all containers that changed in that transac-
tion. For the WAL property to hold, the commit container
should be written only after the log copy of all modified
containers that the transaction points to are written.
If T is the commit container, the WAL property leads
to the following two rules:

{T → Âx}M ≺ write(T) ⇒ {T → Âx}M ≺ (write(Âx)

� write(T)) (22)

{T → Âx}M ≺ write(Ax) ⇒ {T → Âx}M ≺ (write(T)

� write(Ax)) (23)
The first rule states that the transaction is not commit-
ted (i.e., commit record not written) until all containers
belonging to the transaction are written to disk. The sec-
ond rule states that the on-disk home copy of a container
is written only after the transaction in which the container
was modified, is committed to disk. Note that unlike the
normal pointers considered so far that point to contain-
ers or generations, the pointers from container T in the
above two rules point to epochs. These epoch pointers are
used because a commit record is associated with a specific
epoch (e.g., snapshot) of the container.
The replay or checkpointing process can be depicted by
the following two rules.

{T → Âx}D ∧ {T}D ⇒ write(Ax) � {Ax}D (24)

{T1 → Âx}D ∧ {T2 → Ây}D ∧ ({T1}D � {T2}D)

⇒ write(Ay) � {Ay}D (25)

The first rule says that if a container is part of a transac-
tion and the transaction is committed on disk, the on-disk
copy of the container is updated with the logged copy per-
taining to that transaction. The second rule says that if the
same container is part of multiple committed transactions,
the on-disk copy of the container is updated with the copy
pertaining to the last of those transactions.
The following belief transitions hold:

({T → B̂x}M ∧ {Bx → A}M) ≺ write(T)

⇒ {Bx → A}D (26)

{T → Âx}M ≺ write(T) ⇒ {Ax}D (27)

Rule 26 states that if Bx points to A and B̂x belongs
to transaction T , the commit of T leads to the disk belief
{Bx → A}D . Rule 27 says that the disk belief {Ax}D

holds immediately on commit of the transaction which Âx

is part of; creation of the belief does not require the check-
point write to happen. As described in §5.1, a disk belief
pertains to the belief the file systemwould reach, if it were
to start from the current disk state.
In certain journaling file systems, it is possible that only
containers of certain types are journaled; updates to other
containers directly go to disk, without going through the
transaction machinery. In our proofs, we will consider the
cases of both complete journaling (where all containers
are journaled) and selective journaling (only containers of
a certain type). In the selective case, we also address the
possibility of a container changing its type from a jour-
naled type to a non-journaled type and vice versa. For a
containerB that belongs to a journaling type, we have the
following converse of equation 26:

{Bx → A}D ⇒ ({T → B̂x}M ∧ {Bx → A}M)

≺ write(T) � {Bx → A}D (28)

We can show that in complete journaling, data inconsis-
tency never occurs; we omit this due to space constraints.

7.2.1 The non-rollback property
We now introduce a new property called non-rollback that
is pertinent to file system consistency. We first formally
define the property and then reason about the conditions
required for it to hold in a journaling file system.
The non-rollback property states that the contents of a
container on disk are never overwritten by older contents
from a previous epoch. This property can be expressed as:

{Ax}D � {Ay}D ⇒ {Ax}M � {Ay}M (29)

The above rule states that if the on-disk contents of A
move from epoch x to y, it should logically imply that
epoch x occurred before epoch y in memory as well. The
non-rollback property is crucial in journaling file systems;
absence of the property could lead to data corruption.
In the proof below, we logically derive the corner cases
that need to be handled for this property to hold, and show
that journal revoke records effectively ensure this.
If the disk believes in the xth epoch of A, there are
only two possibilities. If the type of Ax was a journaled
type, Ax should have belonged to a transaction and the
disk must have observed the commit record for the trans-
action; as indicated in eq 27, the belief of {Ax}D occurs
immediately after the commit. However, at a later point
the actual contents ofAx will be written by the file system
as part of its checkpoint propagation to the actual on-disk

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 9

FAST ’05: 4th USENIX Conference on File and Storage Technologies

location, thus re-establishing belief {Ax}D . If J is the set
of all journaled types,

{Ax}D ∧ {t(Ax) ∈ J}M ⇒ ({Ax}M ∧ {T → Âx}M)

≺ write(T) � {Ax}D

� write(Ax) � {Ax}D (30)

The second possibility is that Ax is of a type that is not
journaled. In this case, the only way the disk could have
learnt of it is by a prior commit of Ax.

{Ax}D ∧ {t(Ax) /∈ J}M ⇒ {Ax}M ≺ write(Ax)

� {Ax}D (31)

Ax and Ay are journaled:
Let us first assume that both Ax and Ay belong to a
journaled type. To prove the non-rollback property, we
consider the LHS of eq. 29: {Ax}D � {Ay}D; since both
Ax and Ay are journaled, we have the following two se-
quence of events that led to the two beliefs (by eq. 30):

({Ax}M ∧ {T1 → Âx}M) ≺ write(T1) � {Ax}D

� write(Ax) � {Ax}D

({Ay}M ∧ {T2 → Ây}M) ≺ write(T2) � {Ay}D

� write(Ay) � {Ay}D

Omitting the write actions in the above sequences for
simplicity, we have the following sequences of events:

i. {Ax}M � {Ax}D � {Ax}D

ii. {Ay}M � {Ay}D � {Ay}D

Note that in each sequence, there are two instances of
the same disk belief being created: the first instance is
created when the corresponding transaction is committed,
and the second instance when the checkpoint propagation
happens at a later time. In snapshot-based coarse-grained
journaling systems (such as ext3), transactions are always
committed in order. Thus, if epoch Ax occurred before
Ay , T1 will be committed before T2 (i.e., the first instance
of {Ax}D will occur before the first instance of {Ay}D).
Another property true of such journaling is that the check-
pointing is in-order as well; if there are two committed
transactions with different copies of the same data, only
the version pertaining to the later transaction is propa-
gated during the checkpoint.
Thus, the above two sequences of events lead to only
two interleavings, depending on whether epoch x occurs
before epoch y or vice versa. Once the ordering between
epoch x and y is fixed, the rest of the events are con-
strained to a single sequence:
Interleaving 1:

({Ax}M � {Ay}M) ∧ ({Ax}D � {Ay}D � {Ay}D)

⇒ {Ax}M � {Ay}M

Interleaving 2:

⇒ ({Ay}M � {Ax}M) ∧ ({Ay}D � {Ax}D � {Ax}D)

⇒ {Ay}D � {Ax}D

Thus, the second interleaving results in a contradiction
from our initial statement we started with (i.e., {Ax}D �
{Ay}D). Therefore the first interleaving is the only le-
gal way the two sequences of events could be combined.
Since the first interleaving implies that {Ax}M � {Ay}M ,
we have proved that if the two epochs are journaled, the
non-rollback property holds.
Ay is journaled, but Ax is not:
We now consider the case where the type of A changes
between epochs x and y, such that Ay belongs to a jour-
naled type and Ax does not.
We again start with the statement {Ax}D � {Ay}D.
From equations 30 and 31, we have the following two se-
quences of events:

i. ({Ay}M ∧ {T → Ây}M) ≺ write(T)

� {Ay}D � write(Ay) � {Ay}D

ii. {Ax}M ≺ write(Ax) � {Ax}D

Omitting the write actions for the sake of readability,
the sequences become:

i. {Ay}M � {Ay}D � {Ay}D

ii. {Ax}M � {Ax}D

To prove the non-rollback property, we need to show
that every possible interleaving of the above two se-
quences where {Ay}M � {Ax}M results in a contradic-
tion, i.e., cannot co-exist with {Ax}D � {Ay}D.
The interleavings where {Ay}M � {Ax}M are:

1. {Ay}M � {Ax}M � {Ax}D � {Ay}D � {Ay}D

2. {Ay}M � {Ay}D � {Ax}M � {Ax}D � {Ay}D

3. {Ay}M � {Ay}D � {Ay}D � {Ax}M � {Ax}D

4. {Ay}M � {Ax}M � {Ay}D � {Ax}D � {Ay}D

5. {Ay}M � {Ax}M � {Ay}D � {Ay}D � {Ax}D

6. {Ay}M � {Ay}D � {Ax}M � {Ay}D � {Ax}D

Scenarios 3, 5, and 6 imply {Ay}D � {Ax}D and
are therefore invalid interleavings. Scenarios 1, 2, and
4 are valid interleavings that do not contradict our ini-
tial assumption of disk beliefs, but at the same time, im-
ply {Ay}M � {Ax}M ; these scenarios thus violate the
non-rollback property. Therefore, under dynamic typing,
the above journaling mechanism does not guarantee non-
rollback. Due to this violation, file contents can be cor-
rupted by stale metadata generations.
Scenario 2 and 4 occur because the checkpoint prop-
agation of earlier epoch Ay which was journaled, occurs
afterAwas overwritten as a non-journaled epoch. To pre-
vent this, we need to impose that the checkpoint propaga-
tion of a container in the context of transaction T does not

USENIX Association10

happen if the on-disk contents of that container were up-
dated after the commit of T . The journal revoke records
in ext3 precisely guarantee this; if a revoke record is en-
countered during log replay (during a pre-scan of the log),
the corresponding block is not propagated to the actual
disk location.
Scenario 1 happens because a later epoch of A is com-
mitted to disk before the transaction which modified an
earlier epoch is committed. To prevent this, we need a
form of reuse ordering, which imposes that before a con-
tainer changes type (i.e. is reused in memory), the trans-
action that freed the previous generation be committed.
Since transactions commit in order, and the freeing trans-
action should occur after transaction T which used Ay in
the above example, we have the following guarantee:

{t(Ay) ∈ J}M ∧ {t(Ax) /∈ J}M ∧ ({Ay}M � {Ax}M)

⇒ {Ay}M ≺ write(T) � {Ax}M

With this rule, Scenario 1 becomes the same as 2 and 4
and is handled by the revoke record solution. Thus, under
these two properties, the non-rollback property holds.

8 Redundant Synchrony in Ext3
We examine a performance problem with the ext3 file sys-
tem where the transaction commit procedure artificially
limits parallelism due to a redundant synchrony in its disk
writes [16]. The ordered mode of ext3 guarantees that a
newly created file will never point to stale data blocks af-
ter a crash. Ext3 ensures this guarantee by the following
ordering in its commit procedure: when a transaction is
committed, ext3 first writes to disk the data blocks allo-
cated in that transaction, waits for those writes to com-
plete, then writes the journal blocks to disk, waits for
those to complete, and then writes the commit block. If I
is an inode container, F is a file data block container, and
T is the transaction commit container, the commit proce-
dure of ext3 can be expressed by the following equation:

({Ix → Fk}M ∧ {T → Îx}M) ≺ write(T)

⇒ ({Ix → Fk}M ∧ {T → Îx}M)

≺ write(F) � write(Îx) � write(T) (32)

To examine if this is a necessary condition to ensure
the no-stale-data guarantee, we first formally depict the
guarantee that the ext3 ordered mode seeks to provide, in
the following equation:

{Ix → Fk}M � {Ix → F}D ⇒ {Fy}D � {Ix → F}D

∧ (g(F y) = k) (33)

The above equation states that if the disk acquires the
belief that {Ix → F}, then the contents of the data con-
tainer F on disk should already pertain to the generation
of F that Ix pointed to in memory. Note that because ext3
obeys reuse ordering, the ordered mode guarantee only

needs to cater to the case of a free data block container
being allocated to a new file.
We now prove equation 33, examining the conditions
that need to hold for this equation to be true. We consider
the LHS of the equation:

{Ix → Fk}M � {Ix → F}D

Applying equation 28 to the above, we get

⇒ ({Ix → Fk}M ∧ {T → Îx}M) ≺
write(T) � {Ix → F}D

Applying equation 32, we get

⇒ ({Ix → Fk}M ∧ {T → Îx}M) ≺
write(F) � write(Îx) �
write(T) � {Ix → F}D (34)

By equation 7,

⇒ ({Ix → Fk}M ∧ {T → Îx}M) ≺
{F y}D � write(Îx) �
write(T) � {Ix → F}D ∧ (g(F y) = k)

⇒ {F y}D � {Ix → F}D ∧ (g(F y) = k)

Thus, the current ext3 commit procedure (equation 32)
guarantees the no-stale-data property. However, to see if
all the waits in the above procedure are required, let us
reorder the two actionswrite(F) andwrite(Îx) in eq. 34:

⇒ ({Ix → Fk}M ∧ {T → Îx}M) ≺
write(Îx) � write(F) �
write(T) � {Ix → F}D

Once again, applying equation 7,

⇒ {F y}D � {Ix → F}D ∧ (g(F y) = k)

Thus, we can see that the ordering between the actions
write(F) and write(Îx) is inconsequential to the guar-
antee that ext3 ordered mode attempts to provide. We can
hence conclude that the wait that ext3 employs after the
write to data blocks is redundant, and unnecessarily lim-
its parallelism between data and journal writes. This can
have especially severe performance implications in set-
tings where the log is stored on a separate disk, as illus-
trated in previous work [16].
We believe that this specific example points to a gen-
eral problem with file system design. When developers do
not have rigorous frameworks to reason about correctness,
they tend to be conservative. Such conservatism often
translates into unexploited opportunities for performance
optimization. A systematic framework enables aggressive
optimizations while ensuring correctness.

9 Support for Consistent Undelete
In this section, we demonstrate that our logic enables one
to quickly formulate and prove properties about new file

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 11

FAST ’05: 4th USENIX Conference on File and Storage Technologies

system features and mechanisms. We explore a function-
ality that is traditionally not considered a part of core file
system design: the ability to undelete deleted files with
certain consistency guarantees. The ability to recover
deleted files is useful, as demonstrated by the large num-
ber of tools available for the purpose [17, 19]. Such tools
try to rebuild deleted files by scavenging through on-disk
metadata; this is possible to an extent because file systems
do not normally zero out freed metadata containers (they
are simply marked free). For example, in a UNIX file sys-
tem, the block pointers in a deleted inode would indicate
the blocks that used to belong to that deleted file.
However, none of the existing tools for undelete can
guarantee consistency (i.e., assert that the recovered con-
tents are valid). While undelete is fundamentally only
best-effort (files cannot be recovered if the blocks were
subsequently reused in another file), the user needs to
know how trustworthy the recovered contents are. We
demonstrate using our logic that with existing file sys-
tems, such consistent undelete is impossible. We then pro-
vide a simple solution, and prove that the solution guar-
antees consistent undelete. Finally, we present an imple-
mentation of the solution in ext3.

9.1 Undelete in existing systems
To model undelete, the logic needs to express pointers
from containers holding a dead generation. We introduce
the ; notation to indicate such a pointer, which we call
a dead pointer. We also define a new operator &̃ on a
container that denotes the set of all dead and live entities
pointing to the container. Let undel(B) be the undelete
action on container B. The undelete process can be sum-
marized by the following equation:

undel(B) ∧ {Bx ; A}D ∧ {&̃A = {B}}D

⇔ {Bx ; A}D ≺ {By → A}D ∧ (g(Bx) = g(By)) (35)

In other words, if the dead (free) container Bx points
to A on disk, and is the only container (alive or dead)
pointing to A, the undelete makes the generation g(Bx)
live again, and makes it point to A.
The guarantee we want to hold for consistency is that
if a dead pointer from Bx to A is brought alive, the on-
disk contents of A at the time the pointer is brought alive
must correspond to the same generation that epoch Bx

originally pointed to in memory (similar to the data con-
sistency formulation in §7.1):

{Bx → Ak}M � {Bx ; A}D ≺ {By → A}D

∧ (g(Bx) = g(By))

⇒ {Bx ; A}D ∧ {Az}D ∧ (g(Az) = k)

Note that the clause g(Bx) = g(By) is required in the
LHS to cover only the case where the same generation is
brought to life, which would be true only for undelete.

To show that the above guarantee does not hold neces-
sarily, we consider the negation of the RHS, i.e., {Az}D∧
(g(Az) 6= k), and show that this condition can co-exist
with the conditions required for undelete as described in
equation 35. In other words, we show that undel(B) ∧
{Bx ; A}D ∧ {&̃A = {B}}D ∧ {Az}D ∧ (g(Az) 6= k) can
arise from valid file system execution.
We utilize the following implications for the proof:

{Bx ; A}D ⇔ {Bx → Ak}M ≺ {&A = ∅}M ≺ write(B)

{Az}D ⇒ {c → g(Az)}M ≺ write(A) (eq. 6)

Let us consider one possible interleaving of the above
two event sequences:
{c → g(Az)}M ≺ write(A) � {Bx → Ak}M ≺
{&A = ∅}M ≺ write(B)

This is a valid file system sequence where a file repre-
sented by generation c points to g(Az), Az is written to
disk, then block A is freed from c thus killing the gen-
eration g(Az), and a new generation Ak of A is then al-
located to the generation g(Bx). Now, when g(Bx) is
deleted, and B is written to disk, the disk has both beliefs
{Bx ; A}D and {Az}D. Further, if the initial state of the
disk was {&̃A = ∅}D , the above sequence would also si-
multaneously lead to the disk belief {&̃A = {B}}D . Thus
we have shown that the conditions {Bx ; A}D ∧ {&̃A =

{B}}D ∧ {Az}D ∧ (k 6= g(Az)) can hold simultaneously.
An undelete of B at this point would lead to violation of
the consistency guarantee, because it would associate a
stale generation ofA with the undeleted file g(Bx). It can
be shown that neither reuse ordering nor pointer ordering
would guarantee consistency in this case.

9.2 Undelete with generation pointers
We now propose the notion of generation pointers and
show that with such pointers, consistent undelete is guar-
anteed. So far, we have assumed that pointers on disk
point to containers (as discussed in Section 4). If instead,
each pointer pointed to a specific generation, it leads to a
different set of file system properties. To implement such
“generation pointers”, each on-disk container contains a
generation number that gets incremented every time the
container is reused. In addition, every on-disk pointer will
embed this generation number in addition to the container
name. With generation pointers, the on-disk contents of
a container will implicitly indicate its generation. Thus,
{Bk}D is a valid belief; it means that the disk knows the
contents of B belong to generation k.
Under generation pointers, the criterion for doing un-
delete (eq. 35) becomes:

undel(B) ∧ {Bx ; Ak}D ∧ {Ak}D

⇔ {Bx ; Ak}D ≺ {By → Ak}D (36)

Let us introduce an additional constraint {Az}D ∧ (k 6=
g(Az)) into the left hand side of the above equation (as we
did in the previous subsection):

USENIX Association12

{Bx ; Ak}D ∧ {Ak}D ∧ {Az}D ∧ (k 6= g(Az)) (37)

Since k 6= g(Az), let us denote g(Az) as h. Since ev-
ery on-disk container holds the generation number too, we
have {Ah}D . Thus, the above equation becomes:

{Bx ; Ak}D ∧ {Ak}D ∧ {Ah}D ∧ (k 6= h)

This is clearly a contradiction, since it means the on-
disk container A has the two different generations k and
h simultaneously. Thus, it follows that an undelete would
not occur in this scenario (or alternatively, this would be
flagged as inconsistent). Thus, all undeletes occurring un-
der generation pointers are consistent.

9.3 Implementation of undelete in ext3
Following on the proof for consistent undelete, we imple-
mented the generation pointer mechanism in Linux ext3.
Each block has a generation number that gets incremented
every time the block is reused. Although the generation
numbers are maintained in a separate set of blocks, en-
suring atomic commit of the generation number and the
block data is straightforward in the data journaling mode
of ext3, where we simply add the generation update to the
create transaction. The block pointers in the inode are also
extended with the generation number of the block. We im-
plemented a tool for undelete that scans over the on-disk
structures, restoring all files that can be undeleted con-
sistently. Specifically, a file is restored if the generation
information in all its metadata block pointers match with
the corresponding block generation of the data blocks.
We ran a simple microbenchmark creating and deleting
various directories from the linux kernel source tree, and
observed that out of roughly 12,200 deleted files, 2970
files (roughly 25%) were detected to be inconsistent and
not undeletable, while the remaining files were success-
fully undeleted. This illustrates that the scenario proved
in Section 9.1 actually occurs in practice; an undelete
tool without generation information would wrongly re-
store these files with corrupt or misleading data.

10 Application to Semantic Disks
An interesting application of a logic framework for file
systems is that it enables reasoning about a recently
proposed class of storage systems called “semantically-
smart” disk systems (SDS). An SDS exploits file system
information within the storage system, to provide bet-
ter functionality [20]. However, as admitted by the au-
thors [21], reasoning about the correctness of knowledge
tracked in a semantic disk is quite hard. Our formalism of
memory and disk beliefs fits the SDS model, since the ex-
tra file system state tracked by an SDS is essentially a disk
belief. In this section, we first use our logic to explore the
feasibility of tracking block type within a semantic disk.

We then show that the usage of generation pointers by the
file system simplifies information tracking within an SDS.

10.1 Block typing
An important piece of information required within a
semantic disk is the type of a disk container [21].
While identifying the type of statically-typed containers
is straightforward, dynamically typed containers are hard
to deal with. The type of a dynamically typed container
is determined by the contents of a parent container; for
example, an indirect pointer block can be identified only
by observing a parent inode that has this block in its indi-
rect pointer field. Thus, tracking dynamically typed con-
tainers requires correlating type information from a type-
determining parent, and then using the information to in-
terpret the contents of the dynamic container.
For accurate type detection in an SDS, we want the fol-
lowing guarantee to hold:

{t(Ax) = k}D ⇒ {t(Ax) = k}M (38)

In other words, if the disk interprets the contents of an
epochAx to be belonging to type k, those contents should
have belonged to type k in memory as well. This guaran-
tees, for example, that the disk would not wrongly inter-
pret the contents of a normal data block container as an
indirect block container. Note however that the equation
does not impose any guarantee on when the disk identi-
fies the type of a container; it only states that whenever it
does, the association of type with the contents is correct.
To prove this, we first state an algorithm of how the
disk arrives at a belief about a certain type [21]. An SDS
snoops on metadata traffic, looking for type-determining
containers such as inodes. When such a container is writ-
ten, it observes the pointers within the container and con-
cludes on the type of each of the pointers. Let us assume
that one such pointer of type k points to container A. The
disk then examines if container A was written since the
last time it was freed. If yes, it interprets the current con-
tents ofA as belonging to type k. If not, whenA is written
at a later time, the contents are associated with type k. We
have the following equation:

{t(Ax) = k}D ⇒ {By → A}D ∧ (f(By , A) = k)

∧ {Ax}D (39)

In other words, to interpret Ax as belonging to type k,
the disk must believe that some container B points to A,
and the current on-disk epoch ofB (i.e.,By) must indicate
that A is of type k; the function f(By, A) abstracts this
indication. Further, the disk must contain the contents of
epoch Ax in order to associate the contents with type k.
Let us explore the logical events that should have led to
each of the components on the right side of equation 39.
Applying eq. 12,

{By → A}D ∧ (f(By , A) = k)

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 13

FAST ’05: 4th USENIX Conference on File and Storage Technologies

⇒ ({By → A}M ∧ (f(By , A) = k)) ≺ {By → A}D

⇒ ({By → A}M ∧ {t(A) = k}M) ≺ {By → A}D (40)

Similarly for the other component {Ax}D,

{Ax}D ⇒ write(Ax) � {Ax}D (41)

To verify the guarantee in equation 38, we assume that
it does not hold, and then observe if it leads to a valid
scenario. Thus, we can add the clause {t(Ax) = j}M ∧ (j 6=
k) to equation 39, and our equation to prove is:

{By → A}D ∧ (f(By , A) = k) ∧ {Ax}D ∧ {t(Ax) = j}M

We thus have two event sequences (from eq. 40 and 41):

1. ({By → A}M ∧ {t(A) = k}M) ≺ {By → A}D

2. {t(Ax) = j}M ∧ write(Ax)

Since the type of an epoch is unique, and a write of a
container implies that it already has a type,
{t(Ax) = j}M ∧ write(Ax) ⇒ {t(Ax) = j}M ≺ write(Ax).
These sequences can only be interleaved in two ways.
The epoch Ax occurs either before or after the epoch in
which {t(A) = k}M .
Interleaving 1:

({By → A}M ∧ {t(A) = k}M) ≺ {By → A}D

� {t(Ax) = j}M ≺ write(Ax)

By eq. 11,

⇒ ({By → A}M ∧ {t(A) = k}M) ≺ {By → A}D

� {&A = ∅}M ≺ {t(Ax) = j}M ≺ write(Ax)

This is a valid sequence where the container A is freed
after the disk acquired the belief {B → A} and a later ver-
sion of A is then written when its actual type has changed
to j in memory, thus leading to incorrect interpretation of
Ax as belonging to type k.
However, in order to prevent this scenario, we simply
need the reuse ordering rule (eq. 14). With that rule, the
above sequence would imply the following:

⇒ ({By → A}M ∧ {t(A) = k}M) ≺ {By → A}D

� {&A = ∅}M ≺ write(B) � {t(Ax) = j}M ≺ write(Ax)

⇒ ({By → A}M ∧ {t(A) = k}M) ≺ {By → A}D

� {&A = ∅}D ≺ {t(Ax) = j}M ≺ write(Ax)

Thus, when Ax is written, the disk will be treating A as
free, and hence will not wrongly associate A with type k.
Interleaving 2:
Proceeding similarly with the second interleaving
where epoch Ax occurs before A is assigned type k, we
arrive at the following sequence:

⇒ {t(Ax) = j}M ≺ write(Ax) � {&A = ∅}M

≺ ({By → A}M ∧ {t(A) = k}M) ≺ {By → A}D

We can see that simply applying the reuse ordering rule
does not prevent this sequence. We need a stronger form

of reuse ordering where the “freed state” ofA includes not
only the containers that pointed to A, but also the alloca-
tion structure |A| tracking liveness of A. With this rule,
the above sequence becomes:

⇒ {t(Ax) = j}M ≺ write(Ax) � {&A = ∅}M

≺ write(|A|) � ({By → A}M ∧ {t(A) = k}M)

≺ {By → A}D (42)

We also need to add a new behavior to the SDS which
states that when the SDS observes an allocation structure
indicating thatA is free, it inherits the belief thatA is free.

{&A = ∅}M ≺ write(|A|) ⇒ {&A = ∅}D

Applying the above SDS operation to eqn 42, we get

⇒ {t(Ax) = j}M ≺ write(Ax) � {&A = ∅}D

� ({By → A}M ∧ {t(A) = k}M) ≺ {By → A}D

In this sequence, because the SDS does not observe a
write of A since it was treated as “free”, it will not asso-
ciate type k to A until A is subsequently written.
Thus, we have shown that an SDS cannot accurately
track dynamic type underneath a file system without any
ordering guarantees. We have also shown that if the file
system exhibits a strong form of reuse ordering, dynamic
type detection can indeed be made reliable within an SDS.

10.2 Utility of generation pointers
In this subsection, we explore the utility of file system-
level “generation pointers” (§ 9.2) in the context of an
SDS. To illustrate their utility, we show that tracking dy-
namic type in an SDS is straightforward if the file system
tracks generation pointers.
With generation pointers, equation 39 becomes:

{t(Ag) = k}D ⇒ {By → Ag}D ∧ (f(By , Ag) = k)

∧ {Ag}D

The two causal event sequences (as explored in the pre-
vious subsection) become:

({By → Ag}M ∧ {t(Ag) = k}M) ≺ {By → Ag}D

{t(Ag) = j}M ∧ write(Ag)

Since the above sequences imply that the same gener-
ation g had two different types, it violates rule 11. Thus,
we straightaway arrive at a contradiction that proves that
violation of rule 38 can never occur.

11 Related Work
Previous work has recognized the need for modeling com-
plex systems with formal frameworks, in order to facili-
tate proving correctness properties about them. The log-
ical framework for reasoning about authentication proto-
cols, proposed by Burrows et al. [4], is the most related

USENIX Association14

to our work in spirit; in that paper, the authors formu-
late a domain-specific logic and proof system for authen-
tication, showing that protocols can be verified through
simple logical derivations. Other domain-specific formal
models exist in the areas of database recovery [9] and
database reliability [7].
A different body of related work involves generic
frameworks for modeling computer systems. The well-
known TLA framework [10] is an example. The I/O
automaton [1] is another such framework. While these
frameworks are general enough to model most complex
systems, their generality is also a curse; modeling various
aspects of a file system to the extent we have in this paper,
is quite tedious with a generic framework. Tailoring the
framework by using domain-specific knowledge makes it
simpler to reason about properties using the framework,
thus significantly lowering the barrier to entry in terms of
adopting the framework [4]. Specifications and proofs in
our logic take 10 to 20 lines in contrast to the thousands
of lines that TLA specifications take [25]. However, auto-
mated theorem-proving through model checkers is one of
the benefits of using a generic framework such as TLA.
Previous work has also explored verification of the cor-
rectness of system implementations. The recent body of
work on using model checking to verify implementations
is one example [14, 24]. We believe that this body of
work is complementary to our logic framework; our logic
framework can be used to build the model and the invari-
ants that should hold in the model, which the implemen-
tation can be verified against.
Finally, the file system properties we have listed in Sec-
tion 6 have been identified in previous work on soft up-
dates [6] and more recent work on semantic disks [20].

12 Conclusions
As the need for dependability of computer systems be-
comes more important than ever, it is essential to have
systematic formal frameworks to verify and reason about
their correctness. Despite file systems being a critical
component of system dependability, formal verification of
their correctness has been largely ignored. Besides mak-
ing file systems vulnerable to hidden errors, the absence
of a formal framework also stifles innovation, because of
the skepticism towards the correctness of new proposals,
and the proclivity to stick to “time-tested” alternatives. In
this paper, we have taken a step towards bridging this gap
in file system design by showing that a logical framework
can substantially simplify and systematize the process of
verifying file system correctness.

Acknowledgements
We would like to thank Lakshmi Bairavasundaram,
Nathan Burnett, Timothy Denehy, Rajasekar Krishna-
murthy, Florentina Popovici, Vijayan Prabhakaran, and
Vinod Yegneswaran for their comments on earlier drafts

of this paper. We also thank the anonymous reviewers for
their excellent feedback and comments, many of which
have greatly improved this paper.
This work is sponsored by NSF CCR-0092840, CCR-
0133456, CCR-0098274, NGS-0103670, ITR-0325267,
IBM, Network Appliance, and EMC.

References
[1] P. C. Attie and N. A. Lynch. Dynamic Input/Output Automata, a
Formal Model for Dynamic Systems. In ACM PODC, 2001.

[2] S. Best. JFS Overview. www.ibm.com/developerworks/library/l-
jfs.html, 2004.

[3] N. Bjorner, A. Browne, M. Colon, B. Finkbeiner, Z. Manna,
H. Sipma, and T. E. Uribe. Verifying temporal properties of reac-
tive systems: A STeP tutorial. Formal Methods in System Design
(FMSD), 16(3):227–270, 2000.

[4] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentica-
tion. In ACM SOSP, pages 1–13, 1989.

[5] E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT
Press, 2000.

[6] G. R. Ganger, M. K. McKusick, C. A. Soules, and Y. N. Patt. Soft
Updates: A Solution to the Metadata Update Problem in File Sys-
tems. ACM TOCS, 18(2), May 2000.

[7] V. Hadzilacos. A Theory of Reliability in Database Systems. J.
ACM, 35(1):121–145, 1988.

[8] R. Hagmann. Reimplementing the Cedar File System Using Log-
ging and Group Commit. In SOSP ’87, Nov. 1987.

[9] D. Kuo. Model and Verification of a Data Manager Based on
ARIES. ACM Trans. Database Systems, 21(4):427–479, 1996.

[10] L. Lamport. The Temporal Logic of Actions. ACM Trans. Pro-
gram. Lang. Syst., 16(3):872–923, 1994.

[11] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A Fast
File System for UNIX. ACM Transactions on Computer Systems,
2(3):181–197, August 1984.

[12] J. C. Mogul. A Better Update Policy. In USENIX Summer ’94,
Boston, MA, June 1994.

[13] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. S.
z. ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and P artial Rollbacks Using Write-Ahead
Logging. ACM TODS, 17(1):94–162, March 1992.

[14] M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler, and D. L. Dill.
CMC: A pragmatic approach to model checking real code. In
OSDI ’02, Dec. 2002.

[15] A. Pnueli. The temporal semantics of concurrent programs. Theo-
retical Computer Science (TCS), 13:45–60, 1981.

[16] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Analysis and Evolution of Journaling File Systems. In USENIX
’05, 2005.

[17] R-Undelete. R-Undelete File Recovery Software. http://www.r-
undelete.com/.

[18] H. Reiser. ReiserFS. www.namesys.com, 2004.
[19] Restorer2000. Restorer 2000 Data Recovery Software.

http://www.bitmart.net/.
[20] M. Sivathanu, L. Bairavasundaram, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau. Life or Death at Block Level. In OSDI
’04, pages 379–394, San Francisco, CA, December 2004.

[21] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Improving Storage System Availability with D-
GRAID. In FAST04, 2004.

[22] T. Ts’o and S. Tweedie. Future Directions for the Ext2/3 Filesys-
tem. In FREENIX ’02, Monterey, CA, June 2002.

[23] S. C. Tweedie. EXT3, Journaling File System.
http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-
ext3.html, July 2000.

[24] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using Model
Checking to Find Serious File System Errors. In OSDI ’04, Dec.
2004.

[25] Y. Yu, P.Manolios, and L. Lamport. Model Checking TLA+ Speci-
fications. Lecture Notes in Computer Science, (1703):54–66, 1999.

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 15

