Zodiac: Efficient Impact Analysis for Storage Area Networks

Aameek Singh
Georgia Institute of Technology

Abstract

Currently, the fields of impact analysis and policy based man-
agement are two important storage management topics that are
not being treated in an integrated manner. Policy-based stor-
age management is being adopted by most storage vendors be-
cause it lets system administrators specify high level policies
and moves the complexity of enforcing these policies to the
underlying management software. Similarly, proactive impact
analysis is becoming an important aspect of storage manage-
ment because system administrators want to assess the impact
of making a change before actually making it. Impact analy-
sis is increasingly becoming a complex task when one is deal-
ing with a large number of devices and workloads. Adding the
policy dimension to impact analysis (that is, what policies are
being violated due to a particular action) makes this problem
even more complex.

In this paper we describe a new framework and a set of opti-
mization techniques that combine the fields of impact analysis
and policy management. In this framework system administra-
tors define policies for performance, interoperability, security,
availability, and then proactively assess the impact of desired
changes on both the system observables and policies. Addition-
ally, the proposed optimizations help to reduce the amount of
data and the number of policies that need to be evaluated. This
improves the response time of impact analysis operations. Fi-
nally, we also propose a new policy classification scheme that
classifies policies based on the algorithms that can be used to
optimize their evaluation. Such a classification is useful in or-
der to efficiently evaluate user-defined policies. We present an
experimental study that quantitatively analyzes the framework
and algorithms on real life storage area network policies. The
algorithms presented in this paper can be leveraged by existing
impact analysis and policy engine tools.

1 Introduction

The size and scale of the storage infrastructure of most
organizations is increasing at a very rapid rate. Organiza-
tions are digitizing and persistently storing more types of

Madhukar Korupolu

Kaladhar Voruganti
IBM Almaden Research Center

data, and are also keeping old data longer, for compliance
and business intelligence mining purposes. The number
of system administrators required to manage storage also
increases as a function of the growth in storage because
there is a limit to the amount of storage that can be man-
aged by a single administrator. This limit is due to the
number of complex tasks that a system administrator has
to perform such as change analysis, provisioning, per-
formance bottleneck analysis, capacity planning, disaster
recovery planning and security analysis.

The focus of this paper is on one of these important
problems namely change analysis. This paper provides
a framework and a set of algorithms that help system ad-
ministrators to proactively assess the impact of making
changes in a storage area network (SAN) before mak-
ing the actual change. Currently, administrators perform
impact analysis manually, based on their past experience
and rules of thumbs (best practices). For example, when
anew host is added, the administrators have to make sure
that Windows and Linux hosts are not put into the same
zone or while adding a new workload, they have to en-
sure that the intermediate switches do not get saturated.

Manually analyzing the impact of a particular change
does not scale well as the size of the SAN infrastruc-
ture increases with respect to the number of devices, best
practices policies, and number of applications. Thus,
deployment of new applications, hosts and storage con-
trollers takes in the order of days or weeks because sys-
tem administrators deploy the system and then reactively
try to correct the problems associated with the deploy-
ment. Typically change management tools have been
very reactive in their scope in that they keep snapshots
of the previous state of the system, and the administra-
tors either revert to or compare the current state with a
previous state after encountering a problem.

Additionally, administrators do not have a way of as-
sessing the impact of their proposed change with respect
to a future state of the system. For example, a system
administrator could potentially allocate increased band-

USENIX Association

FAST ’05: 4th USENIX Conference on File and Storage Technologies

73

width to an application by taking only the current load
into account. However, this could conflict with other
scheduled jobs or known trends in workload surges that
will increase the load on the system in the future. Thus, it
is important for system administrators to assess the im-
pact of their action not just with respect to the current
state of the system but also with respect to future events.

1.1 Contributions

In order to address the above described problems, we
present the Zodiac framework. The Zodiac framework
enables system administrators to proactively assess
the impact of their actions on a variety of system
parameters like resource utilizations and existing system
policies, before making those changes. Proactive change
management analysis is an important problem and is cur-
rently receiving the deserved attention [26, 21, 23, 29].
Through Zodiac, we make the following contributions:

1. Integration with Policy based Management: The
key aspect of our analysis framework is that it is tightly
integrated with policy based storage management.
Currently, policy-based management is being incorpo-
rated into most vendor’s storage management solutions.
Best-practices, service class goals, interoperability
constraints, are specified as policies in the system.
Thus, in essence we are combining the areas of impact
analysis and policy based-management. Zodiac allows
administrators to specify their rules of thumb or best
practices with respect to interoperability, performance,
availability, security as policies. It then assesses the
impact of user actions by checking which of these
policies are being violated or triggered. Zodiac also
assesses the impact of creating new policies.

2. Scalability and Efficiency: Most system admin-
istrators want to assess the impact of their changes in
real-time. A quick feedback on a proposed change
encourages a system administrator to try out many
alternatives. The three major components that contribute
towards the execution time of impact analysis process-
ing are: a) number of policies b) size of the storage
infra-structure c¢) analysis time window (that is assess
the impact of an action for a time window of a day, a
week or a month). An impact analysis engine should
be able to scale upto big SANs with 1000 hosts (found
in many of today’s data centers) and a few hundred
policies. In this paper, we provide algorithms and data
structures that help to reduce the amount of SAN data
that is examined during impact analysis, the number of
policies that need to be evaluated, and a framework for
performing temporal impact analysis.

3. Classification Framework: One of the interesting
result of the algorithm design effort in Zodiac is that
we have designed a new method for classifying SAN
policies based on the optimization techniques they
employ. This, in turn, can also be used by general SAN
policy evaluation engines to optimize their evaluation
mechanisms. During policy specification period, policy
designers can specify the policy type (as per this clas-
sification) as a hint to the policy engine to optimize its
evaluation.

The rest of the paper is organized as follows. Section-2
provides the necessary background with respect to policy
definitions, and SAN operations. Related work is pre-
sented in Section-3. The overview of our architecture
is presented in Section-4 followed by the details of our
implementation in Section-5. In Section-6, we discuss
three important optimization algorithms that help speed
up the overall analysis process. The experimental frame-
work and the results evaluating these optimizations are
presented in Section-7. We discuss related optimizations
in Section-8. Finally, we conclude in Section-9.

2 Background

This section presents the necessary background material
for this paper. Section-2.1 contains a discussion on the
type of SAN policies considered in this paper. Section-
2.2 provides the details of the storage resource models
and Section-2.3 presents a list of what-if operations that
one can perform. In summary, one can define various
policies on the SAN resources and using our framework,
analyze the impact of certain operations on both the SAN
and its associated policies.

2.1 Policy Background

The term policy is often used by different people in dif-
ferent contexts to mean different things. For example, the
terms best practices, rule of thumbs, constraints, thresh-
old violations, goals, rules and service classes have been
referred to as policies by different people. Currently,
most standardization bodies such as IETF, DMTEF, and
SNIA refer to policy as a 4-field tuple where the fields
correspond to an if condition, a then clause, a priority
or business value of the policy and a scope that decides
when the policy should be executed. The then clause
portion can generate indications, or trigger the execution
of other operation (action policies), or it can simply be
informative in nature (write a message to the log). [1]
describes the various SAN policies found relevant by do-
main experts. In this paper, within the storage area net-
work (SAN) domain, we deal with the following types of
policies:

74

FAST ’05: 4th USENIX Conference on File and Storage Technologies

USENIX Association

¢ Interoperability: These policies describe what de-
vices are interoperable (or not) with each other.

e Performance: These policies are violation policies
that notify users if the performance of their applica-
tions (throughput, IOPs or latency) violate certain
threshold values.

e Capacity: These policies notify users if they are
crossing a percentage (threshold) of the storage
space has been allotted to them.

e Security and Access Control: Zoning and LUN
masking policies are the most common SAN access
control policies. Zoning determines a set of ports
that can transfer data to each other in the set. Sim-
ilarly, LUN masking controls host access (via its
ports) to storage volumes at the storage controller.

e Availability: These policies control the number of
redundant paths from the host to the storage array.

e Backup/Recovery: These policies specify the re-
covery time recovery point, recovery distance, copy
size and copy frequency to facilitate continuous
copy and point-in-time copy solutions.

2.2 Storage Resource Model

In order to perform impact analysis, storage resource
models are used to model the underlying storage infras-
tructure. A storage resource model consists of a schema
corresponding to various entities like hosts, host bus
adapters (HBAs), switches, controllers, the entity at-
tributes (e.g. vendor, firmware level), container rela-
tionships between the entities (HBA is contained with
a host), and connectivity between the entities (fabric de-
sign). These entities and attributes are used during the
definition of a policy as part of the if-condition and the
then clause. For a specific policy, the entities and the
attributes that it uses are called its dependent entities
and dependent attributes respectively. The SNIA SMI-
S [28] model presents a general framework for naming
and modeling storage resources.

In addition to the schema, a storage resource model
also captures the behavioral aspects of the entities. The
behavioral aspects, called metrics, represent how a re-
source behaves under different workload and configura-
tion conditions. The behavioral models are either analyt-
ically specified by a domain expert [30], or deduced by
observing a live system [3] or a combination of both.

Figure-1 shows the basic SAN resource model that we
consider in this paper. Our resource model consists of
hosts, HBAs, ports, switches, storage controllers, zones,
and volume entities, and host to HBA, port to HBA, port
to zone containment relationships and port to port con-
nection relationships. In addition, there exists a parent
entity class called device, which contains all the SAN

devices. The device entity class can be used to de-
fine global policies like all devices should have unique
WWNs. Please note that our framework and techniques
are not limited to this model only but instead can also be
used in more generalized storage infrastructure models.

,’T/Hosf ‘ ‘ Host ‘ ‘ Host ‘ ‘ Host ‘ ‘ Host ‘

; HBA HBA HBA
.l
Port | Port Port Port Port

lSwiTch-PorTI [switch-Port] [switch-Port] [switch-Port] [switch-Por]

S| TSwiten Switch

‘Switch—Por\T“ *, [switch-Por] [switch-Port] [switch-Port]

{"l’Confroller-Ponl ‘ Confroller—Porf‘

Controller ™

:ﬁ‘_VLVolurﬁe ‘_/,—""l‘Volume ‘

Figure 1: SAN Resource Model. A single SAN path is
highlighted. Shaded ports represent zone containment.

2.3 SAN Operations:

Using Zodiac, the following types of operations can be
analyzed for impact.

e Addition/Deletion of Physical Resources like hosts,
switches, HBAs, and storage arrays.

e Addition/Deletion of Logical Resources like vol-
umes and zones.

e Access control operations by adding or removing
ports to zones or similar LUN masking operations.

e Addition/Deletion of Workloads. Also, the require-
ments (throughput, latency) of a workload can be
modified. We represent a workload as a set of flows.
A flow can be thought of a data path (Figure-1) be-
tween a host and a storage controller. A flow starts
at a host port, and goes through intermediate switch
ports and ends at a storage controller port.

e Addition/Deletion of Policies. Please note that we
do not focus on conflict detection analysis within
policies in this paper.

3 Related Work

With the growth in amount of storage resources, there has
been a strong initiative for automating various manage-

USENIX Association

FAST ’05: 4th USENIX Conference on File and Storage Technologies

75

ment tasks and making systems self-sufficient [2, 4, 18,
10]. Most of this research has focused on various plan-
ning tasks - capacity planning, including Minerva [2],
Hippodrome [4], Ergastulum [5]; fabric planning like
Appia [32, 33], and disaster recovery planning [22, 23].

Impact analysis, also referred to as “what-if” or
change-management analysis, is another closely related
management task. Some of the planning work described
above can actually be used for such analysis. For exam-
ple, Ergastulum [5] can be used to analyze storage sub-
systems and Keeton et al’s [23] helps in analyzing disas-
ter recovery scenarios. Another recent work by Thereska
et al. [29] provides what-if analysis using the Self-*
framework [18]. There also exist tools and simulator
like [21, 34] that provide impact analysis for storage
controllers. Most of the what-if approaches utilize de-
vice and behavioral models for resources. Significant
amount of research has been done both in developing
such models [30, 3, 27, 31, 34] and using those mod-
els [14, 11, 25, 8].

Zodiac is different from existing impact analysis work,
due to its close integration with policy based manage-
ment. Using Zodiac, an administrator can analyze the
impact of operations not only on system resources but
also on system policies. In addition, the analysis ac-
counts for all subsequent actions triggered by policy ex-
ecutions. As we describe later, efficient analysis of poli-
cies is non-trivial and critical for overall performance.

The Onaro SANscreen product [26] provides a similar
predictive change management functionality. However,
from the scarce amount of published information, we be-
lieve that they only analyze the impact for a small set of
policies (mainly security) and do not consider any trig-
gered policy actions. We believe this to be an important
shortcoming, since typically administrators would spec-
ify policy actions in order to correct erroneous events and
would be most interested in analyzing the impact of those
triggered actions. The EMC SAN Advisor [16] tool pro-
vides support for policy evaluations, but is not an impact
analysis tool. Secondly, it pre-packages its policies and
does not allow specification of custom policies.

In the policies domain, there has been work in the ar-
eas of policy specification [12, 7], conflict detection [17]
and resource management [24]. The SNIA-SMI [28] is
also developing a policy specification model for SANs.
To the best of our knowledge, there does not exist any
SAN impact analysis framework for policies. [1] pro-
posed a policy based validation framework, which is typ-
ically used as a periodic configuration checker and is not
suitable for interactive impact analysis.

i Workload
SAN Monitor schedule

Sessi Optimization Structures
ession —
Policy Policies
lassificatio DB
SAN State
=D
Resource
l Models
Visualization Processing
Engine Engine

Zodiac

Figure 2: Architecture

4 Architecture Overview

In this section, we provide an overview of the Zodiac
architecture and its interaction with other SAN modules.

4.1 Zodiac: Big Picture

The goal of the impact analysis engine, like Zodiac, is
to predict the state and behavior of the SAN once a de-
sired operation is performed. In order to evaluate the new
state, the engine needs to interact with various SAN mod-
ules to get the relevant information, like device attributes,
policies. The overall picture of such an eco-system is
shown in Figure-2. In this eco-system, Zodiac interacts
with the following modules:

e SAN Monitor: The foremost input requirement is
the state of the SAN, which is obtained from a SAN
Monitor like [15, 19, 20, 6]. It consists of the physi-
cal configuration (fabric design), resource attributes
(HBA vendor, number of HBAs in a host) and logi-
cal information like Zoning/LUN-Masking.

o Workload Schedule: In order to predict the behavior
of the SAN, Zodiac also needs to know the sched-
ule of the workload. For example, if a backup job
is scheduled for 3 AM, then the engine needs to ac-
count for the additional traffic generated due to the
backup during that duration.

e Policy Database: A unique characteristic of the Zo-
diac impact analysis engine is its integration with
policy based management. The policies are speci-
fied in a high level specification language like Pon-
der [12] or XML [1] and stored in a policy database.

e Resource Models: As described earlier, Zodiac uses
a model based approach to evaluate the behav-
ior of SAN resources. For this, we require a re-
source models database that provides such behav-
ioral models. There has been significant work in

76

FAST ’05: 4th USENIX Conference on File and Storage Technologies

USENIX Association

the area of modeling and simulation of SAN re-
sources [30, 3,27, 31, 11, 25, 8,9, 34] and we lever-
age that. Note that the design of Zodiac is indepen-
dent of the resource models and can work with any
approach.

Given these modules, Zodiac takes as input the opera-
tion that the administrator wants to perform and the time
at which the impact needs to be measured (immediate or
after n hours) and initiates the analysis.

4.2 Zodiac: Internal Design

Internally, Zodiac engine is composed of the following
primary components:

e SAN-State: In Zodiac, the impact analysis occurs
in a session, during which an administrator can an-
alyze the impact of multiple operations incremen-
tally. So, a first operation could be - what happens
if I add two hosts? After the engine evaluates the
impact, an administrator can perform an incremen-
tal operation - what if I add another two hosts? The
SAN state component maintains the intermediate
states of the SAN, so that such incremental oper-
ations can be analyzed. When an analysis session
is initialized, the SAN state is populated by the cur-
rent snapshot of the SAN, obtained from the SAN
Monitor.

e Optimization Structures: As mentioned earlier,
for efficient policy evaluation, Zodiac maintains in-
telligent data structures that optimize the overall
evaluation. These three primary structures (caches,
policy classes and aggregates) are explained in de-
tail in Section-6.

e Processing Engine: The processing engine is re-
sponsible for efficiently evaluating the impact of op-
erations using the SAN state and the rest of the in-
ternal data structures. It is the main work horse of
Zodiac.

e Visualization Engine: Another important compo-
nent of Zodiac is its visualization engine. The vi-
sualization engine primarily provide two kinds of
output. First, it can provide an overall picture of the
SAN, with various entity metrics and can highlight
interesting entities, e.g. the ones that violated cer-
tain policies. Secondly, with the incorporation of
temporal analysis, an administrator can plot inter-
esting metrics with time.

S Zodiac: System Details

In this section, we provide the details about the internal
data structures being used by Zodiac to represent SANs

(Section-5.1) and how the policy evaluation framework
uses these data structures (Section-5.2). In Section-5.3,
we describe the inadequacy of the current evaluation
approach before proposing various optimizations in the
next section.

5.1 SAN Representation

For efficient impact analysis, it is critical that SAN is
represented in an optimal form. This is because all poli-
cies and resource metric computations would obtain re-
quired data through this SAN data structure. In Zodiac,
the SAN is represented as a graph with entities as nodes
and network links or containment relationships (HBA is
contained within a host) as edges. A sample SAN as a
graph is shown in Figure-1. A single SAN “path” has
been highlighted. Note that it is possible to have more
than one switch in the path.

Each entity in the graph has a number of attribute-
value pairs, e.g. the host entity has attributes like vendor,
model and OS. In addition, each entity contains point-
ers to its immediate neighbors (Host has a pointer to its
HBA, which has a pointer to its HBA-Port and so on).
This immediate neighbor maintenance and extensive use
of pointers with zero duplication of data allows this graph
to be maintained in memory even for huge SANs (1000
hosts).

There are two possible alternatives to this kind of
immediate-neighbor representation of the SAN. We dis-
cuss the alternatives and justify our choice below:

1. Alternative-Paths: Assume a best practices policy
requiring a Vendor-A host to be only connected to
Vendor-S controller. Its evaluation would require a
traversal of the graph starting at the host and go-
ing through all paths to all connected controllers. In
fact many policies actually require traversals along
“paths” in the graph[1]. This could indicate stor-
ing the SAN as a collection of paths and iterating
over the relevant paths for each policy evaluation,
preventing costly traversals over the graph. How-
ever, the number of paths in a big SAN could be
enormous, and thus, prohibitive to maintain the path
information in-memory. Also, the number of new
paths created with an addition of a single entity (e.g.
a switch) would be exponential, thus making the de-
sign unscalable.

2. Alternative-SC: Even without paths, it is possible
to “short-circuit” the traversals by keeping informa-
tion about entities further into the graph. For ex-
ample, a host could also keep pointers to all con-
nected storage. While this scheme does work for
some policies, many interoperability policies, that
filter paths of the graph based on some properties of

USENIX Association

FAST ’05: 4th USENIX Conference on File and Storage Technologies

77

an intermediate entity, cannot be evaluated. For ex-
ample, a policy that requires a Vendor-A host, con-
nected to a Vendor-W switch, to be only connected
to Vendor-S storage, cannot be evaluated efficiently
using such a representation, since it is still required
to traverse to the intermediate entity and filter based
on it. However, this idea is useful and we actually
use a modified version of this in our optimization
schemes described later.

5.2 Policy Evaluation

In current policy evaluation engines, policies are spec-
ified in a high level specification language like Pon-
der [12], XML [1]. The engine converts the policy into
executable code that can evaluate the policy when trig-
gered. This uses an underlying data layer, e.g. based on
SMI-S, that obtains the required data for evaluation. It
is this automatic code generation, that needs to be heav-
ily optimized for efficient impact analysis and we discuss
various optimizations in Section-6.

In Zodiac, the data is obtained through our SAN data
structure. For evaluating a policy like all Vendor-A hosts
should be connected to Vendor-S controllers, a graph
traversal is required (obtaining storage controllers con-
nected to Vendor-A hosts). In order to do such traver-
sals, each entity in the graph supports an API that is
used to get to any other connected entity in the graph
(by doing recursive calls to immediate neighbors). For
example, hosts support a getController() function that
returns all connected storage controllers. The func-
tions are implemented by looking up immediate neigh-
bors (HBAs), calling their respective getController()
functions, aggregating the results and removing dupli-
cates. The neighbors would recursively do the same with
their immediate neighbors until the call reaches the de-
sired entity (storage controller). Similarly for getting
all connected edge switches, core switches or volumes.
This API is also useful for our caching optimization. It
caches the results of these function calls at all intermedi-
ate nodes for reuse in later policy evaluations.

However, even this API suffers from the limitation
of the Alternative-SC scheme presented above. That is,
how to obtain controllers connected only through a par-
ticular vendor switch. To facilitate this, the entity API
allows for passing of filters that can be applied at in-
termediate nodes in the path. For our example, the fil-
ter would be Switch. Vendor=“W”. Now, the host would
call the HBA’s getController() function with the filter
Switch.Vendor="“W”. When this call recursively reaches
the switch, it would check if it satisfies the filter and
only the switches that do, continue the recursion to their
neighbors. Those that do not satisfy the filter return null.

The use of filters prevents unnecessary traversals on

the paths that do not yield any results (e.g. paths to
the controllers connected through switches from other
vendors). The filters support many comparison opera-
tions like =, #, >, >, <, <, € and logical OR, AND
and NOT on filters are also supported. The caching
scheme incorporates filters as well (Section-6.2). The
Alternative-SC presented above, can not use this filter
based scheme since the possible number of filters can
be enormous and thus always storing information in-
memory for each such filter would be infeasible.

Notice that not all filters provide traversal optimiza-
tions. The filters that are at the “edge” of a path
do not help. For example, a best practices policy -
if a Vendor-A host connected to a Vendor-W switch
accesses storage from a Vendor-S controller, then the
controller should have a firmware level > x. In this
case, the policy requires getting controllers with the fil-
ter Switch.Vendor="“W” AND Controller.Vendor="S".
While the first term helps reduce the number of paths
traversed, the second term does not — we still have to
check every controller connected through the appropri-
ate switches. Therefore, we prefer not to apply the fil-
ters at the edge, instead obtaining all edge entities (con-
trollers in this case) and then checking for all conditions
(Vendor and FirmwareLevel). This helps in bringing
more useful data into the entity caches.

It is also important to mention that the traversal of
the graph can also be done only for logical connections
(due to zoning). This is facilitated by providing equiva-
lent API functions for traversing links with end-points in
particular zone, e.g. getController Logical(Z) obtains
all connected controllers in Zone Z, i.e. all controllers
reachable through a path containing ports (HBA ports,
switch ports, controller ports) in zone Z.

Given the above framework, we next discuss why the
current policy evaluation approach is inefficient for im-
pact analysis.

5.3 Impact Analysis: Inadequacies of Cur-
rent Approach

During impact analysis, a SAN operation can trigger
multiple policies to be evaluated. For example, a host
being added into the SAN would require evaluation of
intrinsic host policies (policies on basic attributes of the
host - all hosts should be from a single vendor), vari-
ous host interoperability policies with other connected
devices, zoning policies, and so on. With the popular
policy-based autonomic computing initiative, it is highly
likely that the number of policies in a SAN would be
very large. So it is imperative that only the relevant set
of policies are evaluated. For example, for the host-
addition case, a switch and controller interoperability
policy should not be evaluated.

78

FAST ’05: 4th USENIX Conference on File and Storage Technologies

USENIX Association

The current policy evaluation engines [1] use a coarse
classification of scopes. In such a scheme, each policy
is designated a Scope to denote the class of entities, it
is relevant to. In addition, it is possible to sub-scope the
policy as intra-entity - evaluation on attributes of a sin-
gle entity class or inter-entity - evaluation on attributes
of more than one entity class [1]. The motivation for
such classification is to allow administrators, to do a pol-
icy check only for a select class of entities and policies
in the SAN. Unfortunately, this form of classification is
not efficient for impact-analysis due to the following rea-
sons:

e Lack of granularity: Consider the policy which
requires a Vendor-A host to be connected only to
Vendor-S storage controller. Naively, such a policy
would be classified into the Host scope and the Stor-
age scope. Thus, whenever a new host is added to
the SAN, it will be evaluated and similarly, when a
controller is added. However, consider the addition
of a new link between an edge and a core switch.
Such a link could cause hosts to be connected to
new storage controllers, and thus the policy would
still need to be evaluated and so, the policy also
needs to be added to the Switch scope. With only
scope as the classification criteria, any switch re-
lated event would trigger this policy. It is possible
to further sub-scope the policy to be an inter-entity.
However, it still will be clubbed with other switch
inter-entity policies, which will cause un-necessary
evaluations.

e Failure to identify relevant SAN region: The cur-
rent scoping mechanism fails to identify the re-
gion of the SAN that needs to be traversed for
policy evaluation. Consider the two policies: (a)
All Vendor-A hosts should be connected to Vendor-
S storage, and (b) All hosts should have atleast
one and atmost four disjoint paths to controllers.
Both the policies would have identical scopes (host,
controller and switch) and sub-scopes (inter-entity).
Now, when a switch-controller link is added to the
SAN, evaluation of (a) should traverse only the
newly created paths — ensure that all new host-
storage connections satisfy the policy; there is no
need to traverse a path that has already been found
to satisfy that policy. However, the same is not
true for (b). Its evaluation would require traversing
many old paths. The current scoping mechanism
fails to identify policies of type (a) and would end
up evaluating many old paths in order to provide a
correct and general solution.

The current policy evaluation engines also fail to ex-
ploit the locality of data across various policies. For ex-
ample, two distinct policies might require obtaining the

storage controllers connected to the same host. In such a
scenario, it is best to obtain the results for one and cache
them to use it for the other. To the best of our knowledge,
the current policy engines do not provide such caching
schemes and rely on the underlying SMI-S data layer [1]
to do this caching (which could still require evaluating
expensive join operations). This is, in part, due to the
low number of policies in current SANs and the fact that
currently, the policy checking process is primarily a non-
real-time, scheduled task with periodic reporting (typi-
cally daily or weekly reporting periods). As we show in
Section-7, a caching scheme could have drastic perfor-
mance benefits and help in interactive real-time analysis.

Such an efficiency is critical especially in the presence
of action policies. Such policies when triggered initi-
ate automatic operations on the SAN (“then” clause of
the policy). These are typically designed as compensat-
ing actions for certain events and can do rezoning, in-
troduce new workloads, change current workload char-
acteristics, schedule workloads and more. For example,
a policy for a write-only workload like if Controller-A
utilization increases beyond 95%, write the rest of the
data on Controller-B. Thus, when the policy is triggered,
a new flow is created between the host writing the data
and Controller-B, and policies related to that event need
to be checked. The action might also do rezoning to put
Controller-B ports in the same zone as the host and so,
all zoning related policies would end up being evaluated.
Overall, such a chain of events can lead to multiple ex-
ecutions of many policies. The caching scheme, com-
bined with the policy classification, significantly helps in
these scenarios.

6 Zodiac Impact Analysis: Optimizations

In this section, we present various optimizations in the
Zodiac architecture that are critical for the scalability and
efficiency of impact analysis. Zodiac uses optimizations
along three dimensions.

1. Relevant Evaluation: Finding relevant policies and
relevant regions of the SAN affected by the opera-
tion. This is accomplished using policy classifica-
tion and is described in Section-6.1.

2. Commonality of Data Accessed: Exploiting data lo-
cality across policies or across evaluation for dif-
ferent entity instances. This is achieved by using
caching, described in Section-6.2.

3. Aggregation: Efficient evaluation of certain classes
of policies by keeping certain aggregate data struc-
tures. This scheme is described in Section-6.3.

All three optimizations are independent of each other
and can be used individually. However, as we show later

USENIX Association

FAST ’05: 4th USENIX Conference on File and Storage Technologies

79

in our results, the best performance is achieved by the
combination of all three optimizations.

6.1 Policy Classification

The first policy evaluation optimization in Zodiac is
policy classification. Policy classification helps in
identifying the relevant regions of the SAN and the
relevant policies, whenever an operation is performed.
In order to identify the relevant SAN region affected by
an operation, we classify the policies into four categories
described below. Only the “if” condition of the policy
is used for classification. Also, each policy class has a
set of operations, which are the ones that can trigger the
policy. This mapping of operations to policies can be
made easily due to our classification scheme and is used
to find the relevant set of policies.

1. Entity-Class (EC) Policies: These policies are de-
fined only on the instances of a single entity class. For
example, all HBAs should be from the same vendor,
and all Vendor-W switches must have a firmware level
> x. Such policies do not require any graph traver-
sals, rather a scan of the list of instances of the entity
class. The relevant operations for this class of policies
are addition/deletion of an entity-instance or modifica-
tion of a “dependent” attribute of an instance like chang-
ing the firmware level of a switch (for our second exam-
ple above). Additionally, EC policies can be subdivided
into two types:

— Individual (EC-Ind) Policy: A policy that holds on
every instance of the entity class. For example, all
switches must be from Vendor-W. This class of poli-
cies has the characteristic that whenever an instance
of the entity class is added/modified, the policy only
needs to be evaluated on the new member.

— Collection (EC-Col) Policy: A policy that holds on
a collection of instances of the entity class. For ex-
ample, the number of ports of type X in the fabric
is less than N and also all HBAs should be from the
same vendor'. This class of policies might require
checking all instances for final evaluation.

2. Single-Path (SPTH) Policies: These policies are
defined on more than one entity on a single path of
the SAN. For example, all Vendor-A hosts must be
connected to Vendor-S storage. Importantly, SPTH
policies have the characteristic that the policy is required
to hold on each path. In our example, each and every
path between hosts and storages must satisfy this policy.
This characteristic implies that on application of any
operation, there is no need to evaluate this policy
on old paths. Only new paths need to be checked.

The relevant operations for these policies are addi-
tion/deletion/modification of paths or modification of a
“dependent” attribute (vendor name) of a “dependent”
entity (storage controller) on the path.

3. Multiple-Paths (MPTH) Policies: These policies
are defined across multiple paths of the SAN. For
example, all hosts should have atleast two and atmost
four disjoint paths to storage, and a Vendor-A host
should be connected to atmost five controllers. MPTH
policies cannot be decomposed to hold on individual
paths for every operation. For the examples, adding a
host requires checking only for the new paths created,
whereas adding a switch-controller link requires checks
on earlier paths as well. We are working on developing
a notion distinguishing between the two cases?. In
this paper, we consider MPTH policy as affecting all
paths. The relevant operations for these policies are
addition/deletion/modification of paths or modification
of a “dependent” attribute of a “dependent” entity on the
path.

4. Zoning/LUN-Masking (ZL) Policies: These policies
are defined on zones or LUN-Mask sets of the SAN. For
example, a zone should have atmost N ports, and a zone
should not have both windows or linux hosts. For our
discussion, we only use zone policies, though the same
approach can be used for LUN-Masking policies. Notice
that these policies are similar to EC policies with entity-
class being analogously replaced by zones or LUN-Mask
sets. Just as EC policies are defined on attributes of en-
tity instances, ZL policies are defined on attributes of
zone instances. Also similar to EC policies, Zone poli-
cies can be collection policies, requiring evaluation over
multiple zones, (e.g. the number of zones in the fabric
should be atmost N)® and individual policies, requiring
evaluation only over an added/modified zone (e.g. all
hosts in the zone must be from the same vendor). Also,
within a zone, a policy might require evaluation over
only the added/modified component (Zone-Member-
Ind) or all components (Zone-Member-Col). An ex-
ample of a Zone-Member-Ind policy is all hosts in
the zone should be windows, and an example of Zone-
Member-Col policy is a zone should have atmost N
ports. The relevant operations for this class of policies
are addition/deletion of a zone instance or modification
of an instance (addition/deletion of ports in the zone).
Note that the aim of this classification is not to se-
mantically classify all conceivable policies, but rather to
identify the policies that can be optimized for evaluation.
Having said that, using our classification scheme, it was
indeed possible to classify all policies mentioned in [1],
the only public set of SAN policies collected from ad-
ministrators and domain experts. The basic difference

80

FAST ’05: 4th USENIX Conference on File and Storage Technologies

USENIX Association

between the classification scheme in [1] and our scheme
stems from the fact that it classifies policies based on
specification criteria, while we use the internal execution
criteria for the classification. This helps us in generating
optimized evaluation code by checking only the relevant
regions of the SAN.

6.2 Caching

The second optimization we propose, uses a caching
scheme to cache relevant data at all nodes of the SAN
resource graph. Such a scheme is extremely useful in an
impact-analysis framework due to the commonality of
data accessed in the following scenarios:

1. Multiple executions of a single policy: A single
policy might be executed multiple times on the same
entity instance due to the chaining of actions, defined in
the then clause of the triggered policies. Any previous
evaluation data can be easily reused.

2. Execution of a single policy for different instances of
entities: For example, consider an operation of adding
a policy like all Vendor-A hosts should be connected to
Vendor-S storage. For impact analysis, the policy needs
to be evaluated for all hosts. In our immediate-neighbor
scheme, for the evaluation of this policy, a host, say
Host-H, would call its HBA’s getController() function,
which in turn would call its ports’ getController()
function, which would call the edge switch (say Switch-
L) and so on. Now, when any other host connected
to Switch-L calls its getConitroller() function, it can
reuse the data obtained during the previous evaluation
for Host-H. Note that with no replacement, the caching
implies that traversal of any edge during a policy
evaluation for all entity instances is done atmost once.
This is due to the fact that after traversing an edge {u,v}
once, the required data from v would be available in the
cache at u, thus preventing its repeated traversal.

3. Locality of data required across multiple policies: It
is also possible, and often the case, that multiple poli-
cies require accessing different attributes of the same en-
tity. As mentioned earlier, we do not apply filters to the
“edge” entities (e.g. controllers for a getController()
call) and retrieve the full list of entities. Now, this cached
entry can be used by multiple policies, even when their
“dependent” attributes are different.

As mentioned earlier, the caching scheme incorporates
filters as well. Whenever an API function is called with
a filter, the entity saves the filter along with the results
of the function call and a cache hit at an entity occurs
only when there is a complete match, i.e. the cached en-
try has the same API function call as the new request and

the associated filters are also the same. This condition
can be relaxed by allowing a partial match, in which the
cached entry is for the same function call, but can have
a more general filter. For example, assume a cache entry
for getController() with the filter Switch. Vendor="“W".
Now, if the new request requires controllers with the fil-
ter Switch.Vendor=“W” AND Switch.FirmwareLevel >
X, the result can be computed from the cached data itself.
We leave this for future work. Also, the current caching
scheme uses LRU for replacement.

6.3 Aggregation

It is also possible to improve the efficiency of policy ex-
ecution by keeping certain aggregate data structures. For
example, consider a policy which mandates that the num-
ber of ports in a zone must be atleast M and atmost N.
With every addition/deletion of a port in the zone, this
policy needs to be evaluated. However, each evaluation
would require counting the number of ports in the zone.
Imagine keeping an aggregate data structure that keeps
the number of ports in every zone. Now, whenever a port
is added/deleted, the policy evaluation reduces to a single
check of the current count value.

We have identified the following three classes of
policies that can simple aggregate data structures:

1. Unique: This class of policies require a certain
attribute of entities to be unique. For example, policies
like the WWNs of all devices should be unique, all Fibre
Channel switches must have unique domain IDs. For
these class of policies, a hashtable is generated on the
attribute and whenever an operation triggers this policy,
the policy is evaluated by looking up that hashtable. This
aggregate data structure can provide good performance
improvements especially in big SANs (Section-7). Note
that such an aggregate is kept only for EC and ZL
policies (where it is easier to identify addition/deletion).
However, there does not appear to be any realistic SPTH
or MPTH unique policies.

2. Counts: These policies require counting a certain
attribute of an entity. Keeping the count of the attribute
prevents repeated counting whenever the policy is
required to be evaluated. Instead, the count aggre-
gate is incremented/decremented when the entity is
added/deleted. A count aggregate is used only for EC
and ZL policies. While SPTH and MPTH count policies
do exist (e.g. there must be atmost N hops between
host and storage and there must be atleast one and
atmost four disjoint paths between host and storage
respectively), maintaining the counts is tricky and we do
not use an aggregate.

USENIX Association

FAST ’05: 4th USENIX Conference on File and Storage Technologies

81

3. Transformable: 1t is easy to see that the policy eval-
uation complexity is roughly of the order EC-Ind =~
Zone-Member-Ind < EC-Col = Zone-Member-Col
< SPTH < MPTH. It is actually possible to trans-
form many policies into a lower complexity policy by
keeping additional information about some of the depen-
dent entities. For example, consider a policy like all stor-
age should be from the same vendor. This policy is an
EC-Col for entity class - Storage. However, keeping in-
formation about the current type of storage (7") in the
system, the policy can be reduced to an equivalent EC-
Ind policy — all storage should be of type T'. Similarly, a
Zone-Member-Col policy like a zone should not be both
windows and linux hosts can be transformed into multi-
ple Zone-Member-Ind policies there should be only type
T; hosts in zone Z;, where T is the current type of hosts
in the Z;. For these transformed policies, a pointer to the
entity that provides the value to aggregate is also stored.
This is required, since when the entity is deleted, the ag-
gregate structure can be invalidated (can be re-populated
using another entity, if existing).

For all other policies, we currently do not use any ag-
gregate data structures.

7 Experimental Setup and Results

In this section, we evaluate our proposed optimizations
as compared to the base policy evaluation provided by
current engines. We start by describing our experimental
setup beginning with the policy set.

7.1 Microbenchmarks

With the policy based management being in a nascent
state so far, there does not exist any public set of poli-
cies that is used in a real SAN environment. The list of
policies contained in [1] is indicative of the fype of pos-
sible policies and not an accurate “trace” for an actual
SAN policy set. As a result, it is tough to analyze the
overall and cumulative benefits of the optimizations for
areal SAN. To overcome this, we try to demonstrate the
benefits of optimizations for different categories of poli-
cies individually. As mentioned earlier, since we have
been able to classify all policies in [1] according to our
scheme, the benefits would be additive and overall useful
for a real SAN as well. In addition, this provides a good
way of comparing the optimization techniques for each
policy class.

We selected a set of 7 policies (Figure-3) as our work-
ing sample. Four of them are EC policies, two are path
policies (SPTH and MPTH) and one is a zone policy.
All 7 policies are classified according to the classifica-
tion mechanisms presented in Section-6.1. Any aggre-
gates that are possible for policies are also shown. For

Policy Classification

1 | Every HBA that has a vendor name V EC
and model M should have a firmware

level either n1, n2 orn3

2 | No two devices in the system can have | EC Unique
the same WWN (World Wide Name)

3 | The number of ports of type X in the EC Counts
fabric is less than N

4 | The SAN should not have mixed storage | EC-Col to EC-

type such as SSA, FC and SCSI parallel Ind (Transform)

5 | An ESS array is not available to open SPTH
systems if an iSeries system is configured
to array

MPTH to SPTH
(Transform)

6 | AHBA cannot be used to access both
tape and disk drives

Zone-Member-
Col to Zone-
Member-Ind

7 | No two different host types should exist
in the same zone

Figure 3: Policy Set

this set of policies, we will evaluate the effectiveness of
our optimizations individually.

7.2 Storage Area Network

An important design goal for Zodiac was scalability and
ability to perform impact analysis efficiently even on
huge SANs of 1000 hosts and 200 controllers. Since it
was not possible to construct such large SANSs in the lab,
for our experiments, we emulated four different sized
SANSs. Please note that in practice, Zodiac can work with
any real SAN using an SMI-S compliant data store.

In our experimental SANs, we used hosts with two
HBAs each and each HBA having two ports. Stor-
age controllers had four ports each. The fabric was a
core-edge design with 16-port edge and 128-port core
switches. Each switch left certain ports unallocated, to
simulate SANs constructed with future growth in mind.
The four different configurations correspond to different
number of hosts and controllers:

e 1000-200: First configuration is an example of a
big SAN, found in many data centers. It consists
of 1000 hosts and 200 controllers with each host
accessing all controllers (full connectivity). There
were 100 zones.

e 750-150: This configuration uses 750 hosts and 150
controllers with full connectivity. There were 75
zones.

e 500-100: This configuration has 500 hosts, 100 con-
trollers and 50 zones.

e 250-50: This configuration is a relatively smaller
SAN with 250 hosts, 50 controllers and 25 zones.

7.3 Implementation Techniques

For our experiments, we evaluate each of the policies in
the policy-set with the following techniques:

82

FAST ’05: 4th USENIX Conference on File and Storage Technologies

USENIX Association

e base: This technique is the naive implementation,
in which there is no identification of the relevant re-
gion of the SAN. Only information available is the
vanilla scope of the policy. Due to lack of classi-
fication logic, this implementation implies that the
evaluation engine uses the same logic of code gen-
eration for all policies (check for all paths and all
entities). Also, there is no intermediate caching and
no aggregate data structures are used.

e class: This implementation uses the classification
mechanism on top of the base framework. Thus, it
is possible to optimize policies by only evaluating
over a relevant SAN region, but no caching or ag-
gregation is used.

e cach: This implementation technique caching on
top of the base framework. No classification or ag-
gregation is used.

e agg: This implementation technique only uses ag-
gregate data structures for the policies (where ever
possible). There is no caching or classification.

e all: This implementation uses a combination of all
three optimization techniques.

Using these five classes of implementation, we intend
to show (a) inadequacy of the base policy, (b) advantages
of each optimization technique and (c) the performance
of the all implementation. Zodiac is currently running on
a P4 1.8 GHz machine with 512 MB RAM.

7.4 Policy Evaluation

In this section, we present our results of evaluating each
policy 100 times to simulate scenarios of chaining and
execution for multiple instances (e.g. adding 10 hosts).
The policies are evaluated for all four SAN configura-
tions (X-axis). The Y-axis plots the time taken to eval-
uate the policies in milliseconds. The results have been
averaged over 10 runs.

74.1 Policy-1

“Every HBA that has a vendor name V and model M should
have a firmware level either nl, n2 or n3”

The first policy requires a certain condition to hold on
an HBA entity class. We analyze the impact of the pol-
icy when an HBA is added. The base implementation
will trigger the HBA scope and try to evaluate this pol-
icy. Due to its lack of classification logic, it will end
up evaluating the policy afresh and thus, for all HBA in-
stances. The class implementation would identify it to
be an EC-Ind policy and only evaluate on the new HBA
entity. The cach implementation does not help since
there is no traversal of the graph. The agg implemen-
tation also does not help. As a result, all implementation

is equivalent to having only class optimization. Figure-4
shows the results for the different SAN configurations.

200 .
base —+—
class —=—
150 cach —%—
7 agg —H8—
g 100 - all ——
Q
E
&= 50 r
0
250-50 500-100 750-150 1000-200
SAN

Figure 4: Policy-1. class, all provide maximum benefit

As seen from the graph, there is a significant differ-
ence between the best optimized evaluation (all) and the
base evaluation. Also, as the size of the SAN increases,
the costs for the base implementation increase, while the
all implementation stays the same, since irrespective of
SAN size, it only needs to evaluate the policy for the
newly added HBA.

7.4.2 Policy-2

“No two devices in the system can have the same WWN.”

The second policy ensures uniqueness of world wide
names (WWNs). We analyze the impact when a new
host is added. The base implementation will trigger the
device scope without classification logic and check that
all devices have unique WWNs. The class implemen-
tation will only check that the new host has a unique
WWN. The cach implementation performs similar to
base. The agg implementation will create a hashtable,
and do hashtbale lookups. The all implementation also
uses the hashtable and only checks the new host.

i ' base —+—

2000 class —>—

- 1500 | ngg o

& all ——
F 1000 |
& 500t

0 w
250-50 500-100 750-150 1000-200
SAN

Figure 5: Policy-2. agg, all provide maximum benefit

As Figure-5 shows, agg and all perform much bet-
ter than the base implementation. class performs better
than base by recognizing that only the new host needs to
be checked.

USENIX Association

FAST ’05: 4th USENIX Conference on File and Storage Technologies

83

7.4.3 Policy-3

“The number of ports of type X in the fabric is less than N.”
The third policy limits the total number of ports in the
fabric. We analyze the impact of adding a new host with
4 ports to the SAN. For each added port, the base imple-
mentation will count the total number of ports in the fab-
ric. The class implementation performs no better, since
it is an EC-Col policy. The cach implementation also
does not help. The agg implementation keeps a count of
the number of ports and only increments the count and
checks against the upper limit. The all implementation
also exploits the aggregate keeping.

1200
1000
ase ——
2 800 | class ——
g 600 cach —x—
E 400t all —a—
200
0 = = =
250-50 500-100 750-150 1000-200
SAN

Figure 6: Policy-3. agg, all provide maximum benefit

As can be seen from Figure-6, agg and all perform
significantly better due to the ability of aggregating the
required information for the policy evaluation.

7.4.4 Policy-4

“The SAN should not have mixed storage type such as SSA, FC
and SCSI parallel”

The fourth policy ensures that the SAN has uniform stor-
age type. For this policy, we analyze the impact of adding
a new storage controller. The base implementation will
trigger the storage scope and evaluate the policy ensuring
all controllers are the same type. The cach implementa-
tion will not help. The class implementation only checks
that the newly added controller is the same type as every
other controller. The agg implementation will transform
the policy to an EC-Ind policy by keeping an aggregate
value of the current controller type, 7" in the SAN. How-
ever, without classification, it would end up checking that
all controllers have the type 7. The all implementation
combines the classification logic and the aggregate trans-
formation to only check for the new controller.

Figure-7 shows the result with all performing the best,
while class and agg doing better than base and cach.
The difference between the best and poor implementa-
tions is small since the total number of controllers is
small.

50 T
base —+—
40 + class —=—
cach —*—
30 agg —e&—

all —=—

12 -////::::;;;;;;;;;%%:;;Eizizizzzzzzzgg

250-50

Time (ms)

500-100 750-150

SAN

1000-200

Figure 7: Policy-4. all provides maximum benefit

7.4.5 Policy-5

“An ESS array is not available to open systems if an iSeries
system is configured to array.”

The fifth policy is an SPTH policy that checks that an
iSeries open systems host does not work if an ESS ar-
ray is used with the controller. We analyze the impact
of adding a new host to the SAN for this policy. The
base implementation ensures that all iSeries open sys-
tems hosts do not have any ESS controllers connected
to them. This requires calling the getController() API
functions of the host entities and will cause traversals of
the graph for all host-storage connections. The class
implementation identifies that it being an SPTH, only
the new created paths (paths between the newly added
host and the connected storage controllers) need to be
checked. The cach implementation will run similar to
base, but will cache all function call results at intermedi-
ate nodes (As mentioned before, it would mean that each
edge will be traversed atmost once). The agg implemen-
tation does not help and the all implementation would
use both the classification logic and the caching.

5000
4500
4000
3500 base
2 3000 k class
S 2500 cach
E 2000 i
= a
1500
1000
500 |
250-50 500-100 750-150 1000-200
SAN

Figure 8: Policy-5. Only all provides maximum benefit

As shown in Figure-8, the base and agg implementa-

tion perform extremely poorly (multiple orders of magni-
tude in difference) due to multiple traversals for the huge
SAN graph. On the other hand, class and cach are able

84

FAST ’05: 4th USENIX Conference on File and Storage Technologies

USENIX Association

to optimize significantly and their combination in the all
implementation provides drastic overall benefits. It also
scales extremely well with the increasing SAN size.

7.4.6 Policy-6

“A HBA cannot be used to access both tape and disk drives.”
The sixth policy is an MPTH policy which requires
checking that each HBA is either connected to tape or
disk storage. We analyze the impact of adding a host with
2 HBAs to the SAN. The base implementation would
check the policy for all existing HBAs. The cach im-
plementation would do the same, except the caching of
results at intermediate nodes. The class implementation
does not optimize in this case since it considers it an
MPTH policy and checks for all paths (Section-6.1). The
agg implementation transforms the policy to an SPTH by
keeping aggregate for the type of storage being accessed,
but checks for all HBAs due to the lack of classification
logic. The all implementation is able to transform the
policy and then use the SPTH classification logic to only
check for the newly added HBAs.

5000
4500
4000 base —+
= gggg class —>—
g 2500 cach —x—
© r agg —E8—
s o L
1000
500 .
O A 1
250-50 500-100 750-150 1000-200
SAN

Figure 9: Policy-6. Only all provides maximum benefit

Figure-9 shows the results. The base, class and agg
implementation perform much poorly then the cach im-
plementation, since the cach implementation reuses data
collected once for the other. The all implementation per-
forms the best by combining all optimizations.

7.4.7 Policy-7

“No two different host types should exist in the same zone.”

The seventh policy requires that all host types should be
the same in zones. We analyze the impact of adding
a host HBA port to a zone. The base implementation
would check that all hosts in each zone are of the same
type. The class implementation would check only for
the affected zone. The cach implementation would be
the same as base. The agg implementation would keep
an aggregate host type for each zone and check the policy
for all zones. The all implementation would combine the

aggregate with the classification and only check for the
affected zone, that the new host has the same type as the
aggregate host type value. Figure-10 shows the results.
Again all implementation performs the best, though the
difference between all implementations is small.

50 T
base —+—
40 class —<—
cach —*—
Z 307 agg —=5—
E all ——
“E’ 20
=
10 +
0) &
250-50 500-100 750-150 1000-200
SAN

Figure 10: Policy-7. all provides maximum benefit

8 Discussion

One of the main objectives of the Zodiac framework is
to efficiently perform impact analysis for policy enabled
SANSs. It is important to note that the optimizations de-
scribed in this paper attack the problem at a higher con-
ceptual level, manipulating the design and evaluation of
policies. In the overall impact analysis picture, more op-
timizations will be plugged-in at other layers. For exam-
ple, another layer of optimizations is while obtaining the
data required for policy evaluation from the SMI-S data
provider. In the CIM architecture [13], the CIM client
obtains data from the provider over the network. This
process can be optimized by techniques like batching of
requests, pre-fetching and data caching at the client. An-
other important layer is the query language used for eval-
uating the policies. For example, it is possible to evalu-
ate the policies using SQL by designing a local database
scheme which is populated by the CIM client. While we
continue to investigate such optimizations, Zodiac has
been designed in a manner that it is easily possible to
accommodate these into the overall framework.

9 Conclusions and Future Work

In this paper, we presented Zodiac - an efficient impact
analysis framework for storage area networks. Zodiac
enables system administrators to do proactive change
analysis, by evaluating the impact of their proposed
changes This analysis is fast, scalable and thorough. It
includes the impact on SAN resources, existing policies
and also, due to the actions triggered by any of the vi-
olated policies. In order to make the system efficient,

USENIX Association

FAST ’05: 4th USENIX Conference on File and Storage Technologies

85

we proposed three optimizations - classification, caching
and aggregation. Based on our analysis and experimen-
tal results, we find that each optimization has a niche of
evaluation scenarios where it is most effective. For ex-
ample, caching helps the most during the evaluation of
path policies. Overall, a combination of the three opti-
mization techniques yields the maximum benefits.

In future, we intend to follow two lines of work. The
first includes developing more optimization techniques
- smarter analysis for MPTH policies and use of paral-
lelism (works for SPTH policies), to name a few and the
design of a policy specification language that allows de-
termination of these optimizations. The second direction
explores the integration of the impact analysis frame-
work with various SAN planning tools in order to pro-
vide better overall designs and potentially suggesting ap-
propriate system policies for given design requirements.

[15]
[16]
[17]

EMC. Control Center. http://www.emc.com (2005).
EMC. SAN Advisor. http://www.emc.com (2005).

Fu, Z., Wu, S., HUANG, H., LoH, K., GONG, F., BALDINE,
I., AND XU, C. IPSec/VPN Security Policy: Correctness, Con-
flict Detection, and Resolution. In Workshop on Policies for Dis-
tributed Systems and Networks (2001).

[18] GANGER, G., STRUNK, J., AND KLOSTERMAN, A. Self-* Stor-

age: Brick-based Storage with Automated Administration. CMU
Tech Report CMU-CS-03-178 (2003).

HP. StorageWorks SAN.
IBM. TotalStorage Productivity Center.

[19]
[20]
[21]
[22]
(23]

INTELLIMAGIC. Disc Magic. http://www.intellimagic.nl (2005).
KEETON, K. Designing for disasters. In FAST (2004).

KEETON, K., AND MERCHANT, A. A Framework for Evaluating
Storage System Dependability. In International Conference on
Dependable Systems and Networks (DSN’04) (2004).

[24] LYMBEROPOULOS, L., LUPU, E., AND SLOMAN, M. An Adap-

References

(1

(2]

(3]

[4]

[3]

(6]
(7]

(8]

(91

(10]

(11]

[12]

[13]
[14]

AGRAWAL, D., GILES, J., LEE, K., VORUGANTI, K., AND
ADIB, K. Policy-Based Validation of SAN Configuration. POL-
ICY "04.

ALVAREZ, G., BOROWSKY, E., GO, S., ROMER, T., SZENDY,
R., GOLDING, R., MERCHANT, A., SPASOJEVIC, M., VEITCH,
A., AND WILKES, J. Minerva: An Automated Resource Provi-
sioning tool for large-scale Storage Systems. ACM Trans. Com-
put. Syst. 19,4 (2001).

ANDERSON, E. Simple table-based modeling of storage devices.
HP Labs Tech Report HPL-SSP-2001-4 (2001).

ANDERSON, E., HOoBBS, M., KEETON, K., SPENCE, S.,
UYSAL, M., AND VEITCH, A. Hippodrome: Running Circles
Around Storage Administration. In FAST (2002).

ANDERSON, E., KALLAHALLA, M., SPENCE, S., SWAMI-
NATHAN, R., AND WANG, Q. Ergastulum: Quickly finding
near-optimal Storage System Designs. HP Tech Report HPL-
SSP-2001-5 (2001).

ASSOCIATES, C. BrightStor. http://www.ca.com (2005).

BANDARA, A., LUPU, E., AND RUSSO, A. Using Event Cal-
culus to Formalise Policy Specification and Analysis. POLICY
"03.

BERENBRINK, P., BRINKMANN, A., AND SCHEIDELER, C.
SimLab - A Simulation Environment for Storage Area Net-
works. In Workshop on Parallel and Distributed Processing
(PDP) (2001).

Bucy, J., GANGER, G., AND CONTRIBUTORS. The DiskSim
Simulation Environment. CMU-CS-03-102 (2003).

CHAUDHURI, S., AND NARASAYYA, V. AutoAdmin ’what-if’
Index Analysis Utility. In SIGMOD (1998).

COHEN, I., CHASE, J., GOLDSzZMIDT, M., KELLY, T., AND
SYMONS, J. Correlating Instrumentation Data to System States:
A Building Block for Automated Diagnosis and Control. In OSDI
(2004).

DAMIANOU, N., DULAY, N., LUPU, E., AND SLOMAN, M. The
Ponder Policy Specification Language. In POLICY (2001).
DMTF. Common Information Model. http.//www.dmtf.org.

DOYLE, R., CHASE, J., ASAD, O., W., AND VAHDAT, A.
Model-based resource provisioning in a web service utility. In
USITS (2003).

tive Policy-based Framework for Network Services Management.
Journal of Networks and System Management 11,3 (2003).
[25] MOLERO, X., SILLA, F., SANTONIJA, V., AND DUATO, J. Mod-
eling and Simulation of Storage Area Networks. In MASCOTS
(2000).

[26] ONARO. SANscreen. http://www.onaro.com.

[27] RUEMMLER, C., AND WILKES, J. An Introduction to Disk Drive

Modeling. IEEE Computer 27, 3 (1994).
[28]
[29]

SNIA. Storage Management Initiative. http://www.snia.org.

THERESKA, E., NARAYANAN, D., AND GANGER, G. To-
wards self-predicting systems: What if you could ask “what-
if”’? In Workshop on Self-adaptive and Autonomic Comp. Systems
(2005).

VARKI, E., MERCHANT, A., XU, J., AND QIU, X. Issues and
Challegenges in the Performance Analysis of Real Disk Arrays.
IEEE Transactions on Parallel and Distributed Systems 15, 6
(2004).

WANG, M., Au, K., AILAMAKI, A., BROCKWELL, A.,
FALOUTSOS, C., AND GANGER, G. Storage device performance
prediction with CART models. SIGMETRICS Performance Eval.
Review 32,1 (2004).

WARD, J., SULLIVAN, M., SHAHOUMIAN, T., AND WILKES,
J. Appia: Automatic Storage Area Network Fabric Design. In
FAST °02.

WARD, J., SULLIVAN, M., SHAHOUMIAN, T., WILKES, J.,
WU, R., AND BEYER, D. Appia and the HP SAN Designer:
Automatic Storage Area Network Fabric Design. In HP Tech.
Conference (2003).

WILKES, J. The Pantheon Storage-System Simulator. HP Labs
Tech Report HPL-SSP-95-14 (1995).

[30]

(311

[32]

(33]

[34]

Notes

IThis policy is also a collection policy since in order to evaluate
the policy for the new instance, it is required to get information about
existing instances.

2Informally, typically an operation affecting only the “principal”
entity of the policy (host in the examples) does not require checking
old paths.

3Such a policy is required since the switches have a limit on the
number of zones they can handle

86

FAST ’05: 4th USENIX Conference on File and Storage Technologies

USENIX Association

