Secure Deletion for a Versioning File System

Zachary N. J. Peterson
Adam Stubblefield

Randal Burns

Joe Herring
Aviel D. Rubin

The Johns Hopkins University, Baltimore, MD

Abstract

We present algorithms and an architecture for the secure
deletion of individual versions of a file. The principal
application of this technology is federally compliant stor-
age; it is designed to eliminate data after a mandatory re-
tention period. However, it applies to any storage system
that shares data between files, most notably versioning
file systems. We compare two methods for secure dele-
tion that use a combination of authenticated encryption
and secure overwriting. We also discuss implementation
issues, such as the demands that secure deletion places
on version creation and the composition of file system
metadata. Results show that new secure deletion tech-
niques perform orders of magnitude better than previous
methods.

1 Introduction

Versioning storage systems are increasingly important
in research and commercial applications. Versioning
has been recently identified by Congress as manda-
tory for the maintenance of electronic records of pub-
licly traded companies (Sarbanes-Oxley, Gramm-Leach-
Bliley), patient medical records (HIPAA), and federal
systems (FISMA).

Existing versioning storage systems overlook fine-
grained, secure deletion as an essential requirement. Se-
cure deletion is the act of removing digital information
from a storage system so that it can never be recovered.
Fine-grained refers to removing individual files or ver-
sions of a file, while preserving all other data in the sys-
tem.

Secure deletion is valuable to security conscious users
and organizations. It protects the privacy of user data and
prevents the discovery of information on retired or sold
computers. Traditional data deletion, or “emptying the
trash”, simply frees blocks for allocation at a later time;
the data persists, fully readable and intact. Even when

data are overwritten, information may be reconstructed
using expensive forensic techniques, such as magnetic
force microscopy [42].

We are particularly interested in using secure deletion
to limit liability in the regulatory environment. By se-
curely deleting data after they have fallen out of regu-
latory scope, e.g. seven years for corporate records in
Sarbanes-Oxley, data cannot be recovered even if disk
drives are produced and encryption keys revealed. Data
are gone forever and corporations are not subject to ex-
posure via subpoena or malicious attack.

Currently, there are no efficient methods for fine-
grained secure deletion in storage systems that share data
among files, such as versioning file systems [12, 20, 27,
25, 32, 35] and content-indexing systems [2, 26, 28].

The preferred and accepted methods for secure dele-
tion in non-data sharing systems include: repeatedly
overwriting data, such that the original data may not be
recovered [17]; and, encrypting a file with a key and se-
curely disposing of the key to make the data unrecover-
able [8].

Block sharing hinders key management in encrypting
systems that use key disposal. If a system were to use
an encryption key per version, the key could not be dis-
carded, as it is needed to decrypt shared blocks in future
versions that share the encrypted data. To realize fine-
grained secure deletion by key disposal, a system must
keep a key for every shared block, resulting in an oner-
ous number of keys that quickly becomes unmanageable.
Fewer keys allow for more flexible security policies [22].

Secure overwriting also has performance concerns in
versioning systems. In order to limit storage overhead,
versioning systems often share blocks of data between
file versions. Securely overwriting a shared block in a
past version could erase it from subsequent versions. To
address this, a system would need to detect data sharing
dependencies among all versions before committing to
a deletion. Also, in order for secure overwriting to be
efficient, the data to be removed should be contiguous on
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disk. Non-contiguous data blocks require many seeks by
the disk head — the most costly disk drive operation. By
their very nature, versioning systems are unable to keep
the blocks of a file contiguous in all versions.

Our contributions include two methods for the secure
deletion of individual versions that minimize the amount
of secure overwriting while providing authenticated en-
cryption. Our techniques combine disk encryption with
secure overwriting so that a large amount of file data (any
block size) are deleted by overwriting a small stub of 128
bits. We collect and store stubs contiguously in a file sys-
tem block so that overwriting a 4K block of stubs deletes
the corresponding 1MB of file data, even when file data
are non-contiguous. Unlike encryption keys, stubs are
not secret and may be stored on disk. Our methods do not
complicate key management. We also present a method
for securely deleting data out-of-band, a construct that
lends itself to multiple parties with a shared interest in a
single piece of data and to off-site back-ups.

To our knowledge, we are the first file system to adopt
authenticated encryption (AE) [4], which provides both
privacy and authenticity. Authenticity is essential to en-
sure that the data have not changed between being writ-
ten to disk and read back. Particularly in environments
where storage is virtualized or distributed and, thus, dif-
ficult to physically secure. Authenticated encryption re-
quires message expansion — ciphertext are larger than the
plaintext — which is an obstacle to its adoption. Encrypt-
ing file systems have traditionally used block ciphers,
which preserve message size, to meet the alignment and
capacity constraints of disk drives [5, 40, 22]. In practice,
additional storage must be found for the expanded bits of
the message. Our architecture creates a parallel structure
to the inode block map for the storage of expanded bits
of the ciphertext and leverages this structure to achieve
secure deletion. Message expansion is fundamental to
our deletion model.

We have implemented secure deletion and authenti-
cated encryption in the ext3cow versioning file system,
designed for version management in the regulatory envi-
ronment [27]. Experimental results show that our meth-
ods for secure deletion improve deletion performance by
several orders of magnitude. Also, they show that meta-
data maintenance and cryptography degrade file system
performance minimally.

2 Related Work

Secure Deletion

Garfinkel and Shelat [16] survey methods to destroy
digital data. They identify secure deletion as a serious
and pressing problem in a society that has a high turn-
over in technology. They cite an increase in lawsuits and
news reports on unauthorized disclosures, which they at-

tribute to a poor understanding of data longevity and a
lack of secure deletion tools. They identify two meth-
ods of secure deletion that leave disk drives in a usable
condition: secure overwriting and encryption.

In secure overwriting, new data are written over old
data so that the old data are irrecoverable. Gutmann [17]
gives a technique that takes 35 synchronous passes over
the data in order to degauss the magnetic media, making
the data safe from magnetic force microscopy. (Fewer
passes may be adequate [16]). This technique has been
implemented in user-space tools and in a Linux file sys-
tem [3]. Secure overwriting has also been applied in the
semantically-smart disk system [34].

For file systems that encrypt data on disk, data may be
securely deleted by “forgetting” the corresponding en-
cryption key [8]; without a key, data may never be de-
crypted and read again. This method works in systems
that maintain an encryption key per file and do not share
data between multiple files. The actual disposal of the
encryption key may involve secure overwriting.

There are many user-space tools for secure deletion,
such as wipe, eraser, and bootandnuke. These
tools provide some protection when securely deleting
data. However, they may leak information because they
are unable to delete metadata. They may also leak data
when the system truncates files. Further, they are difficult
to use synchronously because they cannot be interposed
between file operations.

The importance of deleting data has been addressed
in other system components. A concept related to stub
deletion has been used in memory systems [13], which
erase a large segment of memory by destroying a small
non-volatile segment. Securely deallocating memory
limits the exposure of sensitive data [11]. Similar
problems have been addressed by Gutmann [18, 19] and
Viega [37].

Secure Systems

CFS [5] was an early effort that added encryption to a
file system. In this user-space tool, local and remote (via
NFS) encrypted directories are accessed via a separate
mount point. All file data and metadata in that directory
are encrypted using a pre-defined user key and encryp-
tion algorithm. CFS does not provide authenticated en-
cryption.

NCryptfs [40] is a cryptographic file system imple-
mented as a stackable layer in FiST [41]. The system
is designed to be customizable and flexible for its users
by providing many options for encryption algorithms and
key requirements. It does not provide authenticated en-
cryption.

Cryptoloop uses the Linux cryptographic API [24] and
the loopback interface to provide encryption for blocks
as they are passed through to the disk. While easy to ad-
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minister for a single-user machine, cryptographic loop-
back devices do not scale well to multi-user systems.

Our implementation of encryption follows the design
of the CryptoGraphic Disk Driver (CGD) [15]. CGD re-
places the native disk device driver with one that encrypts
blocks as they are transfered to disk.

The encryption and storage of keys in the random-key
encryption scheme resembles lock-boxes in the Plutus
file system [22] in which individual file keys are stored
in lock-boxes and sealed with a user’s key.

Cryptography

Secure deletion builds upon cryptographic constructs
that we adapt to meet the demands of a versioning file
system. The principal methods that we employ are the
all-or-nothing transform [29], secret-sharing [33], and
authenticated encryption [4]. Descriptions of their oper-
ation and application appear in the appropriate technical
sections.

3 Secure Deletion with Versions

We have a developed an approach to secure deletion for
versioning systems that minimizes the amount of secure
overwriting, eliminates the need for data block contigu-
ity, and does not increase the complexity of key manage-
ment.

Secure deletion with versions builds upon authenti-
cated encryption of data on disk. We use a keyed trans-
form:

fe(Bi, N) — Cil|si

that takes a data block (B;), a key (k) and a nonce (V)
and creates an output that can be partitioned into an en-
crypted data block (C;), where |B;| = |C;|, and a short
stub (s;), whose length is a parameter of the scheme’s
security. When the key (k) remains private, the trans-
form acts as an authenticated encryption algorithm. To
securely delete an entire block, only the stub needs to be
securely overwritten. This holds even if the adversary
is later given the key (k), which models the situation in
which a key is exposed, e.g. by subpoena. The stub re-
veals nothing about the key or the data, and, thus, stubs
may be stored on the same disk. It may be possible to
recover securely deleted data after the key has been ex-
posed by a brute-force search for the stub. However, this
is no easier than a brute-force search for a secret key and
is considered intractable.

A distinct advantage of our file system architecture is
the use of authenticated encryption [4]. Authenticated
encryption is a transform by which data are kept both pri-
vate and authentic. Many popular encryption algorithms,
such as AES, by themselves, provide only privacy; they
cannot guarantee that the decrypted plaintext is the same

as the original plaintext. When decrypting, an authenti-
cated encryption scheme will take a ciphertext and return
either the plaintext or an indication the ciphertext is in-
valid or unauthentic. A common technique for authenti-
cated encryption is to combine a message authentication
code (MAC) with a standard block cipher [4]. However,
single pass methods exist [30].

Authenticated encryption is a feature not provided by
encrypting file systems to date. This is because authenti-
cated encryption algorithms expand data when encrypt-
ing; the resulting cipherblock is larger than the origi-
nal plaintext. This causes a mismatch in the block and
page size. File systems present a page of plaintext to
the memory system, which fills completely a number of
sectors on the underlying disk. The AE encrypted ci-
phertext is larger than and does not align with the under-
lying sectors. (Other solutions based on a file system or
disk redesign are possible). Expansion results in a loss of
transparency for the encryption system. We address the
problem of data expansion and leverage the expansion to
achieve secure deletion.

Our architecture for secure deletion with stubs does
not complicate key management. It employs the same
key-management framework used by disk-encrypting file
systems based on block ciphers, such as Plutus [22] and
NCryptfs [40]. It augments these to support authenti-
cated encryption and secure deletion.

We present and compare two implementations of the
keyed transform (fx): one inspired by the all-or-nothing
transform and the other based on randomized keys. Both
algorithms allow for the efficient secure deletion of a sin-
gle version. We also present extensions, based on secret-
sharing, that allow for the out-of-band deletion of data
by multiple parties.

3.1 AON Secure Deletion

The all-or-nothing (AON) transform is a cryptographic
function that, given a partial output, reveals nothing
about its input. No single message of a ciphertext can
be decrypted in isolation without decrypting the entire
ciphertext. The transform requires no additional keys.
The original intention, as proposed by Rivest [29], was
to prevent brute-force key search attacks by requiring the
attacker to decrypt an entire message for each key guess,
multiplying the work by a factor of the number of blocks
in the message. Boyko presented a formal definition for
the AON transform [9] and showed that the OAEP [4]
scheme used in many Internet protocol standards meets
his definition. AON has been proposed to make efficient
smart-card transactions [6, 7, 21], message authentica-
tion [14], and threshold-type cryptosystems using sym-
metric primitives [1].

The AON transform is the most natural construct for

USENIX Association

FAST ’05: 4th USENIX Conference on File and Storage Technologies

145



Input: Data Block dy, ..., dm, Block ID id, Counter x,
Encryption key K, MAC key M

s ctry — id||x|[1]|028~ == lidl =1
SCly...,Cm — AES-CTR ™ (di, . ..
it — HMAC-SHA-1x(c1, ...y ¢m)
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(a) AON encryption
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adm

S Tm)

., Cm)

(b) AON decryption

Figure 1: Authenticated encryption and secure deletion for a single data block in a versioning file system using the

all-or-nothing scheme.

the secure deletion of versions. We aim to minimize
the amount of secure overwriting. We also aim to not
complicate key management. AON fulfills both require-
ments while conforming to our deletion model. The all-
or-nothing property of the transform allows the system
to overwrite any small subset of a data block to delete
the entire block; without all subsets, the block cannot
be read. When combined with authenticated encryption,
the AON transform creates a message expansion that is
bound to the same all-or-nothing property. This expan-
sion is the stub and can be securely overwritten to se-
curely delete a block. Because the AON transform re-
quires no additional keys, key management is no more
complicated than a system that uses a block cipher.

We present our AON algorithm for secure deletion in
Figure 1. The encryption algorithm (Figure 1(a)) takes
as inputs: a single file system data block segmented into
128-bit plaintext messages (dy, . . ., d,), a unique iden-
tifier for the block (¢d), a unique global counter (x), an
encryption key (K) and a MAC key (M). To encrypt,
the algorithm first generates a unique encryption counter
(ctr1) by concatenating the block identifier (¢d) with
the global counter (x) and padding with zeros (Step 1).
When AES is in counter mode (AES-CTR), a counter is
encrypted, and used as an initialization vector (IV) to the
block cipher to prevent similar plaintext blocks encrypt-
ing to the same cipher block. The same counter and key
combination should not be used more than once, so we
use a block’s physical disk address for id and the epoch
in which it was written for x; both characteristics exist
within an inode and, by policy, are non-repeatable in a
file system. An AES encryption of the data is performed
in counter mode (AES-CTR) using a single file key (K)
and the counter generated in Step 1 (ctry). This results in
encrypted data (cq, . .., ¢n). The encrypted data are au-
thenticated (Step 3) using SHA-1 and MAC key (M) as

a keyed-hash for message authentication codes (HMAC).
The authenticator () is then used as the key to re-encrypt
the data (Step 5). The authenticator can be used in this
manner because the output of SHA-1 is assumed to be
random. A second counter (ctrs) is used to prevent repet-
itive encryption. A stub (x() is generated (Step 6) by
XOR-ing all the ciphertext message blocks (x1, ..., %)
with the authenticator (¢). The resulting stub is not se-
cret, rather, it is an expansion of the encrypted data and
is subject to the all-or-nothing property. The ciphertext
(21, ...,xy) is written to disk as data, and the stub (z()
is stored as metadata.

Decryption (Figure 1(b)) works similarly, but in re-
verse. The algorithm is given as inputs: the stub (x), the
AON encrypted data block (x1, . . ., ,,), the same block
ID (id) and counter () as in the encryption, and the same
encryption (K') and MAC (M) keys used to encrypt. The
unique counter (ctrs) is reconstructed (Step 1), the au-
thenticator (%) is reconstructed (Step 2) and then used in
the first round of decrypting the data (Step 3). An HMAC
is performed on the resulting ciphertext (Step 4) and the
result (¢') is compared with the reconstructed authentica-
tor (¢) (Step 5). If the authenticators do not match, the
data are not the same as when they were written. Lastly,
the data are decrypted (Step 7), resulting in the original
plaintext.

Despite the virtues of providing authenticated encryp-
tion with low performance and storage overheads, this
construction of AON encryption suffers from a guessed-
plaintext attack. After an encryption key has been re-
vealed, if an attacker can guess the exact contents of a
block of data, she can verify that the data were once in
the file system. This attack does not reveal encrypted
data. Once the key is disclosed, the attacker has all of
the inputs to the encryption algorithm and may repro-
duce the ciphertext. The ciphertext may be compared to
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Input: Data Block di, ..., dm, Block ID id, Counter x,
Encryption key K, MAC key M
1 k& Kag

2: nonce «— id||x

3rcry ... 00 — AER™C(dd, ...y dm)

4: ctr — id||x||0*28~ |11l

5: co « AES-CTR%" (k)

6: t — HMAC-SHA-1(ctr, co)

Output: Stub co, ¢, cm+1, .. ., cn, Ciphertext cy, . . .

y Cm

(a) Random-key encryption

Input: Stub co,t, cnt1,. .., Cm, Ciphertext ¢y, . .
ID id, Counter z, Encryption key K, MAC key M
s ctr «— id||x||0t28 ==l

: t' «— HMAC-SHA-1(ctr, co,T)

cif ¢/ # t return L

: k «— AES-CTR%" (co)

: nonce — id||z

tdi,...,dn = AEL"(cq, ..
Output: Data Block dq, ..., dn

., Cn, Block

[ NS O R S R

. Cm)

(b) Random-key decryption

Figure 2: Authenticated encryption and secure deletion for a single data block in a versioning file system using the

random-key scheme.

the undeleted block of data, minus the deleted stub, to
prove the existence of the data.

Such an attack is reasonable within the threat model of
regulatory storage; a key may be subpoenaed in order to
show that the file system contained specific data at some
time. For example, to show that an individual had read
and subsequently made attempts to destroy an incrimi-
nating email. This threat can be eliminated by adding
a random postfix to the data block, though this will in-
crease the size of the stub.

3.2 Secure Deletion Based on Randomized
Keys

As mentioned by Rivest [29], avoiding such a text-
guessing attack requires that an AON transform employ
randomization so that the encryption process is not re-
peatable given the same inputs. The subsequent security
construct generates a random key on a per-block basis.

Random-key encryption is not an all-or-nothing trans-
form. Instead, it is a refinement of the Boneh key dis-
posal technique [8]. Each data block is encrypted using a
randomly generated key. When this randomly generated
key is encrypted with the file key, it acts as a stub. Like
AON encryption, random-key encryption makes use of
authenticated encryption, minimizes the amount of data
needed to be securely overwritten, and does not require
the management of additional keys.

We give an algorithm for random-key secure deletion
in Figure 2. To encrypt (Figure 2(a)), the scheme gen-
erates a random key, &, (Step 1) that is used to authen-
ticate and encrypt a data block. Similar to the unique
counters in the AON scheme, a unique nonce is gener-
ated (Step 2). Data is then encrypted and authenticated
(Step 3), resulting in an expanded message. The algo-
rithm is built upon any authenticated encryption (AE)
scheme; AES and SHA-1 satisfy standard security def-

initions. To avoid the complexities of key distribution,
we employ a single encryption (/) and MAC (M) key
per file (the same keys as used in AON encryption) and
use these keys to encrypt and authenticate the random
key (k) (Step 5). The encrypted randomly-generated key
(co) serves as the stub. The expansion created by the AE
scheme in Step 3 (¢yn+1, - - - , Cn), and the authentication
of the encrypted random key (¢) does not need to be se-
curely overwritten to permanently destroy data.

An advantage of random-key encryption over AON
encryption is its speed. For example, when the under-
lying AE is OCB [30], only one pass over the data is
made and it is fully parallelizable. However, the algo-
rithm suffers from a larger message expansion: 384 bits
per disk block are required instead of 128 required for
the AON scheme. We are exploring other more space-
efficient algorithms. We have developed another algo-
rithm that requires no more bits than the underlying AE
scheme. Unfortunately, this is based on OAEP and a
Luby-Rackoff construction [23] and is only useful for
demonstrating that space efficient constructions do ex-
ist. It is far too slow to be used in practice, requiring six
expensive passes over the data.

3.3 Other Secure Deletion Models

Our secure deletion architecture was optimized for the
most common deletion operation: deleting a single ver-
sion. However, there are different models for removing
data that may be more efficient in certain circumstances.
These include efficiently removing a block or all blocks
from an entire version chain and securely deleting data
shared by multiple by parties.
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3.3.1 Deleting a Version Chain

AON encryption allows for the deletion of a block of data
from an entire version chain. Due to the all-or-nothing
properties of the transform, the secure overwriting of any
128 bits of a data block results in the secure deletion of
that block, even if the stub persists. When a user wishes
to delete an entire version chain, i.e. all blocks associ-
ated with all versions of a file, it may be more efficient
to securely overwrite the blocks themselves rather than
each version’s stubs. This is because overwriting is slow
and many blocks are shared between versions. For exam-
ple, to delete a large log file to which data has only been
appended, securely deleting all the blocks in the most
recent version will delete all past versions. Ext3cow
provides a separate interface for securely deleting data
blocks from all versions. If a deleted block was shared,
it is no longer accessible to other versions, despite their
possession of the stub.

Randomized-key encryption does not hold this advan-
tage; only selective components may be deleted, i.e. cg.
Thus, in order to delete a block from all versions, the
system must securely overwrite all stub occurrences in
a version chain, as opposed to securely overwriting only
128 bits of a data block in an AON scheme. To remedy
this, a key share (Section 3.3.2) could be stored along-
side the encrypted data block. When the key share is
securely overwritten, the encrypted data are no longer
accessible in any version. However, this strategy is not
practical in most file systems, owing to block size and
alignment constraints. Storage for the key share must be
provided and there is no space in the file system block.
The shares could be stored elsewhere, as we have with
deletion stubs, but need to be maintained on a per-file,
rather than per-version, basis.

3.3.2 Secure Deletion with Secret-Sharing

The same data are often stored in more than one place.
An obvious example of this are remote back-ups. It is
desirable that when data fall out of regulatory scope, all
copies of data are destroyed. Secret-sharing provides a
solution.

Our random-key encryption scheme allows for the
separation of the randomly-generated encryption key
into n key shares. This is a form of an (m,n) secret-
sharing scheme [33]. In secret-sharing, Shamir shows
how to divide data into n shares, such that any m shares
can reconstruct the data, but where m — 1 shares reveals
nothing about the data. We are able to compose a single
randomly generate encryption key (k) from multiple key
shares. An individual key share may then be given to a
user with an interest in the data, distributing the means
to delete data. If a single key share is independently
deleted, the corresponding data are securely deleted and

the remaining key shares are useless. Without all key
shares, the randomly generated encryption key may not
be reconstructed and decryption will fail.

Any number of randomly generated keys may be cre-
ated in Step 1 (Figure 2(a)) and composed to create a
single encryption key (k). To create two key shares (a
(2,2) scheme), Step 1 may be replaced with:

0r & Kag
k—{0{Dr

The stub (cp) then becomes the encryption of any one
key share, for example:

co < AES-CTRSY (¢)

With an (n,n) key share scheme, any single share may
be destroyed to securely delete the corresponding data.
The caveat being that all key shares must be present
at the time of decryption. This benefits parties who
have a shared interest in the same data. For exam-
ple, a patient may hold a key share for their medical
records on a smartcard, enabling them to control ac-
cess to their records and also independently destroy their
records without access to the storage system.

This feature extends to the management of securely
deleting data from back-ups systems. Data stored at an
off-site location may be deleted out-of-band by overwrit-
ing the appropriate key shares. In comparison, without
secret-sharing, all copies of data would need to be col-
lected and deleted to ensure eradication. Once data are
copied out of the secure deletion environment, no assur-
ance as to the destruction of the data may be made.

3.4 Security Properties

Confidence is gained in modern cryptographic construc-
tions through the use of reductionist arguments: it is
shown that if an adversary can break a particular con-
struction, he can also break the underlying primitives that
are employed. For example, AES in CTR mode can be
shown to be secure so long as the AES algorithm is itself
secure.

As was previously pointed out, the authenticated AON
scheme is not secure as it falls victim to a plaintext guess-
ing attack. Even if this particular problem is fixed (by
appending a random block to the plaintext, thereby in-
creasing the size of the stub), the construction is not nec-
essarily secure. Due to some technical problems with the
model, a proof that this type of “package transform” con-
struction reduces to the security of the underlying block
cipher has eluded cryptographers for several years.

The random keys construction is provably secure (un-
der reasonable definitions for this application) so long
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Figure 3: Metadata architecture to support stubs.

as the underlying authenticated encryption scheme is se-
cure, AES is secure, HMAC-SHA1 is secure, and SHA-1
acts as a random oracle. We omit the formal definitions
and proofs from this work.

4 Architecture

We have implemented secure deletion in ext3cow [27],
an open-source, block-versioning file system designed to
meet the requirements of electronic record management
legislation. Ext3cow supports file system snapshot, per-
file versioning, and a time-shifting interface that provides
real-time access to past versions. Versions of a file are
implemented by chaining inodes together where each in-
ode represents a version of a file.

4.1 Metadata for Secure Deletion

Metadata in ext3cow have been retrofitted to support ver-
sioning and secure deletion. For versioning, ext3cow
employs a copy-on-write policy when writing data. In-
stead of overwriting old data with new data, ext3cow al-
locates a new disk block in which to write the new data.
A new inode is created to record the modification and
is chained to the previous inode. Each inode represents
a single version and, as a chain, symbolizes the entire
version history of a file. To support versioning, ext3cow
“steals” address blocks from an inode’s indirect blocks to
embed bitmaps used to manage copy-on-written blocks.
In a 4K indirect block (respectively, doubly or triply indi-
rect blocks), the last thirty-two 32-bit words of the block
contain a bitmap with a bit for every block referenced in
that indirect block.

A similar “block stealing” design was chosen for man-
aging stubs. A number of block addresses in the inode

and the indirect blocks have been reserved to point to
blocks of stubs. Figure 3 illustrates the metadata archi-
tecture. The number of direct blocks in an inode has
been reduced by one, from twelve to eleven, for stor-
age of stubs (i _data [11]) that correspond to the direct
blocks. Ext3cow reserves words in indirect blocks to be
used as pointers to blocks of stubs.

The number of stub block pointers depends on the file
system block size and the encryption method. In AON
encryption, four stub blocks are required to hold the stubs
corresponding to the 4MB of data described by a 4K in-
direct block. Because of the message expansion and au-
thentication components of the randomized-key scheme
(Cn+1, - - -, Cm, t), sixteen stub blocks must be reserved;
four for the deletable stubs and twelve for the expan-
sion and authentication. Only the stub blocks must be
securely overwritten in order to permanently delete data.

All stub blocks in an indirect block are allocated with
strict contiguity. This has two benefits: when securely
deleting a file, contiguous stub blocks may be securely
overwritten together, improving the time to overwrite.
Second, stub blocks may be more easily read when per-
forming an I/O. Stub blocks should not increase the num-
ber of I/Os performed by the drive for a read. Ext3cow
makes efforts to co-locate data, metadata and stub blocks
in a single disk drive track, enabling all to be read in sin-
gle I/O.

Because the extra metadata borrows space from indi-
rect blocks, the design reduces the maximum file size.
The loss is about 16%. With a 4K block size, ext3cow
represents files up to 9.03 x 102 blocks in comparison
to 1.07 x 10 blocks in ext3. The upcoming adoption of
quadruply indirect blocks by ext3 [36] will remove prac-
tical file size limitations.

4.2 The Secure Block Device Driver

All encryption functionality is contained in a secure
block device driver. By encapsulating encryption in a
single device driver, algorithms are modular and inde-
pendent of the file system or other system components.
This enables any file system that supports the manage-
ment of stubs to utilize our device driver.

When encrypting, a data page is passed to the device
driver. The driver copies the page into its private mem-
ory space, ensuring the user’s image of the data is not en-
crypted. The driver encrypts the private data page, gen-
erates a stub, and passes the encrypted page to the low
level disk driver. The secure device driver interacts with
the file system twice: once to acquire encryption and au-
thentication keys and once to write back the generated
stub.

Cryptography in the device driver was built upon the
pre-existing cryptographic API available in the Linux
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Figure 4: The time to securely delete files for the secure overwriting (traditional), all-or-nothing, and random-key

techniques.

kernel [24], namely the AES and SHA-1 algorithms.
Building upon existing constructs simplified develop-
ment, and aids correctness. Further, it allows for the se-
curity algorithms to evolve, giving opportunity for the
secure deletion transforms to be updated as more secure
algorithms become available. For instance, the security
of SHA-1 has been recently called into question [38].

We plan to release the secure device driver to the Linux
community under an open source license via the ext3cow
website, www.ext3cow.com.

4.3 Security Policies

When building an encrypting, versioning file system, cer-
tain policies must be observed to ensure correctness. In
our security model, a stub may never be re-written in
place once committed to disk.Violating this policy places
new stub data over old stub data, allowing the old stub to
be recoverable via magnetic force microscopy or other
forensic techniques.

With secure deletion, I/O drives the creation of ver-
sions. Our architecture mandates a new version when-
ever a block and a stub are written to disk. Continuous
versioning, e.g. CVFS [35], meets this requirement, be-
cause it creates a new version on every write () system
call. However, for many users, continuous versioning
may incur undesirable storage overheads, approximately
27% [27, 35]. Most systems create versions less fre-
quently. As a matter of policy, e.g. daily, on every file
open, etc.; or, explicitly through a snapshot interface.

The demands of secure deletion may be met without
continuous versioning. Ext3cow reduces the creation of
versions based on the observation that multiple writes to
the same stub may be aggregated in memory prior to

reaching disk. We are developing write-back caching
policies that delay writes to stub blocks and aggregate
multiple writes to the same stub or writes to multiple
stubs within the same disk sector. Stub blocks may be de-
layed even when the corresponding data blocks are writ-
ten to disk; data may be re-written without security ex-
posure. A small amount of non-volatile, erasable mem-
ory or an erasable journal would be helpful in delaying
disk writes when the system call specifies a synchronous
write.

5 Experimental Results

We measure the impact that AON and random-key secure
deletion have on performance in a versioning file sys-
tem. We begin by measuring the performance benefits of
deletion achieved by AON and random-key secure dele-
tion. We then use the Bonnie++ benchmark suite to stress
the file system under different cryptographic configura-
tions. Lastly, we explore the reasons why secure deletion
is a difficult problem for versioning file systems through
trace-driven file system aging experiments. All experi-
ments were performed on a Pentium 4, 2.8GHz machine
with 1GB of RAM. Bonnie++ was run a 80GB partition
of a Seagate Barracuda ST380011A disk drive.

5.1 Time to Delete

To examine the performance benefits of our secure dele-
tion techniques, we compared our all-or-nothing and
random-key algorithms with Gutmann’s traditional se-
cure overwriting technique. Files, sized 2™ blocks for
n = 0,1,...,20, were created; for 4KB blocks, this a
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Figure 5: Bonnie++ throughput and CPU utilization results.

file size range of 4KB to 4GB. Each file was then se-
curely deleted using each of the three secure deletion
methods, and the time to do so was measured. Because
no versioning is taking place, files are relatively contigu-
ous on disk. Further, no blocks are shared between ver-
sions so all blocks of the file are overwritten.

Figure 4(a) demonstrates the dramatic savings in time
that can be achieved by using stub deletion. Files be-
tween 2'6 and 22° were truncated for clarity. AON
deletion bests traditional deletion by a factor of 200 for
67MB files (2'° blocks), with random-key deletion per-
forming slightly worse than AON. Differences are better
seen in Figure 4(b), a log-log plot of the same result.

AON and random-key deletion perform similarly on
files allocated only with direct blocks (between 2° and
approximately 2% blocks), and begin to diverge at 27
blocks. By the time files are allocated using doubly indi-
rect blocks (between 29 and 2'° blocks) the performance
of random-key and AON differ substantially. This is due
to the larger stub size needed for random-key deletion,
requiring more secure overwriting of stub blocks.

5.2 Bonnie++

Bonnie++ is a well-known performance benchmark that
quantifies five aspects of file system performance based
on observed I/O bottlenecks in a UNIX-based file sys-
tem. Bonnie++ performs I/O on large files (for our ex-
periment, two 1-GB files) to ensure I/O requests are
not served out of the disk’s cache. For each test, Bon-
nie++ reports throughput, measured in kilobytes per sec-
ond, and CPU utilization, as a percentage of CPU us-
age. Five operations are tested: (1) each file is written
sequentially by character, (2) each file is written sequen-
tially by block, (3) the files are sequentially read and
rewritten, (4) the files are read sequentially by charac-

ter, and (5) the files are read sequentially by block. We
compare the results of five file system modes: ext3cow,
ext3cow-null, ext3cow-aes, ext3cow-aon and ext3cow-
rk. Respectively, they are: a plain installation of ext3cow
with no secure device driver. Ext3cow with a secure de-
vice driver that does no encryption. Ext3cow with a se-
cure device driver that does a simple AES encryption.
Ext3cow with a secure device driver that runs the all-
or-nothing algorithm, and ext3cow with a secure device
driver that runs the random-key algorithm. Ext3cow per-
forms comparably with ext3 [27]. Results are the product
of an average of 10 runs of Bonnie++ on the same parti-
tion.

Figure 5(a) presents throughput results for each Bon-
nie++ test. When writing, throughput suffers very lit-
tle in the presence of cryptography. The largest differ-
ence occurs when writing data a block at a time; AON
encryption reduces throughput by 1.3 MB/s, from 12.1
MB/s to 10.8 MB/s. This result is consistent with the
literature [39]. A more significant penalty is incurred
when reading. However, we believe this to be an arti-
fact of the driver and not the cryptography, as the null
driver (the secure device driver employing no cryptog-
raphy) experiences the same performance deficit. The
problem stems from the secure device driver’s inability to
aggregate local block requests into a single large request.
We are currently implementing a request clustering algo-
rithm that will eliminate the disparity. In the meantime,
the differences in the results for the null device driver
and device drivers that employ cryptography are minor:
a maximum difference of 200 K/s for character reading
and 1.2 MB/s for block reading. Further, the reading of
stubs has no effect on the ultimate throughput. We at-
tribute this to ext3cow’s ability to co-locate stubs with
the data they represent. Because it is based on ext3 [10],
ext3cow employs block grouping to keep metadata and
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Figure 6: Results of trace-driven file system aging experiments.

data near each other on disk. Thus, track caching on disk
and read-ahead in ext3cow put stubs into the disk and
system cache, making them readily available when ac-
cessing the corresponding data.

To gauge the impact of file system cryptography on
the CPU, we measured the CPU utilization for each Bon-
nie++ test. Results are presented in Figure 5(b). When
writing, cryptography, as a percentage of the total CPU,
has nearly no effect. This makes sense, as more of
the CPU is utilized by the operating system for writing
than for reading. Writes may perform multiple mem-
ory copies, allocate memory pages, and update meta-
data. Similarly, reading data character by character is
also CPU intensive, due to buffer copying and other
memory management operations, so cryptography has a
negligible effect. Cryptography does have a noticeable
effect when reading data a block at a time, evident in
the rewrite and block read experiments. Because blocks
match the page size in ext3cow, little time must be spent
by the CPU to manage memory. Thus, a larger portion
of CPU cycles are spent on decryption. However, during
decryption, the system remains I/O bound, as the CPU
never reaches capacity. These results are consistent with
recent findings [39] that the overheads of cryptography
are acceptable in modern file systems.

The cost of cryptography for secure deletion does not
outweigh the penalties for falling out of regulatory com-
pliance. In the face of liability for large scale identity
theft, the high cost of litigation, and potentially ruinous
regulatory penalties, cryptography should be considered
a relatively low cost and necessary component of regula-
tory storage systems.

5.3 Trace-Driven Experiments

We present results that quantify the difficulty of achiev-
ing good performance when securely deleting data that
have fallen out of regulatory scope. We replayed four
months of file system call traces [31] on an 80G ext3cow
partition, taking snapshots every second. This results in
4.2 gigabytes of data in 81674 files.

We first examine the amount of external fragmenta-
tion that results from versioning. External fragmentation
is the phenomenon of file blocks in nonadjacent disk ad-
dresses. This causes multiple disk drive seeks to read or
delete a file. Ext3cow uses a copy-on-write scheme to
version files [27]. This precludes the file system from
keeping all blocks of a version strictly contiguous. Be-
cause seeks are an expensive operations, fragmentation is
detrimental to the performance of traditional secure over-
writing. Figure 6(a) shows the effect versioning has on
block fragmentation. Versioning increases dramatically
the average number of block extents — regions of contigu-
ous blocks. This is in comparison to the ext3 file system
without versioning. Note the log-log scale. Some files
have as many as 1000 block extents. This is the result of
files receiving lots copy-on-write versioning.

In practice, secure deletion provides more benefit than
microbenchmark results would indicate (Section 5.1).
Given that seeking is the most expensive disk operation,
traditional secure overwriting scales with the number of
block extents that need to be overwritten. For AON or
random-key secure deletion, the number of extents de-
pends only upon the file size, not the fragmentation of
data. Deletion performance does not degrade with ver-
sioning. For secure overwriting of the file data, perfor-
mance scales with the number of block extents. Given
the large degree of fragmentation generated through ver-
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sioning, isolating deletion performance from file conti-
guity is essential.

Despite the high degree of copy-on-write and frag-
mentation, trace results show that there are considerable
data to delete in each version, i.e. deletion is non-trivial.
When a version of a file falls out of scope, much of its
data are unique to that version and, thus, need to be se-
curely deleted. This is illustrated in Figure 6(b). This
graph shows the average amount of data that needs to
be deleted as a percentage of the file size. There are
very few files that have fewer than 25% unique blocks.
Most versions need 100% of their blocks deleted. This is
not unexpected as many files are written once and never
modified. This is much more important for larger files
which are more sensitive to deletion performance; stub
deletion offers less benefit when deleting very small files.
Even the largest files in the file system contain mostly
unique data.

6 Applicability to Other Data System

There is potential for the reuse of the AON and random-
key algorithms for secure deletion in any storage system
that shares data among files. Content-indexing systems,
such as Venti [28], LBFS [26], and pStore [2], have the
same deletion problems and our technology translates di-
rectly. Content-indexing stores a corpus of data blocks
(for all files) and represents a file as an assemblage of
blocks in the corpus. Files that share blocks in the cor-
pus have the same dependencies as do copy-on-write ver-
sions.

7 Conclusions

We define a model for secure deletion in storage systems
that share data between files, specifically, versioning file
systems that comply with federal regulations. Our model
supports authenticated encryption, a unique feature for
file systems. A data block is encrypted and converted
into a ciphertext block and a small stub. Securely over-
writing the stub makes the corresponding block irrecov-
erable.

We present two algorithms within this model. The first
algorithm employs the all-or-nothing transform so that
securely overwriting a stub or any 128 bit block of a ci-
phertext securely deletes the corresponding disk block.
The second algorithm generates a random key per block
in order to make encryption non-repeatable. The first
algorithm produces more compact stubs and supports a
richer set of deletion primitives, whereas the second al-
gorithm provides stronger privacy guarantees.

Both secure deletion algorithms meet our requirement
of minimizing secure overwriting, resulting in a 200

times speed-up over previous techniques. The addition of
stub metadata and a cryptographic device driver degrade
performance minimally. We have implemented secure
deletion in the ext3cow versioning file system for Linux
and in a secure device driver. Both are open-source and
available for download at the project’s webpage.
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