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Abstract

Proper data placement schemes based on erasure correct-
ing code are one of the most important components for a
highly available data storage system. For such schemes,
low decoding complexity for correcting (or recovering)
storage node failures is essential for practical systems.
In this paper, we describe a new coding scheme, which
we call the STAR code, for correcting triple storage node
failures (erasures). The STAR code is an extension of
the double-erasure-correcting EVENODD code, and a
modification of the generalized triple-erasure-correcting
EVENODD code. The STAR code is an MDS code, and
thus is optimal in terms of node failure recovery capa-
bility for a given data redundancy. We provide detailed
STAR code’s decoding algorithms for correcting various
triple node failures. We show that the decoding com-
plexity of the STAR code is much lower than those of
the existing comparable codes, thus the STAR code is
practically very meaningful for storage systems that need
higher reliability.

1 Introduction

In virtually all information systems, it is essential to
have a reliable data storage system that supports data
availability, persistence and integrity. Here we refer to
a storage system in general sense: it can be a disk ar-
ray, a network of storage nodes in a clustered environ-
ment (SAN or NAS), or a wide area large scale P2P net-
work. In fact, many research and development efforts
have been made to address various issues of building
reliable data storage systems to ensure data survivabil-
ity, reliability, availability and integrity, including disk
arrays, such as the RAID [14], clustered systems, such
as the NOW [2] and the RAIN [12], distributed file sys-
tems, such as the NFS (Network File System) [39], HA-
NES [4], xFS [3], AFS [36], Zebra [23], CODA [37],
Sprite [28], Scotch [20] and BFS [13], storage systems,
such as NASD [19], Petal [25] and PASIS [42], and large
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scale data distribution and archival networks, such as
Intermemory [21], OceanStore [24] and Logistical Net-
work [33].

As already indicated by these efforts, proper data re-
dundancy is the key to provide high reliability, availabil-
ity and survivability. Evolving from simple data replica-
tion or data striping in early clustered data storage sys-
tems, such as the RAID system [14], people have real-
ized it is more economical and efficient to use the so-
called threshold schemes to distribute data over multiple
nodes in distributed storage systems [42, 41, 21, 24] than
naive (multi-copy) replications. The basic idea of thresh-
old schemes is to map an original data item into n pieces,
or shares, using certain mathematical transforms. Then
all the n shares are distributed to n nodes in the system,
with each node having one share. (Each node is a storage
unit, which can be a disk, a disk array or even a clustered
subsystem.) Upon accessing the data, a user needs to
collect at least k shares to retrieve the original data, i.e.,
the original data can be exactly recovered from m dif-
ferent shares if m > k, but less than k shares will not
recover the original data. Such threshold schemes are
called (n, k)-threshold schemes. The threshold schemes
can be realized by a few means. To maximize the usage
of network and storage capacity, and to eliminate bot-
tlenecks in a distributed storage system, each data share
should be of the same size. Otherwise the failure of a
node storing a share with bigger size will have bigger
impact on the system performance, thus creating a bot-
tleneck in the system.

From error control code point of view, an (n,k)-
threshold scheme with equal-size shares is equivalent
to an (n, k) block code, and especially most (n,k)-
threshold schemes are equivalent to (n, k) MDS (Max-
imum Distance Separable) codes [27, 26]. An (n, k) er-
ror control code uses mathematical means to transform a
k-symbol message data block to an n-symbol codeword
block such that any m symbols of the codeword block
can recover all the k& symbols of the original message
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data block, where k£ < m < n. All the data symbols are
of the same size in bits. Obviously by the simple pigeon
hole principle, £ < m. When m = k, such an (n, k) code
is called MDS code, or meets the Singleton Bound [26].
Hereafter we simply use (n, k) to refer to any data distri-
bution scheme using an (n, k) MDS code. Using coding
terminology, each share of (n, k) is called a data symbol.
The process of creating n data symbols from the origi-
nal data whose size is of k symbols is called encoding,
and the corresponding process of retrieving the original
data from at least arbitrary k£ data symbols stored in the
system is called decoding.

It is not hard to see an (n, k) scheme can tolerate up to
(n — k) node failures at the same time, and thus achieve
data reliability, or data survivability in case the system
is under attack where some nodes can not function nor-
mally. The (n, k) scheme can also ensure the integrity of
data distributed in the system, since an (n, k) code can be
used to detect data modifications on up to (n — k) nodes.
r = n — k is a parameter that can describe the reliability
degree of an (n, k) scheme.

While the concept of (n, k) has been well understood
and suggested in various data storage projects, virtually
all practical systems use the Reed-Solomon (RS) code
[35] as an MDS code. (The so-called information disper-
sal algorithm [34] used in some schemes or systems [1]
is indeed just a RS code.) The computation overhead of
using the RS code, however, is large, as demonstrated in
several projects, such as in OceanStore [24]. Thus prac-
tical storage systems seldom use a general (n, k) MDS
code, except for full replication (which is an (n, 1)) or
stripping without redundancy (corresponding to (n,n))
or single parity (which is (n, n — 1)). The advantages of
using (n, k) schemes are hence very limited if not totally
lost.

It is hence very important and useful to design general
(n, k) codes with both MDS property and simple encod-
ing and decoding operations. MDS array codes are such
a class of codes with the both properties.

Array codes have been studied extensively [17, 22, 8,
5,7, 43, 44, 6, 15]. A common property of these codes
is that their encoding and decoding procedures use only
simple binary XOR (exclusive OR) operations, which can
be easily and most efficiently implemented in hardware
and/or software, thus these codes are more efficient than
the RS code in terms of computation complexity.

In an array code, each of the n (information or parity)
symbols contain [ “bits”, where a bit could be binary or
from a larger alphabet. The code can be arranged in an
array of size n x [, where each element of the array cor-
responds to a bit. (When there is no ambiguity, we refer
to array elements also as symbols for representation con-
venience.) Mapping to a storage system, all the symbols
in a same column are stored in the same storage node.

If a storage node fails, then the corresponding column of
the code is considered to be an erasure. (Here we adopt
a commonly-used storage failure model, as discussed in
[5, 15], where all the symbols are lost if the host storage
node fails.)

A few class of MDS array codes have been success-
fully designed to recover double (simultaneous) storage
node failures, i.e., in coding terminology, codes of dis-
tance 3 which can correct 2 erasures [26]. The recent
ones include the EVENODD code [5] and its variations
such as the RDP scheme [15], the X-Code [43], and the
B-Code [44].

As storage systems expand, it becomes increasingly
important to have MDS array codes of distance 4, which
can correct 3 erasures, i.e., codes which can recover from
triple (simultaneous) node failures. (There have been
parallel efforts to design near-optimal codes, i.e., non-
MDS codes, to tolerate triple failures, e.g. recent re-
sults from [32].) Such codes will be very desirable in
large storage systems, such as the Google File System
[18]. To the best of our knowledge, there exist only few
classes of MDS array codes of distance 4: the general-
ized EVENODD code [7, 6] and later the Blaum-Roth
code [9]. (There have been unsuccessful attempts result-
ing in codes that are not MDS [40, 29], which we will not
discuss in detail in this paper.) The Blaum-Roth code is
non-systematic, which requires decoding operations in
any data retrieval even without node failures and thus
probably is not desirable in storage systems. The gen-
eralized EVENODD code is already much more efficient
than the RS code in both encoding and decoding opera-
tions. But a natural question we ask is: can its decoding
complexity be further reduced? In this paper, we provide
a positive answer with a new coding scheme, which we
call the STAR code.

The STAR code is an alternative extension of the
EVENODD code, a (k 4+ 3,k) MDS code which can
recover triple node failures (erasures). The structure of
the code is very similar to the generalized EVENODD
code and their encoding complexities are also the same.
Our key contribution, however, is to exploit the geomet-
ric property of the EVENODD code, and provide a new
construction for an additional parity column. The differ-
ence in construction of the third parity column leads to
a more efficient decoding algorithm than the generalized
EVENODD code for triple erasure recovery. Our anal-
ysis shows the decoding complexity of the STAR code
is very close to 3 XORs per bit (symbol), the theoretical
lower bound, even when k is small, where the general-
ized EVENODD could need up to 10 XORs (Section 7)
per bit (symbol). Thus the STAR code is perhaps the
most efficient existing code in terms of decoding com-
plexity when recovering from triple erasures.

It should be noted that the original generalized EVEN-
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Figure 1: EVENODD Code Encoding

ODD papers [7, 6] only provide generic erasure decod-
ing algorithms for multiple erasures. It might be possible
to design a specific triple-erasure decoding algorithm to
reduce decoding complexity of the generalized EVEN-
ODD. It is, however, not clear whether such a decod-
ing algorithm for the generalized EVENODD code can
achieve the same complexity as the STAR code. The
interested readers thus are welcome to design an opti-
mized triple-erasure decoding algorithm for the general-
ized EVENODD code and compare its performance with
the STAR code.

This paper is organized as follows: we first briefly de-
scribe the EVENODD code, base on which the STAR
code encoding is derived in the following section. In Sec-
tion 4, we constructively prove that the STAR code can
correct any triple erasures by providing detailed decod-
ing algorithms. We also provide an algebraic description
of the STAR code and show that the STAR code’s dis-
tance is 4 in Section 5. We then analyze and discuss the
STAR decoding complexity in Section 6 and make com-
parisons with two related codes in Section 7. We further
share our implementation and performance tests of the
STAR code in Section 8, and conclude in Section 9.

2 EVENODD Code: Double Erasure Re-
covery

2.1 EVENODD Code and Encoding

We first briefly describe the EVENODD code [5], which
was initially proposed to address disk failures in disk ar-
ray systems. Data from multiple disks form a two dimen-
sional array, with one disk corresponding to one column
of the array. A disk failure is equivalent to a column
erasure. The EVENODD code uses two parity columns
together with p information columns (where p is a prime
number. As already observed [5, 15], p being prime in
practice does not limit the k parameter in real system
configuration with a simple technique called codeword
shortening [26]. The code ensures that all information
columns are fully recoverable when any two disks fail.
In this sense, it is an optimal 2-erasure correcting code,
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Figure 2: EVENODD Code Decoding

i.e, itis an (p + 2, p, 3) MDS code. Besides this MDS
property, the EVENODD code is computationally effi-
cient in both encoding and decoding, which needs only
XOR operations.

The encoding process considers a (p — 1) x (p + 2)
array, where the first p columns are information columns
and the last two parity columns. Symbol a; ; (0 < ¢ <
p—2,0 <7 < p+ 1) represents symbol ¢ in column
7. A parity symbol in column p is computed as the XOR
sum of all information symbols in the same row. The
computation of column (p+ 1) takes the following steps.
First, the array is augmented with an imaginary row p—1,
where all symbols are assigned zero values (note that all
symbols are binary ones). The XOR sum of all informa-
tion symbols along the same diagonal (indeed a diagonal
of slope 1) is computed and assigned to their correspond-
ing parity symbol, as marked by different shapes in Fig-
ure 1. Symbol a,_1 41 now becomes non-zero and is
called the EVENODD adjuster. To remove this symbol
from the array, adjuster complement is performed, which
adds (XOR addition) the adjuster to all symbols in col-
umn p + 1.

The encoding can be algebraically described as fol-
lows (0 < <p—2)

1

i

Qi,p = Qi,j

J

p—1

i =510 (Dac-i, ).
j=0
1

I
o

p—
where S1 = @a@_l_ﬂp,j.

3=0
Here, S; is the EVENODD adjuster and (x), denotes
x mod p. Refer to [5] for more details.

2.2 EVENODD Erasure Decoding

The EVENODD code is an optimal double erasure cor-
recting code and any two column erasures in a coded
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block can be fully recovered. Regarding to the loca-
tions of the erasures, [5] divides decoding into four cases.
Here, we only summarize the most common one, where
neither of the erasures is a parity column. Note that the
other three cases are special ones and can be dealt with
easily. A decoder first computes horizontal and diago-
nal syndromes as the XOR sum of all available symbols
along those directions. Then a starting point of decoding
can be found, which is guaranteed to be the only erasure
symbol in its diagonal. The decoder recovers this sym-
bol and then moves horizontally to recover the symbol in
the other erasure column. It then moves diagonally to the
next erasure symbol and horizontally again. Upon com-
pleting this Zig-Zag process, all erasure symbols are fully
recovered. In the example shown in Figure 2 (p = 5), the
starting point is symbol a2 2 and the decoder moves from
a2 10 az 0, ao,2, 0,0 - - - and finally completes at a4 .

3 STAR Code Encoding: Geometric De-
scription

Extending from the EVENODD code, the STAR code
consists of p + 3 columns, where the first p columns
contain information data and the last 3 columns contain
parity data. The STAR code uses the exact same encod-
ing rules of the EVENODD code for the first two parity
columns, i.e., without the third parity column, the STAR
code is just the EVENODD code. The extension lies in
the last parity column, column p + 2. This column is
computed very similar to column p + 1, but along diag-
onals of slope —1 instead of slope 1 as in column p + 1.
( The original generalized EVENODD code [7, 6] uses
slope 2 for the last parity column. That is the only differ-
ence between the STAR code and the generalized EVEN-
ODD code. However, as will be seen from the following
section, it is this difference that makes it much easier to
design a much more efficient decoding algorithm for cor-
recting triple erasures. ) For simplicity, we call this anti-
diagonal parity. The procedure is depicted by Figure 3,
where symbol a,_1 p42 in parity column p + 2 is also an
adjuster, similar to the EVENODD code. The adjuster is
then removed from the final code block by adjuster com-
plement. Algebraically, the encoding of parity column
P + 2 can be represented as (0 < ¢ < p — 2):

p—1 p—1
Aip+2 = 52@(@ a<z‘+j>p,j>» where Sy = @%‘—nmr
j=0 j=0

4 STAR Code Erasure Decoding

The essential part of the STAR code is the erasure decod-
ing algorithm. As presented in this section, the decoding
algorithm involves pure XOR operations, which allows

parity 11l

| O8O
O8] D >~

Figure 3: STAR Code Encoding

efficient implementation and thus is suitable for compu-
tation/energy constrained applications. The MDS prop-
erty of the STAR code, which guarantees the recovery
from arbitrary triple erasures, is explained along with the
description of the decoding algorithm. A mathematical
proof of this property will be given in a later section.

The STAR code decoding can be divided into two
cases based on different erasure patterns: 1) decoding
without parity erasures, where all erasures are infor-
mation columns; and 2) decoding with parity erasures,
where at least one erasure is a parity column. The for-
mer case is harder to decode and is the focus of this sec-
tion. This case in turn can be divided into two subcases:
symmetric and asymmetric, based on whether the erasure
columns are evenly spaced. The latter case, on the other
hand, handles several special situations and is much sim-
pler.

4.1 Decoding without Parity Erasures:
Asymmetric Case

We consider the recovery of triple information column
erasures at position 7, sand t (0 < r, s, t < p— 1),
among the total p + 3 columns. (Note: hereafter, some-
times we also use r to denote a column position. It
should be easy to distinguish a column position r from
a code’s reliability degree r = n — k from the con-
texts.) Without loss of generality, assume 7 < s < .
Letu = s —r and v =t — s. The asymmetric case deals
with erasure patterns satisfying u # v.

The decoding algorithm can be visualized with a con-
crete example, where r = 0, s = 1, = 3 and p = 5, as
shown in Figure 4(a), where empty columns are erasures.

The decoding procedure consists of the following four
steps:
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4.1.1 Recover Adjusters and Calculate Syndromes

Given the definitions of the adjusters S and So, it is easy
to see that they can be computed as the XOR sums of all
symbols in parity columns 5, 6 and 5, 7, respectively.

Then the adjusters are assigned to symbols a4, a4, 7
and also applied through XOR additions to all of the
rest parity symbols in columns 6, 7, which is to re-
verse the adjuster complement. The redundancy prop-
erty of the coded block states that the XOR sum of all
symbols along any parity direction (horizontal, diagonal
and anti-diagonal) should equal to zero. Due to erasure
columns, however, the XOR sum of the rest symbols is
non-zero and we denote it as the syndrome for this par-
ity direction. To be specific, syndrome 5; ; denotes the
XOR sum of parity symbol a; ;4 and its corresponding
non-erasure information symbols. For example, 59 =
ap,5 D ap,2 () ap,4 and §()_’1 = ao,6 D as 2 D ai 4, etc. To
satisfy the parity property, the XOR sum of all erasure in-
formation symbols along any redundancy direction needs
to match the corresponding syndrome. For example,
50,0 = 0,0 P ao,1 B ao,3 and Sp,1 = ag,o D a4,;1 D az,3,
etc.

In general, this step can be summarized as:
1) adjusters recovery (j =0, 1, 2),

p—2
S; =P aipis,
1=0

S1=S50®S1and Sy = Sy D So;
2) reversion of adjuster complement (0 < ¢ < p — 2),

Qipt+1 = Qipt1 B S1,
Qipt2 = Qipt2 B S2;

3) syndrome calculation

p—1

55,0 = Q3,0 D ( ai,j)v
=
1

Si,1 = 3,1 D (@ a<p+7;_j>p,j),

Si2 = a2 ® ( a<i+j)p,j>a

(e}

<.

where0 <i<p—1landj #r,sort.

4.1.2 Finding a Starting Point

Recall that finding a starting point is the key step of
the EVENODD decoding, which seeks one particular
diagonal with only one unknown symbol. This sym-
bol can then be recovered from its corresponding syn-
drome, and it enables the Zig-Zag decoding process until

all unknown symbols are recovered. In the STAR decod-
ing, however, it is impossible to find any parity direction
(horizontal, diagonal or anti-diagonal) with only one un-
known symbol. Therefore, the approach adopted in the
EVENODD decoding does not directly apply here, and
additional steps are needed to find a starting point.

For illustration purpose, we now assume all syn-
dromes are represented by the shadowed symbols in the
three parity columns, as shown in Figure 4(b). Based on
the diagonal parity property, it is clear that S5 ; equals
to the XOR sum of three unknown symbols as o, a2 1
and ag 3, as marked by “A” signs in Figure 4(b). Simi-
larly, 50,2 = ao,0 ® a1,1 @ as g, which are all marked by
“V” signs along an anti-diagonal. Imagine that all these
marked symbols in the erasure information columns al-
together form a cross pattern, whose XOR sum is com-
putable (831 @ 50,2 in this case). The key of this step is
to choose multiple crosses, such that the following two
conditions are satisfied:

Condition 1

1) each cross is shifted vertically downward from a pre-
vious one by v symbols (offset),

2) the bottom row of the final cross (after wrapping
around) steps over (coincides with) the top row of the
first cross.

In our particular example, two crosses are chosen. The
second cross is v = 2 symbols offset from the first one
and consists of erasure symbols ag o, a4,1, a2,3 (marked
by “A”) and a2 o, a3.1, ag,3 (marked by “v”), as shown
in Figure 4(c). It is straightforward that the XOR sum of
these two crosses equals to 53 1 @ 50,2 D 50,1 D S2,2.

Notice, on the other hand, the calculation (XOR sum)
of these two crosses includes symbols ag o and ag 3
twice, the result of the bottom row of the second cross
stepping over the top row of the first one. Thus, their val-
ues are canceled out and do not affect the result. Also no-
tice that the parities of unknown symbol sets (az,0, a2,1
and a2 3) and (a3 o, a3,1 and a3 3) can be determined by
horizontal syndromes 55 o and 83 ¢ (marked by “()”), re-
spectively. Thus, we can get

a1,1 D ag1 = 531D 50,2 D 50,1 D 522D 520D 530,

as all marked in Figure 4(d).

Repeating this process and starting the first cross at
different rows, we can obtain the XOR sum of any un-
known symbol pair with a fixed distance 3 in column 1,
ie. ap,1 @ as1, a1 D ag,1, etc.

From this example, we can see that the first condi-
tion of choosing crosses ensures the alignment of un-
known symbols in the middle erasure column with those
in the side erasure columns. Essentially, it groups un-
known symbols together and replaces them with known
syndromes. This is one way to cancel unknown symbols
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Figure 4: STAR Code Decoding

and results in a chain of crosses. The other way to can-
cel unknown symbols comes from the second condition,
where unknown symbols in the head row (the first row of
the first cross) of the cross chain are canceled with those
in the fail row (the bottom row of the final cross). This
is indeed “gluing” the head of the first cross with the tail
of the last one and turns the chain into a ring. The num-
ber of crosses in the ring is completely determined by the
erasure pattern (r, s and ¢) and the STAR code parameter
p. The following Lemma 1 ensures the existence of such
aring for any given u = s —r,v =t — s and p.

Lemma 1 A ring satisfying Condition I always exists
and consists of lg (0 < lg < p) crosses, where g is
determined by the following equation:

(u+1qv), =0, (1)

where 0 < u, v < p.
Proof. Since p is a prime number, integers modulo p

define a finite field GF(p). Let v~ be the unique inverse
of v in this field. Then, I; = (p — u)v~?! exits and is

Lemma 2 After cancellations, there are exact two rows
with unknown symbols in a ring. The row numbers are u
and p — u, as offsets from the top row of the first cross.

Proof. To simplify the proof, we only examine the ring,
whose first cross starts at row 0. Now the first cross con-
tains two unknown symbols in column 7 and they are in
rows 0 and u + v. We can represent them with a poly-
nomial (1 + z%*"), where power values (modulo p) of
x correspond to row entices. Similarly, the unknown
symbols in column s can be represented as (z* + z).
Therefore, the first cross can be completely represented
by (1 + 2"t? + 2% + 2v) and the [;"" cross by

(1 +$u+v +xu +xv)$ll1)7

where 0 < [; < [l; and the coefficients of x are binary.
Note that we don’t explicitly consider unknown symbols
in column ¢, which are reflected by polynomials repre-
senting column r. Using this representation, the cancel-
lation of a polynomial term includes both cases of sub-
stitution and simple cancellation. The XOR sum of all
crosses is as

la—1

unique. Z (1+ 2" + 2" + x”)ml“’

Given a ring, rows with 3 unknown symbols are substi- 1,=0

tuted with horizontal syndromes (substitution), and sym- la—1

bols being included even times are simply removed (sim- =(1+a") Z (1+2") phv

ple cancellation). For simplicity, we refer both cases as 1i=0

cancellations. Eventually, there are exactly two rows left =(1+2")(1 + 2P~

with unknown symbols, which is confirmed by the fol-

lowing Lemma 2. =zt a2, )
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where [; is substituted using the result from Lemma 1.
Thus, only two rows with unknown symbols are left after
cancellations and the distance between them is d = (p —
2u) p.

It is important to point out that unknown symbols in
the remaining two rows are not necessarily in column s.
For example, if r = 0, s = 2 and t = 3, the remain-
ing unknown symbols would be a2 o, a2 3, as,o and a3 3,
which are indeed columns r and ¢. However, it is con-
ceivable that we can easily get the XOR sum of corre-
sponding unknown symbol pair in column s, since hori-
zontal syndromes are available.

To summarize this step, we denote [}, to be the number
of rows in a ring, which are canceled through substitu-
tion and define the set of corresponding row indices as
Fp, ={hi, |0 <l <l}. The set F}, is simply obtained
by enumerating all crosses of the ring and then counting
rows with 3 unknown symbols. Let a,, denote the XOR
sum of the unknown symbol pair ag s and a,_a,)

psS?
then the #*" pair has
lg—1 Ilp—1 lg—1
duri = D S—rsiyp2 B Sty +iyp00 D Sirip
11=0 1=0 11=0
3)

where 0 <7 <p—1.

4.1.3 Recover Middle Erasure Column

In the previous step, we have computed the XOR sum
of arbitrary unknown symbol pair in column s with the
fixed distance 3. Since symbol a4 ; is an imaginary sym-
bol with zero value, it is straightforward to recover sym-
bol aq,1. Next, symbol as i can be recovered since the
XOR sum of the pair a; ; and a3 is available. Conse-
quently, symbols a1 and ag ; are recovered. This pro-
cess is shown to succeed with arbitrary parameters by
Lemma 3.

Lemma 3 Given the XOR sum of arbitrary symbol pair
with a fixed distance d, all symbols in the column are
recoverable if there is at least one symbol available.

Proof. Since p is prime, F' = {(di),| 0 < i < p—1}
covers all integers in [0, p). Therefore, a “tour” starting
from row p — 1 with the stride size d will visit all other
rows exactly once before returning to it. As the symbol
in row p — 1 is always available (zero indeed) and the
XOR sum of any pair with distance d is also known, all
symbols can then be recovered along the tour.
To summarize, this step computes

A((p—1)—di), = W{(p—1)—di), D U(p-1)—d(i-1)),>

where 0 < ¢ < p — 1. Then, a; s = a; (where there are 2
unknown symbols left in the ring after cancellations) or

Figure 5: STAR Code Decoding (Symmetric Erasures)

a;,s = a; O 5;,0 (Where 4 unknown symbols are left) for
all ¢’s. Thus far, column s is completely recovered.

4.1.4 Recover Side Erasure Columns

Now that column s is known, the first p+2 columns com-
pose an EVENODD coded block with 2 erasures. Thus
this reduces to an EVENODD decoding of two erasures.

4.2 Decoding without Parity Erasures:
Symmetric Case

When the erasure pattern is symmetric (u = v), the de-
coding becomes much easier, where step 2 is greatly sim-
plified while all other steps remain the same.

To illustrate the step of finding a starting point, we still
resort to the previous example, although the erasure pat-
tern is different now. Let’s assume » = 0, s = 1 and
t = 2, as shown in Figure 5. It is easy to see that only
one cross is needed to construct a “ring” (still denoted as
aring, although not closed anymore). As in this example,
a cross consists of unknown symbols ag o, ao,2, a2,0 and
ag2, and ap 1 is canceled because it is included twice.
The XOR sum of the cross thus equals to 55 1 ©5¢ 2. This
is very similar to the situation in the previous case, where
there are 4 unknown symbols in a ring after cancella-
tions. Therefore, the rest of the decoding can followed
the already described procedure and we don’t repeat in
here.

In summary the symmetric case can be decoded using
the procedure for the asymmetric case, by simply setting
lg=1,1l,=0,u=0andd=t—r.

4.3 Decoding with Parity Erasures

In this part, we consider the situation when there are era-
sures in parity columns. The decoding is divided into the
following 3 subcases.
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4.3.1 Column p + 2 is an erasure

This then reduces to EVENODD decoding of two era-
sures. Note that this case also takes care of all patterns
with fewer than 3 erasures.

4.3.2 Column p + 1 is an erasure, while p + 2 is not

This is almost the same as the previous case, except that
now the “EVENODD” coded block consists of the first
p + 1 columns and column p + 2. In fact, this coded
block is no longer a normal EVENODD code, but rather
a mirror reflection of one over the horizontal axis. Nev-
ertheless, it can be decoded with slightly modification of
the EVENODD decoding, which we simply leave to in-
terested readers.

4.3.3 Column p is an erasure, while p + 1 and p + 2
are not

Inthiscase,0 <r<s<p—1landt=np.

First, it is not possible to recover adjusters 57 and So,
as symbols in column p are unknown. However, S1 & S5
is still computable, which simply equals to the XOR sum
of all symbols in column p + 1 and p + 2. This is easy
to see from the definitions of S; and Ss, Sy is added
twice and canceled out. It is thus possible to reverse the
adjuster complement. The results from syndrome calcu-
lation are XOR sums of syndromes and their correspond-
ing adjusters, rather than syndromes themselves. We use
34,5 to denote the results, which thus satisfy

t§i,j = gi,j (&) Sj, (5)

where j = lor2and0 <+¢ < p—1. Note that 5, o = 5,9
for all ¢’s.

The next step is similar to the decoding of the symmet-
ric case without parity erasures, as it is also true that only
one cross is needed to construct a ring. Taking the cross
starting with row 0 as an example, it consists of unknown
symbols ag . ag s, Gy, and a, . Since the XOR sum of
this cross equals to 551 © S(_,y, 2, We can easily get the
following equation by substituting Eq. 5:

ag,r Daogs D ayr D Ay,s = <§s,1 S §<—7')p,2 ®S1 D Ss.

Therefore, the XOR sum of the cross is computable. Fol-
lowing the approach as used to recover middle erasure
column in an early section, the XOR sum of two un-
known symbols on any row can be recovered, which is
still denoted as a; (0 < 7 < p — 1). Then, parity column
p can be recovered, as

Qip = a; b 51‘,0 =a; ® 54,05

where 0 < <p—1.

After column p is recovered, the first p+2 columns can
again be regarded as an EVENODD coded block with 2
erasures at column 7 and s. Therefore, the application of
the EVENODD decoding can complete the recovery of
all the remaining unknown symbols.

To summarize the procedure in this subcase, we have

p—2 p—2
S1 @S2 = <@ ai,p+1) & (@ af’i,p+2>7
i=0 i=0

p—1

5,0 =a;0® ( ai,j)»
=0
1

J
.
Si1=0a;1 D (@ a<p+i—j>p,j>v

a(z‘+j>p,j)»

where 0 <4 < p—1andj # r or s. Then,

and

Si2 = a2 @D (

<.
(=)

@i = B(s1i),1 D B(ortiy, 2 @ 51 @ S,

where 0 <7 <p—1,and

A((p—1)—ui), = O((p—1)—ui), D U(p—1)—u(i—1)),>

where 1 < ¢ < p— 1. Finally, column p can be recovered
as
aip = 0; D 350,

for all ¢’s. The rest is to use the EVENODD decoding
to recover the remaining 2 columns, which is skipped in
here.

Putting all the above cases together, we conclude this
section with the following theorem:

Theorem 1 The STAR code can correct any triple col-
umn erasures and thus it is a (p + 3, p) MDS code.

5 Algebraic Representation of the STAR
Code

As described in [5], each column in the EVENODD code
can be regarded algebraically as an element of a poly-
nomial ring, which is defined with multiplication taken
modulo My(z) = (2? —1)/(e —1) =14z + -+
2P~2 4 2P~ For the ring element z, it is shown that its
multiplicative order is p. Using 3 to denote this element,
then column j (0 < j < p+ 1) can be represented using
the notation a; () = ap—2,;6°72 + -+ + a1, + ao
where a; ; (0 < ¢ < p — 2)is the ith symbol in the col-
umn. Note that the multiplicative inverse of (3 exists and
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can be denoted as 3. Applying same notations to the
STAR code, we can then get its parity check matrix as:

1 1 - 1 100
H=1|1 g gt 01 0 (6)
1 gt g=w=1 0 0 1

It is not hard to verify that, as in [7], that any 3 columns in
the parity check matrix are linearly independent. There-
fore, the minimum distance of the STAR code is indeed
4 (each column is regarded as a single element in the
ring) and thus arbitrary triple (column) erasures are re-
coverable. This is an alternative way to show its MDS

property.

6 Complexity Analysis

In this section, we analyze the complexity of the STAR
code erasure decoding. The complexity is dominated by
XOR operations, thus we can count the total number of
XORs and use that as an indication of the complexity.
Since decoding without parity erasures is the most com-
plicated case, including both asymmetric and symmetric
erasure patterns, our analysis is focused on this case.

6.1 Erasure Decoding Complexity

It is not difficult to see that the complexity can be ana-
lyzed individually for each of the 4 decoding steps. Note
that a complete STAR code consists of p information
columns and r = n — k = 3 parity columns. When there
are only k (k < p) information columns, we can still use
the same code by resorting to the shortening technique,
which simply assigns zero value to all symbols in the last
p — k information columns. Therefore, in the analysis
here, we assume the code block is a (p — 1) x (k + 3)
array.

In step 1, the calculation of Sy takes (p — 2) XOR op-
erations and those of .S; and Sy take (p — 1) XORs each.
The reversion of adjuster complement takes 2(p — 1)
XORs in total. Directly counting XORs of the syndrome
calculations is fairly complicated and we can resort to
the following alternative approach. First, it is easy to see
that the syndrome calculations of any parity direction for
a code block without erasures (a (p — 1) x (p + 3) ar-
ray) take (p — 1)p XORs. Then, notice that any infor-
mation column contributes (p — 1) XORs to the calcula-
tions. Therefore, for a code block with (k — 3) informa-
tion columns (with triple erasures), the number of XORs
becomes (p—1)p—(p—k+3)(p—1) = (k=3)(p—1).
In total, the XORs in this step is:

(p—2)+2(p—-1)+2(p—-1)+3(k-3)(p—1)
=@Bk—-4)(p—1)—1. @)

In step 2, the computation of each ring takes (214 +
I, — 1) XORs and there are (p — 1) rings to compute.
Thus, the number of XORs is

(20 + 15, — 1)(p—1). )

In step 3, it is easy to see that the number of XORs is

(p—1)—-1=p-2 ©

In step 4, the horizontal and the diagonal syndromes
need to be updated with the recovered symbols of column
s, which takes 2(p — 1) XORs. Note that there is no
need to update the anti-diagonal syndromes, because the
decoding hereafter deals with only double erasures. The
Zig-Zag decoding then takes 2(p — 1) — 1 XORs. So the
number of XORs in this step is

2p—1)+2(p—1)—1=4(p—-1)-1. (10)

Note that in step 2, the number of XORs is computed as-
suming the case where only 2 unknown symbols are left
in a ring after cancellations. If the other case happens,
where 4 unknown symbols are left, additional (p — 1)
XOR operations are needed to recover column s. How-
ever, this case does not need to update the horizontal syn-
dromes in step 4 and thus saves (p — 1) XORs there.
Therefore, it is just a matter of moving XOR operations
from step 2 to step 4 and the total number remains the
same for both cases.

In summary, the total number of XORs required to de-
code triple information column erasures can be obtained
by putting Eq. (7), (8), (9) and (10) together, as:

(Bk—4)(p—1) =14+ g+l —1)(p—1)
+(p-2)+4(p-1) -1
Bk+2lg+1)(p—1)—3
(3k +2lg +1p)(p—1).

(1)
12)

Q

6.2 A Decoding Optimization

From Eq. (12), we can see that for fixed code param-
eters k and p, the decoding complexity depends on g4
and [, which are completely determined by actual era-
sure patterns (r, s and ). In Sec. 4, we present an algo-
rithm to construct a ring of crosses, which will yield a
starting point for successful decoding. Within the ring,
all crosses are v = ¢t — s symbols offset from previous
ones. From Eq. (2), there are exactly two rows with un-
known symbols left after cancellations. From the sym-
metric property of the ring construction, it is not difficult
to show that using offset u = s — r will also achieve the
same goal. If using u as offset results in smaller 4 and
Iy, values (to be specific, smaller 2[4 + [j), then there is
advantage to do so.
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Figure 6: Optimization of STAR Decoding

Moreover, we make the assumption r < s < ¢ during
the description of the decoding algorithm. Although it
helps to visualize the key procedure of finding a starting
point, this assumption is unnecessary. Indeed, it is easy
to verify that all proofs in Sec. 4 still hold without this
assumption. By swapping values among r, s and ¢, it
might be possible to reduce the decoding complexity. For
instance, in the previous example, r = 0, s = 1 and
t = 3resultsin ly = 2 and [, = 2. If letting r = 1,
s =0andt = 3, then u = —1 and v = 3. The pattern of
single cross is shown in Figure 6(a). From Figure 6(b),
it is clear that two crosses close a ring, which contains
exactly two rows (row 1 and 4) with unknown symbols
after cancellations. Thus, this choice also yields [; = 2
and [;, = 2. However, if letting r = 0, s = 3and ¢t =
l,wecangetyu = s—r =3andv =t —s = —2.
It is easy to find out that unknown symbols in column
s are canceled in every single cross. In fact, this is an
equivalence of the symmetric case and in turn l; = 1 and
ln, = 0. Thus, the complexity is reduced by this choice.
Note that for general u and v, the condition of symmetric
now becomes (u — v),, = 0, instead of simply u = v.

Now let us revisit the ring construction algorithm de-
scribed in Sec. 4. The key point there is to select mul-
tiple crosses such that the bottom row of the final cross
“steps over” the top row of the first one, and there are
exact two rows left with unknown symbols after cancel-
lations. Further examination, however, reveals that it is
possible to construct rings using alternative approaches.
For instance, the crosses can be selected in such a way
that in the middle column the bottom symbol of the fi-
nal cross “steps over” the top symbol of the first one. Or
perhaps there is even no need to construct closed rings
and crosses might not have to be a fixed offset from pre-
vious ones. Indeed, if crosses can be selected arbitrarily
while still ensuring exact two rows left with unknown
symbols after cancellations, the successful decoding can
be guaranteed. Recall that single cross is represented by
C(x) = 1+z%+2"+ 2" and a cross of f symbol off-
set by C(x)x/. Therefore, the construction of a ring is to
determine a polynomial term R(z), such that C(z)R(x)
results in exact two entries. For instance, the example in
Sec. 4 has R(z) = 1+ 2% and C(x)R(z) = = + 2% It

is thus possible to further reduce the decoding complex-
ity. Theorem 2 shows that the decoding complexity is
minimized if a R(x) with minimum entries is adopted.

Theorem 2 The decoding complexity is nondecreasing
with respect to the number of crosses (lg) in a ring.

Proof. Whenever a new cross is included into the ring,
two new non-horizontal syndromes (one diagonal and
one anti-diagonal) need to be added to the XOR sum.
With this new cross, at most four rows can be canceled
(simple cancellation due to even times addition), among
which two can be mapped with this cross and the other
two with an earlier cross. Thus, each cross adds two
non-horizontal syndromes but subtracts at most two hori-
zontal syndromes. The complexity is thus nondecreasing
with respect to the number of crosses.

Note that /4 is in fact the number of entries in R(x).
An optimal ring needs to find a R(z) with minimum en-
tries, which then ensures that C(x)R(x) has only two
terms. An efficient approach to achieve this is to test
all polynomials with two terms. If a polynomial is di-
visible by C(x), then the quotient yields a valid R(x).
A R(x) with minimum entries is then chosen to con-
struct the ring. It is important to point out that there is
no need to worry about common factors (always pow-
ers of z) between two terms in the polynomial, as it
is not divisible by C(z). Thus, the first entry of all
polynomials can be fixed as 1, which means that only
p — 1 polynomials (1 + 2%, 0 < i < p — 1) need to
be examined. As stated in an earlier section, polynomi-
als are essentially elements in the ring constructed with
My(z) =1+x+ -+ 2P~2 + 2P~!. Based on the ar-
gument in [8], (1 4+ z*) and (1 + zV) are invertible in the
ring. Thus, C(x) = (1 + z*)(1 + «v) is also invertible,
and it is straightforward to compute the inverse using Eu-
clid’s algorithm. For instance, C(x) = 1+ z + 22 + 23,
as v = 1 and v = 2 in the previous example. The gener-
ator polynomial M, (z) = 1+z+a2+a3+atasp = 5.
Applying the Euclid’s algorithm [26], it is clear that

14+x+x2+x3 4+ xY) 21 +x+x2+x%) = 1.
(13)
Thus, the inverse of C(x) is inv(C(xz)) = z. When
examining the polynomial 1 + 3, we get R(z) =
inv(C(z))(1+ z3) = x + z* or equivalently,

(1+z+22+2%)(z+2*) = 14+ 2% mod M,(z). (14)

It is desirable that R(z) carries the entry of power 0,
since the ring always contains the original cross. So we
multiply z to both sides of Eq. (14), which now becomes

(1+z+ 2%+ 2% (1 +2?) = 2+ 2* mod M, ().

Thus, we have R(z) = 1 + 22 and the ring can be con-
structed using two crosses ([; = 2) with an offset of two
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symbols. Once the ring is constructed, it is straightfor-
ward to get [j,.

Note this optimal ring construction only needs to be
computed once in advance (offline). Thus we do not
count the ring construction in the decoding procedure.

7 Comparison with Existing Schemes

In this section, we compare the erasure decoding com-
plexity of the STAR code to two other XOR-based codes,
one proposed by Blaum et al. [7] (Blaum code hereafter)
and the other by Blomer et al. [10].

The Blaum code is a generalization of the EVENODD
code, whose horizontal (the 1°%) and diagonal (the ondy
parities are now regarded as redundancies of slope 0 and
1, respectively. A redundancy of slope g—1 (¢ > 3) gen-
erates the ¢*" parity column. This construction is shown
to maintain the MDS property for triple parity columns,
when the code parameter p is a prime number. The MDS
property continues to hold for selected p values when
the number of parities exceeds 3. To make the compar-
ison meaningful, we focus on the triple parity case of
the Blaum code. We compare the complexity of triple
erasure decoding in terms of XOR operations between
the Blaum code and the STAR code. As in the previ-
ous sections, we confine all three erasures to information
columns.

The erasure decoding of the Blaum code adopts an al-
gorithm described in [8], which provides a general tech-
nique to solve a set of linear equations in a polynomial
ring. Due to special properties of the code, however, ring
operations are not required during the decoding proce-
dure, which can be performed with pure XOR and shift
operations. The algorithm consists of 4 steps, whose
complexities are summarized as follows: 1) syndrome
calculation: 3(k — 3)(p — 1) — 1; 2) computation of
Q(z; 2): 1r(3r — 3)p; 3) computation of the right-hand
value: 7((r — 1)p + (p — 1)); and 4) extracting the era-
sure values: r(r — 1)(2(p — 1)). Herer = n — k = 3.
Therefore, the total number of XORs is

3k—=3)p—1)—1+9p+9p—3)+12(p— 1)
(3k+21)(p—1) + 14 (15)
~ (3k+21)(p—1). (16)

Comparison results with the STAR code are shown in
Figure 7, where we can see that the complexity of
the STAR decoding remains fairly constant and is just
slightly above 3. Note that this complexity depends on
actual erasure locations, thus the results reported here
are average values over all possible erasure patterns. The
complexity of the Blaum code, however, is rather high
for small £ values, although it does approach 3 asymp-
totically. The STAR code is thus probably more de-
sirable than the Blaum code. Figure 7 also includes the

10 T ; r
Blaum code (r=3) ——
9l STAR code (r=3) —+—
= EVENODD (r=2) ——
S sl bound (r=2 or3) ——
£
@
o 7 r
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=
« 6
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o
5 5f
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Q
9 4+
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g 3
Py .
3 5 7 11 13 17 19 23 29 31

number of information columns (k)

Figure 7: The Complexity Comparisons (rr = n — k)

complexity of the EVENODD decoding as a reference,
which is roughly constant and slightly above 2 XORs per
symbol. Note in Figure 7, p is always taken for each k
as the next largest prime.

Further reflection on the Blaum code and the STAR
code would reveal that the construction difference be-
tween them lies solely on the choice of the 3"¢ redun-
dancy slope, where the Blaum code uses slope 2 and the
STAR code —1. One might wonder whether the decod-
ing approach adopted here could be applied to the Blaum
code as well. Based on STAR decoding’s heavy reliance
on the geometric property of individual crosses in the
step to find a starting point, it seems difficult to achieve
the same ring construction in the Blaum code when sym-
metry is no longer obvious. Moreover, the intuitiveness
of the decoding process would be completely lost even
if it is possible at all. Instead, we would be more inter-
ested to investigate whether the STAR code construction,
so as the decoding approach, could be extended to han-
dle more than triple erasures, as the Blaum code already
does.

The XOR-based code proposed in [10] uses Cauchy
matrices to construct a Reed-Solomon (RS) code. It
replaces generator matrix entries, information and par-
ity symbols with binary representations. Then, the en-
coding and decoding can be performed with primarily
XOR operations. To achieve maximum efficiency, it re-
quires message length to be multiples of 32 bits. In
that way, basic XOR unit is 32 bits, or single word, and
can be performed by single operation. To compare with
this scheme fairly, we require the symbol size of the
STAR code to be multiples of 32 bits too. It is shown
that the XOR-based decoding algorithm in [10] involves
krL? XOR operations and r? operations in a finite field
GF(2L), where k and r are the numbers of information
symbols and erasures, respectively. ~ We ignore those
r2 finite field operations (due to the inversion of a de-
coding coefficient matrix), which tend to be small as the
number of erasures is limited. Then, the RS code’s nor-
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# of total columns (n) | # of XORs (= rL)
r=2] r=3
n<8§ 6 9
9<n<16 8 12
17<n <32 10 15
33<n<64 12 18

Table 1: Complexity of the RS Code (per 32 bits)

malized decoding complexity (by the total information
length of kL words) is L. As the total number of sym-
bols n (= k + r) is limited by L (n < 2%), we have
to increase L and thus in turn the decoding complexity
when n increases (see Table 1). Compared to Figure 7,
where the STAR code decoding complexity is slightly
more than 3 XORs per symbol (multiples of 32 bits now),
it is clear that the STAR code is much more efficient
than the XOR-based RS code. Note that the complex-
ity of normal (finite field-based) RS code implementa-
tion (e.g. [30]) turns out to be even higher than the XOR-
based one, so we simply skip comparison here.

8 Implementation and Performance

The implementation of the STAR code encoding is
straightforward, which simply follows the procedure de-
scribed in Sec. 3. Thus, in this part, our main focus is
on the erasure decoding procedure. As stated in Sec. 6,
the decoding complexity is solely determined by {4 and
l1,, given the number of information columns k& and the
code parameter p. As 4 and [, vary according to actual
erasure patterns, so does the decoding complexity. To
achieve the maximum efficiency, we apply the optimiza-
tion technique as described in the earlier section.

An erasure pattern is completely determined by the
erasure columns r, s and ¢ (again assume r < s < t), or
further by the distances u and v between these columns,
as the actual position of r does not affect [ 4 or [j,. There-
fore, it is possible to set up a mapping from (u,v) to
(lg,lr). To be specific, given u and v, the mapping returns
the positions of horizontal, diagonal and anti-diagonal
syndromes, which would otherwise be obtained via ring
constructions. The mapping can be implemented as a
lookup table and the syndrome positions using bit vec-
tors. Since the lookup table can be built in advance of
actual decoding procedure, it essentially shifts complex-
ity from online decoding to offline preprocess. Note that
the table lookup operation is only needed once for every
erasure pattern, thus there is no need to keep the table
in memory (or cache). This is different from finite field
based coding procedures, where intensive table lookups
are used to replace complicated finite field operations.
For example, a RS code implementation might use an

EVENODD (r=2)
e

140 || e TN

e \ STAR (r=3)

B S

P 1//._\Y,,H47*\\
RS code (r=2) IX

*/*HMM*
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7 11 13 17 19 23
number of information nodes (k)

0.80 >< / »

0.65

throughput (Gbps)
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Figure 8: Throughput Performance. (r = n — k erasures
are randomly generated among information nodes.)

exponential table and a logarithm table for each multi-
plication/division. Furthermore, the number of entries in
the lookup table is not large at all. For example, for code
parameter p = 31, u and v are at most 30, which requires
a table of at most 30 x 30 = 900 entries, where each entry
contains 3 bit vectors (32-bit each) for the ring construc-
tion, one byte for the decoding pattern and another byte
for lj,. The cost of maintaining a few tables of this size is
then negligible.

During the decoding procedure, v and v are calculated
from the actual erasure pattern. Based on these values,
the lookup table returns all syndrome positions, which
essentially indicates the ring construction. The calcu-
lation of the ring is thus performed as the XOR sums
of all the indicated syndromes. Then, the next ring is
calculated by offsetting all syndromes with one symbol
and the procedure continues until all rings are computed.
Steps afterward are to recover the middle column and
then the side columns, as detailed in Sec. 4.

We implement the STAR code erasure decoding pro-
cedure and apply to reliable storage systems. The
throughput performance is measured and compared to
the publicly available implementation of the XOR-based
RS code [11]. The results are shown in Figure 8, where
the size of a single data block from each node is 2880
bytes and the number of information storage nodes (k)
varies from 6 to 31. Note our focus is on decoding era-
sures that all occur at information columns, since other-
wise the STAR code just reduces to the EVENODD code
(when there is one parity column erasure) or a single par-
ity code (when there are two parity column erasures), SO
we only simulate random information column erasures in
Figure 8. Recall that a single data block from each node
corresponds to a single column in the STAR code and is
divided into p — 1 symbols, so the block size needs to
be a multiple of p — 1. For comparison purpose, we use
2880 here since it is a common multiple of p — 1 for most
p values in the range. In real applications, we are free to
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choose the block size to be any multiple of p — 1, once
p, as a system parameter, is determined. These results
are obtained from experiments on a P3 450MHz Linux
machine with 128M memory running Redhat 7.1. It is
clear that the STAR code achieves about twice through-
put compared to the RS code. Note that there are jigsaw
effects in the throughputs of both the EVENODD and
the STAR code. This happens mainly due to the shorten-
ing technique. When the number of storage nodes is not
prime, the codes are constructed using the closest larger
prime number. A larger prime number means each col-
umn (data block here) is divided into more pieces, which
in turn incurs additional control overhead. As the num-
ber of information nodes increases, the overhead is then
amortized, reflected by the performance ramping up af-
ter each dip. (Similarly, the performance of the RS code
shows jigsaw effects too, which happens at the change of
L due to the increment of total storage nodes n.) More-
over, note that the throughputs are not directly compara-
ble between r (= n — k) = 2andr (=n—k) =3
(e.g. the EVENODD and the STAR code), as they cor-
respond to different reliability degrees. The results of
codes with » = 2 are depicted only for reference pur-
pose. Finally, note that necessary correction of the gener-
ator matrix (similar to the one documented in [31]) needs
to be done in the aforementioned implementation of the
XOR-based RS code to ensure the MDS property. This
doesn’t affect the throughput performance though.

9 Conclusions

In this paper, we describe the STAR code, a new cod-
ing scheme that can correct triple erasures. The STAR
code extends from the EVENODD code, and requires
only XOR operations in its encoding and decoding op-
erations. We prove that the STAR code is an MDS code
of distance 4, and thus is optimal in terms of erasure cor-
rection capability vs. data redundancy. Detailed analysis
shows the STAR code has the lowest decoding complex-
ity among the existing comparable codes. We hence be-
lieve the STAR code is very suitable for achieving high
availability in practical data storage systems.
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