
1

Erez Zadok, Nikolai Joukov,
Avishay Traeger, and Charles P. Wright

Stony Brook University

http://www.fsl.cs.sunysb.edu/
Tech-Report FSL-05-04

File System Benchmarking:
Fallacies, Pitfalls, and Beyond

12/14/05 File System Benchmarking — FAST 2005 BoF 2

File Systems are Complex

EXT2

User process

Virtual File System Layer

NFS

USER

KERNEL

disk driver API,
caching/async,

read-ahead

network: async,
protocols, “outside”

world

user activity,
access patterns

bdflush/kflushd
async threads

caches: pages,
inodes,

DNLC/dcache, etc.

VFS API

12/14/05 File System Benchmarking — FAST 2005 BoF 3

Survey
Analyzed the benchmarking practices of 68
file systems research papers in:

Symposium on Operating System Principles
(SOSP 1999, 2001, 2003)
Symposium on Operating Systems Design and
Implementation (OSDI 2000, 2002, 2004)
USENIX Conference on File And Storage
Technologies (FAST 2002,2003,2004)
USENIX Annual Technical Conference (including
FREENIX track) (2002, 2003, 2004)

12/14/05 File System Benchmarking — FAST 2005 BoF 4

File System Benchmarking
Practices Today

“We collected a one-hour NTFS file-
system trace from a developer’s
machine in our research group.”

“Primarily because it is customary to do
so, we also ran a version of the Andrew

benchmark.”

12/14/05 File System Benchmarking — FAST 2005 BoF 5

File System Benchmarking
Practices Today

“We repeated each experiment five times
and took the best results, to eliminate

the effects of other activity in the
operating system. Generally, the best
results are repeatable, with a few bad

outliers that represent experiments that
were interfered with by other activity
affecting the processor and cache.”

FAST Best Paper

12/14/05 File System Benchmarking — FAST 2005 BoF 6

Outline
Motivation
Survey: Benchmarks Today

Macro-benchmarks
Traces
Micro-benchmarks
Workload Generators

Tools
Auto-pilot [Usenix/Freenix ‘05]
Tracefs [FAST ‘04]
Replayfs [FAST ‘05]
FSprof

Conclusions and Future Work

2

12/14/05 File System Benchmarking — FAST 2005 BoF 7

PostMark (1997)
Synthetic workload
Workload typical of short-lived small files

E-mail
Netnews
Web commerce

Has three phases:
Creates a pool of random text files with sizes in a
specified range
Performs transactions consisting of a create or
delete composed with a read or write
Deletes the files

12/14/05 File System Benchmarking — FAST 2005 BoF 8

PostMark
Does not scale (single thread)
Default workload is no longer relevant:
changes to configuration are necessary
Times computationally-intensive code
Does not have accurate timing
Uses built-in pseudo random number
generator (v1.5)

12/14/05 File System Benchmarking — FAST 2005 BoF 9

Compile Benchmarks
Usually kernel, OpenSSH, Emacs, etc.
Different packages do not produce the same
workload

Not comparable between papers
Same package does not produce the same
workload

Not reproducible
Difficult to understand
Not scalable
CPU intensive

12/14/05 File System Benchmarking — FAST 2005 BoF 10

OpenSSH Compile (make)

0.2 0.2 0.1
15.3 16.5 17.5

46.4 49.5 53.7

0

20

40

60

80

100

v3.5 v3.7 v3.9

SSH Version

El
ap

se
d

Ti
m

e
(s

ec
)

Wait System User

61.9
71.366.2

12/14/05 File System Benchmarking — FAST 2005 BoF 11

The Andrew File System
Benchmark (1988)

Synthetic workload (“common user
workload”).
Operates on a source code directory
Has five phases:

MakeDir: create a copy of the directory
structure
Copy: copy the files to new location
ScanDir: stat every file
ReadAll: read all of the files
Make: compile and link the program

12/14/05 File System Benchmarking — FAST 2005 BoF 12

The Andrew File System
Benchmark

‘Make’ phase dominates run time
All compile benchmark drawbacks

It does not scale
The default data set will fit into the buffer
cache of most systems

Some used other source programs
Makes results incomparable

Modified Andrew Benchmark (1990)
Uses same compiler for all machines

3

12/14/05 File System Benchmarking — FAST 2005 BoF 13

The Transaction Processing
Performance Council (TPC)

Non-profit corporation founded in 1988
Creates standard transaction
processing and database benchmarks
Maintains several benchmarks

New versions released
Obsoletes older versions

The benchmarks execute various types
of transactions against a database

12/14/05 File System Benchmarking — FAST 2005 BoF 14

The Transaction Processing
Performance Council (TPC)

Council of database professionals
Adds credibility
Keeps benchmarks up to date

Narrow representation of file system
workloads

Many databases today run on top of F/S
Heavy write-load, random r/w

Database adds extra complexity
Results are incomparable

12/14/05 File System Benchmarking — FAST 2005 BoF 15

SPEC SFS 3.0 (1997)

SPEC: The Standard Performance
Evaluation Corporation
Creates and maintains standardized
benchmarks
SFS

Measures NFS server performance
Only SPEC benchmark that measures file
system performance

12/14/05 File System Benchmarking — FAST 2005 BoF 16

SPEC SFS

Reduces dependence on clients by crafting
RPC packets from user-space
Scales well

Multiple clients to one server
Reports more than one number
Is updated and maintained by SPEC

SPEC 4.0 (2006?)
Has narrow scope
Doesn’t test NFS clients
NFSv4? (FileBench)

12/14/05 File System Benchmarking — FAST 2005 BoF 17

Outline
Motivation
Survey: Benchmarks Today

Macro-benchmarks
Traces
Micro-benchmarks
Workload Generators

Tools
Auto-pilot [Usenix/Freenix ‘05]
Tracefs [FAST ‘04]
Replayfs [FAST ‘05]
FSprof

Conclusions and Future Work

12/14/05 File System Benchmarking — FAST 2005 BoF 18

Traces

Logs of operations that are collected,
and can later be replayed to generate
the same workload
Types:

Trace of another benchmark
TPC (esp. TPC-W)

Trace of some users performing normal
tasks in some environment

Activity seen on a server

4

12/14/05 File System Benchmarking — FAST 2005 BoF 19

Traces (Cont.)
Capturing:

No standard way to capture traces
Information and operations present in a
trace depend on the capture method
The capture method is often unspecified

Replaying
Timing: original speed, fastest?
Possible solution: normalize & calibrate

12/14/05 File System Benchmarking — FAST 2005 BoF 20

Traces (Cont.)
How realistic is the trace?

Traces may become stale
Large sample sizes are needed

Availability of traces
Re-using traces encouraged
… but, hard to get (large size)
…and, traces lost, people move on, etc.
Solution: authoritative trace repository

See www.snia.org working group (IOTTA)

12/14/05 File System Benchmarking — FAST 2005 BoF 21

Outline
Motivation
Survey: Benchmarks Today

Macro-benchmarks
Traces
Micro-benchmarks
Workload Generators

Tools
Auto-pilot [Usenix/Freenix ‘05]
Tracefs [FAST ‘04]
Replayfs [FAST ‘05]
FSprof

Conclusions and Future Work

12/14/05 File System Benchmarking — FAST 2005 BoF 22

Micro-Benchmarks
Small number of operation types
Highlight some aspect of the file system
Three types:

De Facto Standard
Bonnie / Bonnie++
Sprite LFS benchmarks

System utilities
Ad-hoc

12/14/05 File System Benchmarking — FAST 2005 BoF 23

Bonnie
Tests single file:

Writes file, reads file, random seek/rd/wr
Uses the machine’s pseudo-random
number generator
Options are hard-coded (only file size
can be set from command line)
One character reads/writes test buffered
libc I/O, not the file system
Does not scale

12/14/05 File System Benchmarking — FAST 2005 BoF 24

System Utilities
Some have used standard utilities to
measure performance (e.g., wc, grep,
cp, diff, tar, gzip)
They are more standardized than ad-
hoc micro-benchmarks
None of the papers specified the
version of the program
They do not scale

5

12/14/05 File System Benchmarking — FAST 2005 BoF 25

Ad-Hoc Micro-Benchmarks
Written for a specific research paper

Not standardized, not reproducible, not
comparable
Often inefficient

Acceptable uses:
With macro-benchmarks and/or traces
To highlight unique aspects of the file system

Unacceptable uses:
Only using micro-benchmarks to measure
performance of a large project
Using them without any explanation of why they
were used

33/68 papers, 119 ad-hoc B/Ms total

12/14/05 File System Benchmarking — FAST 2005 BoF 26

Outline
Motivation
Survey: Benchmarks Today

Macro-benchmarks
Traces
Micro-benchmarks
Workload Generators

Tools
Auto-pilot [Usenix/Freenix ‘05]
Tracefs [FAST ‘04]
Replayfs [FAST ‘05]
FSprof

Conclusions and Future Work

12/14/05 File System Benchmarking — FAST 2005 BoF 27

Workload Generators
Iometer

Allows benchmark to reach steady state
Not enough customization
Linux and Windows versions vary

Buttress
High accuracy
Event-based programming interface
More complex to specify exact workload
Captures syscalls, replays I/O operations

FileBench: the future
Generate macro- and micro-benchmark workloads
Configure benchmarks with scripts
Alpha/Beta status (sourceforge), maturity, acceptance

12/14/05 File System Benchmarking — FAST 2005 BoF 28

Outline
Motivation
Survey: Benchmarks Today

Macro-benchmarks
Traces
Micro-benchmarks
Workload Generators

Tools
Auto-pilot [Usenix/Freenix ‘05]
Tracefs [FAST ‘04]
Replayfs [FAST ‘05]
FSprof

Conclusions and Future Work

12/14/05 File System Benchmarking — FAST 2005 BoF 29

Benchmarking is Hard
Iterative process

Bugs
Inefficient code
Unexplained results

Accuracy
Reproducible
Stable
Fair

Presentation
Need to understand the results

12/14/05 File System Benchmarking — FAST 2005 BoF 30

Our Approach
Iterative process

Automate as much as possible
Extensibility

Accuracy
Record everything
Reproduce machine state

Presentation
Tabular reports
Graphs
Statistical analysis

6

12/14/05 File System Benchmarking — FAST 2005 BoF 31

Auto-pilot [Freenix 2005]
A framework for running benchmarks

Not a suite of benchmarks or metric
Language to define benchmarks
Sample scripts to run file-system
benchmarks
Tools to analyze the results

12/14/05 File System Benchmarking — FAST 2005 BoF 32

Features
Cold Caches

Read large file to flush cache
Unmount file system
chill
Checkpoint benchmark state and reboot

pre-test warmup phase?
Scripts to execute and measure benchmarks

Samples for ext2/3, reiserfs, etc.
Postmark
Compile tests
Easy to add new scripts
Pre/post setup scripts

Stop/start system services (e.g., cron)

12/14/05 File System Benchmarking — FAST 2005 BoF 33

Features: Hooks
Record free memory, network
utilization, I/O operations, background
CPU time
Compilation command
File system hooks

Mount, unmount, mkfs, tunefs
Stackable file systems hooks
NFS hooks including measurement of
remote nfsd CPU time

12/14/05 File System Benchmarking — FAST 2005 BoF 34

Features: Getstats
Input: Results logs, CSV, GNU time

Modular parser architecture provides for
extension

Output: Tabular reports, CSV, and more
After parsing applies transformations:

Aggregates threads
Unifies commands
Adds Wait and CPU%
Computes overhead

12/14/05 File System Benchmarking — FAST 2005 BoF 35

Hypothesis Testing
Two-sample t-test
Assume null hypothesis

First configuration is faster than the second
First configuration is slower than the second
First configuration is equal to the second

Compute the probability of observing the data
given the null hypothesis

P-value
If P-value is below a pre-defined significance
level (e.g., 5%), then reject the null
hypothesis

12/14/05 File System Benchmarking — FAST 2005 BoF 36

Detecting Anomalous Results
Display half-widths and standard
deviations
Highlight outlying values

Display individual results with high
z-scores

Linear regression
Measured quantities should not have a
trend as execution proceed
Detects memory leaks

Elapsed time has a positive slope
Free memory has a negative slope

7

12/14/05 File System Benchmarking — FAST 2005 BoF 37

Features (Cont.)
Predicates
("$delta" < 0.05 * $mean) || ($count > 30)

Inform when benchmark terminated
Graphit

Input: Result logs, Getstats output, or CSV
Output: Bar and line Graphs
Uses Gnuplot as a backend
Automatically converts data into suitable format for plotting

Status
70 page manual
Released under GPL
Actively maintained (lists, bugzilla, etc.)
http://www.filesystems.org/project-autopilot.html

12/14/05 File System Benchmarking — FAST 2005 BoF 38

Outline
Motivation
Survey: Benchmarks Today

Macro-benchmarks
Traces
Micro-benchmarks
Workload Generators

Tools
Auto-pilot [Usenix/Freenix ‘05]
Tracefs [FAST ‘04]
Replayfs [FAST ‘05]
FSprof

Conclusions and Future Work

12/14/05 File System Benchmarking — FAST 2005 BoF 39

Tracefs Summary
Stackable file system

Transparently trace any other file system
Low overhead

Async trace-output writer
Reduce further by selecting what to trace

Modular architecture (plugins)
Transformation plugins

Encryption, compression, checksumming,
anonymization, …

Portable trace format
Records anything useful about system state

Output filters: local file, remote socket, etc.

12/14/05 File System Benchmarking — FAST 2005 BoF 40

Outline
Motivation
Survey: Benchmarks Today

Macro-benchmarks
Traces
Micro-benchmarks
Workload Generators

Tools
Auto-pilot [Usenix/Freenix ‘05]
Tracefs [FAST ‘04]
Replayfs [FAST ‘05]
FSprof

Conclusions and Future Work

12/14/05 File System Benchmarking — FAST 2005 BoF 41

Replayfs Summary
Trace compiler

Convert portable trace for OS-specific replaying
Optimizations: “productive” pre-spin

flush objects/data, pre-fetch, zero-copy, etc.
No context switches needed

Efficiency
<2% memory consumption
32% faster replaying

2.5x faster if skip copy-to-user

12/14/05 File System Benchmarking — FAST 2005 BoF 42

Outline
Motivation
Survey: Benchmarks Today

Macro-benchmarks
Traces
Micro-benchmarks
Workload Generators

Tools
Auto-pilot [Usenix/Freenix ‘05]
Tracefs [FAST ‘04]
Replayfs [FAST ‘05]
FSprof

Conclusions and Future Work

8

12/14/05 File System Benchmarking — FAST 2005 BoF 43

FSprof: Motivation
What goes on inside a file system?

Where are the latencies?
User/system/elapsed time too coarse
User-level tools inaccurate
Syscalls miss mmap ops

… and cannot be used on file servers
Kernel profilers focused on CPU usage

…but file systems have significant I/O!

12/14/05 File System Benchmarking — FAST 2005 BoF 44

FSprof: Solution
Automatically instrument f/s to measure each
operation’s latency

No source: stackable f/s
Automatically instrument SCSI/IDE drivers
Use TSC register for accurate timing
Record operation times in exponential
buckets

Powers of two
Efficient

<4% O/H CPU time (Postmark)

12/14/05 File System Benchmarking — FAST 2005 BoF 45

Tri-Modal Behavior
Rotational

delay
Cached in
memory

Head seek
delay

Linux 2.4.24, ext2, grep –r on source tree

12/14/05 File System Benchmarking — FAST 2005 BoF 46

Lock Contention

2.6.11, two processes reading same file randomly

12/14/05 File System Benchmarking — FAST 2005 BoF 47

Outline
Motivation
Survey: Benchmarks Today

Macro-benchmarks
Traces
Micro-benchmarks
Workload Generators

Tools
Auto-pilot [Usenix/Freenix ‘05]
Tracefs [FAST ‘04]
Replayfs [FAST ‘05]
FSprof

Conclusions and Future Work

12/14/05 File System Benchmarking — FAST 2005 BoF 48

Summary
Improve file system benchmarking

Researchers
Reviewers, PCs, shepherds

Need standards that evolve
TPC model
FileBench

Need tools to help:
FileBench, Auto-pilot, tracefs/replayfs, FSprof,,
and more

Need centralized trace repository
FAST 2005 BoF @ 9pm

You can help!

9

12/14/05 File System Benchmarking — FAST 2005 BoF 49

Future Work
Normalizing traces for replaying on
newer (faster) machines
Predictive performance via micro-
benchmarks and hardware modeling

Virtual replaying

Erez Zadok, Nikolai Joukov,
Avishay Traeger, and Charles P. Wright

Stony Brook University

http://www.fsl.cs.sunysb.edu/
Tech-Report FSL-05-04

Questions
File System Benchmarking:

Fallacies, Pitfalls, and Beyond

