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A framework for building unobtrusive disk maintenance applications

Eno Thereska, Jiri Schindlfedohn Bucy, Brandon Salmon,
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Carnegie Mélon University

Abstract ular ordering requirements. As a result, some imple-
mentors try hard to initiate the right requests at the right

This paper describes a programming framework fortimes; introducing substantial complexity but, usually,
clean construction of disk maintenance applications.qnly minor improvement.

;Lhey canuseitto exlp cthg the d'SktaC“V'%to be done, a?d This paper describes an alternate approach, wherein
€n process compieted requests as they are reporte ackground activities are exposed to the storage sub-
The system ensures that these applications make stea

; q hout tina for disk ith stem so that it can schedule associated disk accesses
orward progress without Competing 1or disk access wi opportunistically. With the storage subsystem explic-

a system's primary applications. It opport'um.sucal'ly itly supporting priorities, background applications can
completes malntenange reque_sts by using d'sk idle t'.m%afely expose work and trust that it will not interfere
and freeblock scheduling. In this paper, three disk main- foreground activity. Doing so allows the sched-
tenance applications (backup, write-back cache destal

Yiler to use freeblock scheduling and idle disk time to

ing, and disk layout reorganization) are adapted to thecomplete background disk accesses in the most device-

sy;tem support and evaluated on a FreeBSD Irr.]plemenéfficient manner. Freeblock scheduling [21] predicts ro-
tation. All are shown to successfully execute in busy

i ith minimal 20%) tonf d tational latency delays and tries to fill them with media
systems with minima (e.gs o)|mpag on foregroun . transfers for background tasks. As the set of desired disk
disk performance. In fact, by modifying FreeBSD’s

. . locations grows, so does the ability of a freeblock sched-
cache tq write dirty bI_OCkS_ for free, the average Oreaduler to utilize such latency delays. The same is true for
cache MISS response time Is d_ecr(_eased by 150_30/0' I:?1r()n—intrus,ive use of short periods of idle time. Combin-
non-volatile caches, the reduction is almost 50%. ing rotational latency gaps with short and long periods
1 Introduction of idle Fime, programs designed to _Work with storage-

determined ordering can make consistent progress, with-
There are many disk maintenance activities that areput affecting foreground access times, across a wide

required for robust system operation and, yet, have looseange of workloads and levels of activity.

time constre_lin_ts. Such “background” activi_ties need t0  This paper describes a framework for background disk
complete within a reasonable amount of time, but aré,gjyities, including application programming interfaces
generally intended to occur during otherwise idle time (zpjs) and support for them in FreeBSD. In-kernel and
so as to not interfere with higher-priority application gystem call APIs allow background applications to reg-
progress. Examples include write-back cache flushingjser “freeblock tasks.” Oufreeblock subsystemreplaces
defragmentation, backup, integrity checking, virus scan-ne generic SCSI driver's disk scheduler, utilizing both
ning, report generation, tamper detection, and index gensreeplock scheduling and any idle time to opportunis-
eration. . tically complete freeblock requests. The APIs are ex-
Current systems use a variety of ad hoc approachegjicitly asynchronous, and they encourage implementors
for such activities. Most trickle small amounts of , expose as much background work as possible. For
work into the storage subsystem, either periodically orexample, dynamic buffer management allows freeblock
when an idle period is detected. When sufficient idle ta5ks to register a desire to read more disk space than fits
time is not available, these activities either competej, main memory. Just-in-time locking avoids excessive
with foreground requests or are not completed. Morepg|ding of buffers, since freeblock writes may be pend-
importantly, trickling work into a storage subsystem jng for a long time. Rate control avoids memory exhaus-
wastes significant disk scheduling opportunities—it re-tjon and wasted disk scheduling efforts for applications
stricts the scheduler to only considering a small subset ofyithout sufficient CPU time or network bandwidth.
externally-chosenrequests at externally-chosen points in We describe the conversion of three disk maintenance

tlmbe.t '\::SS;[ baﬁ[:(g;our;cihactclj\intll(esb ntegd :]0 tr ehac\i/ or Wrrt'ite tasks to use this infrastructure: scanning of disk contents
substantial portions ot the disk, but do not have partic-¢. backup, flushing of write-back caches, and reorga-

*Currently with EMC Corporation nizing disk layouts. Well-managed systems perform pe-




riodic backups, preferably without interfering with fore- than other applications running on a system. As a result,
ground activity. Backup is an excellent match for our one common approach is to simply postpone such activi-
framework, often reading large fractions of the disk; a ties until expected off hours; for example, desktop back-
“physical” backup does so without interpreting the file ups are usually scheduled for late nights (or, early in the
system structures and can be made order-agnostic. Waorning for CS researchers). For less sporadically-used
implemented such a physical backup application thatsystems, however, the lower priority must be handled in
uses the freeblock subsystem to read disk blocks. Physanother way.
ical backup of a snapshot that covers 70% of an always- Another common approach is to spread background
busy 18GB disk can be completed in a little over onerequests over time so as to reduce interference with fore-
hour with less than 2% impact on a foreground work- ground work; for example, some caches flush a fraction
load. of the dirty blocks each second to reduce penalties as-
Almost all file servers and disk array controllers use sociated with periodic full cache flushes [6]. More ag-
write-back caching to achieve acceptable performancegressive implementations explicitly identify periods of
Once updates are decoupled from application progressdie time and use them to service background work. Of
they become a background activity appropriate for ourcourse, identifying idle times requires effort—the back-
framework. In our evaluations, we find that approxi- ground activity must be invoked in the system’s criti-
mately 80% of the cache flushes can usually be elimi-cal path—and assumptions about any proactive storage-
nated, even when there is no idle time, reducing the avinternal functions. When using a detected idle period,
erage disk read response time by 12-25%. For low readbackground activities usually provide only a few re-
write ratios (e.g., 1:3-1:1), only 30-55% of the flushes quests at a time to the storage subsystem to avoid hav-
are eliminated, but the read response time reductionghg a lengthy queue when the next foreground request
are still 15-30%. Interestingly, when emulating a non-arrives. This is necessary because current storage sys-
volatile cache, which eliminates FreeBSD’s 30-secondiems provide little-to-no support for request priorities or
limit on time before write-back, almost all flushes can abort.
be eliminated, improving read response times by almost gy providing only a few requests at a time, these im-
50%. plementations rob the disk scheduler of opportunities to
Over time, allocated storage space becomes fragreduce positioning times. In fact, disk maintenance ap-
mented, creating a desire for defragmentation. Also,pjications usually need to access many disk locations,
there have been many proposals for periodically reorgaand many could be quite flexible in their operation or-
nizing disk layouts to reduce future access times. Bothgering. Some implementors attempt to recapture at least
require that disk blocks be shuffled to conform to a new, g portion of the lost efﬁciency by providing requests
preferred layout. Our evaluations show that, using ourexpected to be fast; for example, a disk array recon-
framework, it is possible to reorganize layouts quickly stryction task can, after a foreground request completes,
and with minimal impact on foreground workloads. generate background requests for locations near the re-
The remainder of this paper is organized as follows.cent foreground request rather than near the most re-
Section 2 discusses disk maintenance tasks, freeblockent background request [15]. Such tricks can provide
scheduling, and related work. Section 3 describes inmargina| gains, but still lose out on much of the opportu-
kernel and application-level APIs for background disk nity and often increase complexity by breaking abstrac-
tasks. Section 4 describes three disk maintenance applijon boundaries between the application and the disk.
cations and how they use the APIs. Section 5 briefly de-  £reapjock scheduling: Since disk platters rotate con-
scribes the freeblock subsystem and its integration i”tcﬁnuously, a given sector will reach the disk head at a
FreeBSD. Section 6 evaluates how well the three app”'given time independent of what the disk head is doing
cations work when using the framework. until that time. Freeblock scheduling [21] consists of
squeezing background media transfers into foreground
2 Background and related work rgtationalglatencig(las. A freeblock scheduler predicts how
There are many disk maintenance activities that neednuch rotational latency would occur before the next
to eventually complete, but that ideally progress withoutforeground media transfer and inserts additional media
affecting the performance of foreground activity. This transfers, while still leaving time for the disk head to
section describes how such activities are commonly im+each the destination track in time for the foreground
plemented, how a freeblock subsystem can help, and retransfer. The additional media transfers may be on
lated work. the current or destination tracks, on another track near
Characteristics and approaches: Disk maintenance the two, or anywhere between them. In the two latter
activities generally have long time horizons for comple- cases, additional seek overheads are incurred, reducing
tion, allowing them to have lower priority at any instant the time available for the additional media transfers, but



not completely eliminating it. ing that higher priority tasks get the available resources.
Freeblock scheduling, as originally proposed, com-Notably, MS Manners [9] provides a framework for reg-
bines nicely with idle time usage to provide disk band- ulating applications that compete for system resources.
width to background tasks across a wide range of fore-Such system support is orthogonal to the framework de-
ground usage patterns. In addition to detecting and usingcribed here, which creates and maximizes opportunities
lengthy idle time periods, low-level scheduling can al- for progress on background disk accesses. More closely
low short, sporadic idle periods to be used with minimal related to freeblock scheduling are real-time disk sched-
penalty. Throughout this paper, we use the téres- ulers that use slack in deadlines to service non-real-time
block scheduling to refer to this more complete combi- requests [3, 23, 27]; the main difference is that fore-
nation of the scheduler that works well when the systemground requests have no deadlines other than “ASAP”,
is busy with the scheduler that utilizes idle time. so the “slack” exists only in rotational latency gaps or
Freeblock scheduling is a good match for many diskidle time.
maintenance activities, which desire large numbers of
disk blocks without requiring a predetermined order of 3 Background disk 1/O interfaces

access. Properly implemented, such activities can pro- . . L
perly imp P To work well with freeblock scheduling, applications

vide much freedom to a scheduler that opportunisticallymust be designed explicitly for asynchronous /O and

matches rotational latency gaps and idle time bursts tominimal ordering requirements. An application should
desired background transfers. greq ' PP

Related work: Lumb et al. [21] coined the term “free- describe to the freeblock subsystem sets of disk loca-

block scheduling” and evaluated the use of rotationaltions that they want to read or write. nternally, when
9 oo . it can, the freeblock subsystem inserts requests into the
latency gaps for background work via simulation. The

simulations indicated that 20-50% of a never-idle disk’s.Sequence sent to the disk. After each desired location

. . .~~~ “is accessed, in whatever order the freeblock subsystem
bandwidth could be provided to background applications LT .

: : . chooses, the application is informed and given any data
with no effect on foreground response times. This band-
width was shown to be more than enough for free seg-
ment cleaning in a log-structured file system or for free
disk scrubbing in a transaction processing system.

Later work by two groups [20, 33] demonstrated
that outside-the-disk freeblock scheduling wotkalpeit

This section describes two generic application APIs
for background activities. The first is an in-kernel API
intended to be the lowest interface before requests are
sent to the storage device. The second API specifies sys-
. . e tem calls that allow user-level applications to tap into a
0,

with more than 35% loss in efficiency when Comparedfreeblock subsystem. These APIs provide a clean mech-

to the hypothetical inside-the-disk implementation as-_ ism for registerina backaround disk requests and pro-
sumed in Lumb et al.'s simulations. In both cases, the 9 9 9 q P

freeblock scheduler was tailored to a particular applica—CeSSIng them as they complete. Applications written

. . . oo to these interfaces work well across a range of fore-
tion, either background disk scans [20] or writes in ea- round usage patterns. from alwavs-busy to frequently-
ger writing disk arrays [33]. In both cases, evaluation ¥ ge p ' y Y g y

. idle. Both APIs talk in terms of logical block num-
was based on I/O traces or synthetic workloads, becausge o . . )
. . ) . bers (LBNs) within a storage logical unit (LUN); con-
system integration was secondary to the main contribu- . ) . . .
7 . . . sequences of this choice are discussed in Section 3.4.
tion: demonstrating and evaluating the scheduler. This
paper bunc_is on this prior work by descnbl_ng a general 31 In-kernd API
programming framework for background disk tasks and
evaluating several uses of it. Table 1 shows the in-kernel API calls for our free-
Several interfaces have been devised to allow apblock scheduling subsystem. It includes calls for regis-
plication writers to expose asynchronous and orderdering read and write freeblock tasks, for aborting and
independent access patterns to storage systems. Dypromoting registered tasks, and for suspending and re-
namic sets [28], disk-directed 1/0 [19], and River [2] suming registered tasks. As a part of the high-level de-
all provide such interfaces. We borrow from these, andvice driver, there is one instance of the freeblock sched-
asynchronous networking interfaces like sockets, for theuler per device in the system; the standard driver call
APIs described in the next section. switch mechanism disambiguates which device is in-
There has been much research on priority-basedended. This section explains important characteristics
scheduling of system resources. Most focus on ensurof the API.
, Applications begin an interaction with the freeblock
i 1Freeb_lock scheduling can o_nly be done ataplace that sees the ra%bsystem wittib_open, which creates #&reeblock ses-
isk. So, it could be done within a software logical volume manager ", .
but not above a disk array controller. Inside the array controller woulds ON- fb_r.ead _anq fb—W”te_ are u;ed to aqd_i'eeblock _
work. tasks, registering interest in reading or writing specific




Function Name| Arguments | Description |

fb_open priority, callback_fn, getbuffer fn Open a freeblock session (reession id)
fb_close session.id Close a freeblock session

fb_read session_id, addr _range, blksize, callback param | Register a freeblock read task

fo_write session_id, addr _range, blksize, callback param | Register a freeblock write task

fb_abort session_id, addr range Abort parts of registered tasks
fb_promote session_id, addr range Promote parts of registered tasks
fb_suspend session_id Suspend scheduling of a session’s tasks
fb_resume session_id Resume scheduling of a session’s tasks
*(callback fn) | session.id, addr, buffer, flags, callback param Report that part of task completed
*(getbuffer fn) | session_id, addr, callback param Get memory address for selected write

Table 1:In-kernel interface to the freeblock subsystem. fh.open andfh. close open and close a freeblock session for an application. Tasks
can be added to a session until the application closdh itead andfh write register one or more freeblock taskk. abort andfb promote are
applied to previously registered tasks, to either cancel pending freeblock tasks or convert them to foreground ftequgzsd andfb resume
disable and enable scheduling for all tasks of the specified seggaflback fn) is called by the freeblock subsystem to report data availability
(or just completion) of a read (or write) task. When a write subtask is selected by the sche@etbuffer fn) is called to get the source memory
address.

disk locations, to an open sessibrSessions allow ap- getbuffer_fn either returns a pointer to the memory lo-
plications to suspend, resume, and set priorities (valuesations to be written or indicates that the write cannot
between 1 and 100, with a default of 20) on collections currently be performed.

of tasks. The original reason fagetbuffer fnwas to avoid long-

No call into the freeblock scheduling subsystem waitshe|qg |ocks on buffers associated with registered free-
for a disk access. Calls to register freeblock tasks returipgck write tasks. Commonly, file systems and database
after initializing data structures, and subsequent call-systems lock cache blocks for which disk writes are
backs report subtask completions. The freeblock subgytstanding to prevent them from being updated while
system promises to read or write each identified diskyeing DMAd to storage. With freeblock scheduling,
location once and to catllback fn when freeblock re-  \yrites can be waiting to be scheduled for a long time;
quests complete. On the last callback for a given sessiorgch locks could easily be a system bottleneck. géte
theflags value is set to the value indicating completion. pyffer_fn callback allows the lock to be acquired at the

Each task has an associatgksize, which is the unit  |ast moment and held only for the duration of the actual
of data (aligned relative to the first address requestedisk write. For example, the free write-backs described
to be returned in eactallback fn call. This parameter in Section 4.2 actually hurt performance when they do
of task registration exists to ensure that reads and writegot utilize this functionality. Since adding it to the API,
are done in units useful to the application, such as filewe have found that thgetbuffer fn function cleanly sup-
system blocks or database pages. Having only a portiofports other uses. For example, it enables a form of eager
of a database page, for example, may be insufficient tayriting [11, 31]: one can register freeblock write tasks
process the records therein. Thiésize value must be  for a collection of unallocated disk locations and bind
a multiple of the LBN size (usually 512 bytes). In prac- unwritten new blocks to locations igetbuffer fn. The
tice, highblksize values (e.g.;> 64KB for the disks used  disk write then occurs for free, and the relevant meta-
in our work) reduce the scheduler’s effectiveness. data can be updated with the resulting location.

Calls to register freeblock tasks can specify memory The non-blocking and non-ordered nature of the in-

locations, in theaddr range structure, but they are not o ta:6 s tailored to match freeblock scheduling’s na-
expected to do so. If they don't, for reads, the free-y e Other aspects of the interface help applications in-
block scheduling subsystem passes back, as a paramgre 4qe the set of blocks asked for at once. Late-binding
ter tocallback_fn, pointers to buffers thaF are pa_rt of the of memory buffers allows registration of larger free-

general memory pool; no memory copies are involved, i tasks than memory resources would otherwise al-
and the application releases them when appropriate. Fqg,, - £or example, disk scanning tasks can simply ask
writes, the associategetbuffer fn is called when the ¢, 4 piocks on the disk in one freeblock task. The

freeblock scheduler selects a part of a write task. Th&y aport call allows task registration for more data than

2The termfreeblock request is purposefully being avoided in the are absolutely required (e.g., a search that only needs

API to avoid confusion with disk accesses scheduled inside the fre€?N€ mMatch). Théb_promote call _allOWS one to convert .
block subsystem. freeblock tasks that may soon impact foreground appli-




cation performance (e.g., a space compression task théteen on the disk media at some point before being re-
has not made sufficient progress) to foreground requestgurned. Third, a block write can be reported complete
Thefb_suspend andfb_resume calls allow registration of ~ whenitis on disk or when a concurrent write to the same
many tasks even when result processing sometimes retdisk location completes; the latter case is rationalized by

quires flow control on their completion rate. the fact that the non-written blocks could have been put
o on the disk just before the ones actually put there.
3.2 Application-level API Given these semantics, a freeblock scheduler can co-

The application-level API mirrors the in-kernel AP|, 2l€sce some overlapping tasks. Of course, data fetched
with a system call for eackb xxx function call. The from media can be replicated in memory and passed to
main differences are in notification and memory man- &ll concurrentreaders. In addition, completion of a write
agement. Because the kernel must protect itself fronf@Sk to locationd allows completion of all pending reads
misbehaving applications, the simple callback mechaOr writes toA_ because the newly yvntten data will be the
nisms of the low-level API are not feasible in most sys- Current on-disk data once the write completes. As a re-
tems. Instead, a socket-like interface is used for both. Sult, @ write is given preference when a set of overlap-

As with the in-kernel API, an application begins by P9 reads and writes are pending; a read could be done
calling sys_fb_open to get asession_id. It can then reg- before the write, but doing so is unnecessary given the

ister freeblock tasks within the session. For each blockConSIStenCy model. Note that completing reads in this

read or written via these tasks, a completion record is in-vay requires that applications not be allowed to update

serted into buffers associated with the session. Applicall® Source RAM during the write, since it is impossi-

tions get records from these buffers via the one new call.ille to kn(?w v;/]hen tEe DMA happeTgimdmosgl Sé/stems.
sys fb_getrecord (buffer); each call copies one record ternately, this enhancement could be disabled, as we

into the specified applicationuffer. Each record con- have observed little benefit from it in practice.

_tams thon, addr andflags fields fromc_allbackjn 3.4 Consequencesof L BN-based interfaces

in the in-kernel API, as well as the data in the case of _ _ _
freeblock reads. Note that a copy is required from the The freeblock scheduling APIs described interact
in-kernel buffer to the application layer. An alternate in- With driver-level scheduling in terms of LBNS. This sim-
terface, such as that used by 10-lite [24], could eliminateplifies implementation of the scheduler and of low-level
such copies. Like with sockets, thgs_fb_getrecord call disk maintenance tasks, such as RAID scrubbing and
can be used for both blocking and polling programming Physical backup. But, many utilities that access struc-
styles® A timeout parameter in thesys_fb_getrecord tured storage (e.g., files or databases) must coordinate
function dictates how long the application will wait if in some way with the software components that provide
no completion record is currently available. A value of 0 that structure. For example, consider a file-based backup
will return immediately (polling), and a value of -1 will application. It could read a directory and register free-

wait indefinitely. block tasks to fetch the files in it, but it will not know
whether any givenfile is deleted and its inode reallocated
3.3 Consistency model between the task being registered and the inode eventu-

L ally being read from disk. If this happens, the applica-
Freeblock tasks may have long durations; for EXaM-on will backup the new file under the old name. Worse

le, a background disk scan can take over an hour, : . _—
e, 9 X . problems can arise when directory or indirect blocks are
Therefore, a clear consistency model is needed for over:

lapping concurrent freeblock and foreground requests reallocated for file data.
pp g . 9 q " Three options exist for maintenance tasks that interact
Like most low-level storage interfaces, our APIs opt

for maximum scheduling flexibility by enforcing a min with structured storage. First, the task could coordinate
10 I'Ei' u sct'e u’th %h c Iy yE. ?C 9 ad . explicitly with the file system or database system. Such
Imalistic semantic Wi ree rules. First, no ordering ., qination can be straightforward for integrated activ-
guarantees are enforced among pending tasks, wheth

th | ¢ As with traditional /O interf [es, such as segment cleaning in a log-structured file
€y overiap or not. As with traditional /L) Intertaces, system, or index generation in a database system. The
applications must deal with ordering restrictions explic-

. write-back support in Section 4.2 is an example of this
ity [12]. Second, data returned from a read should haveapproach. Second, the task could insist that the file sys-
30ur experiences indicate that full integration with existing sys—tem or dat_abase SyStem be temporarily halted, such as by
tem call mechanisms would be appropriate. Specifically, using thelnnount ing the file system. Although heavy-handed,
standard file descriptor mechanism would allow integrated useof g system with many file systems could have individual

ect () with sockets, from which this interface borrows many char- gnes halted and processed one-by-one while the others
acteristics. For example, given such integration, an application coul

cleanly wait for any of a set of sockets and freeblock sessions to haveONtinue to operate on the Storag.e deViC_eS- Third, the
made progress. task could take advantage of an increasingly common




mechanism in storage systems: the snapshot [14]. A \ backup application \

snapshot provides an instance of a dataset as it was at l 4 getblks() - sS4
a point in history, which is useful for backup [7] and : 3 g
remote replication [25]. Since the contents of a snap- |shapshot subsystem (inFS)| J g !
shot remain static, update problems are not an issue g f::
for tasks using the freeblock scheduling APIs. In ad- A4 =1
dition to traditional backup tasks, snapshots offer a con- freeblock subsystem

venient loose coordination mechanism for disk mainte-
nance tasks like integrity checking, virus scanning, re-_
port generation, tamper detection, and garbage collecE'9Ure 1: Snapshot-based backup application. - The backup ap-

. . . ' lication interacts with the snapshot subsystem to learn which blocks
tion. Section 4.1 describes an example of how a ba-Cku[iomprise the snapshot in question. It uses the freeblock subsystem to
application interacts with the snapshot system and theead these blocks from disk.

freeblock subsystem.

The LBN-based interface also bypasses any file-levektaging device could be used to reorder before writing to
protections. So, applications using it must have readtape. Physical backup can also take advantage of snap-
only (for read-only activity) or read/write permissions shots, which allow consistent backup from an active on-
to the entire partition being accessed. Fortunately, mosfine system.
disk maintenance applications satisfy this requirement. oy backup application uses FreeBSD 5.x’s snapshot
.. infrastructure [22] and our system call APIl. No changes
4 Example applications are required to the FreeBSD snapshot implementation.

Many disk maintenance applications can be convertedifter a snapshot is taken, the backup application inter-
to the programming model embodied in our APIs. This acts with the snapshot subsystem as shown in Figure 1.
section describes the conversion of three such applicaFirst, it gets the list of blocks that belong to the snapshot
tions and discusses insights gained from doing so. Theskle. Then, the backup application registers freeblock
insights should help with designing other maintenancetasks, viasys fb_read, to read them. It interactively calls
applications to use the framework. sys_fb_getrecord to wait for reads to complete and get the

data. Each successfully read block is sent to the back-up
4.1 Snapshot-based backup destination, together with its address. The backup appli-

Most systems are periodically backed-up to ensurecation can also be used to create a replica by writing each
that the data stored is not lost by user error or systenblock directly to the corresponding LBN on the destina-
corruption. In general, it is accepted that either the systion LUN.
tem will be otherwise idle during the backup time or FreeBSD’s approach to handling modifications to
the backup will have significant performance impact on blocks “owned” by a snapshot creates an additional com-
foreground activity [10, 17]. plexity for the backup application. A snapshot imple-

Backup strategies fall into two categories: logical andmentation can do one of two things when a block is mod-
physical backup. Logical backup is a file-based strat-ified. In the first option (“application-copy-on-write”), a
egy. It first needs to interpret the file system’s meta-new location is chosen for the updated blocks and the
data and find the files that need to be backed-up. Thenapshot map stays unchanged. Network Appliance’s
files are then stored to the backup media in a canonicaVWAFL file system, for example, uses this method [17].
representation that can be restored at a later time. Th& the second option (“snapshot-copy-on-write”), the
advantages of logical backup include the ability to re- original data is copied to a newly allocated block and
store specific files and to backup only live data. Phys-the snapshot map is modified. FreeBSD uses this second
ical backup is a block-based strategy. Physical backumption to avoid disrupting carefully chosen disk assign-
does not interpret the file structure that it is backing up.ments. In the evaluation section, we explore the effects
Uninterpreted raw blocks are copied from one media toof both methods on the backup application.
another. The main advantages of physical backup are its To handle FreeBSD's snapshot-copy-on-write, the
simplicity and scalability. In particular, physical backup backup application needs to check with the snapshot sys-
can achieve much higher throughput while consumingtem whether each returned block still has the original
less CPU [17]. desired contents. If not, a new freeblock task to read

Physical backup fits well with our programming the relocated block is registered. This procedure contin-
model. No ordering among blocks is required. Instead,ues until all original blocks have been read. Note that
blocks are copied from one device to another as they areve could have changed the snapshot subsystem to auto-
read. The blocks could be written to the backup me-matically abort and re-register tasks for modified blocks,
dia out of order (and reorganized during restore), or abut our intention is to show that the backup application



works well even with an unmodified snapshot system.  °fginallayout

LT[« s [« 7]

4.2 Buffer cache cleaner N S
Caches are part of all storage systems, and most are ey qyour A,\‘" 1 “‘

write-back in nature. Data blocks written to the cache ’—‘ 4|1 ‘ 5 ‘ 3 ’ ‘ ‘ 6 ‘ 5 ‘ 2 ‘ ‘
are markedlirty and must eventually make their way to
the storage device. In most operating systems, including
FreeBSD, the cache manager promises applications that g @ RO OS {,D -
data written to the cache will propagate to persistent stor- o e

age within a certain fixed window of time, often 30 sec-
onds. This persistence policy tries to bound the amount_ _ ,
of lost work in the face of a system crash. In many file F19Ure 2:Sample dependency graph for disk layout reorganiza-

. . tion. This diagram illustrates the dependency graph that results from
servers and disk array controllers, cache persistence IShanging the disk layout. The gray boxes represent empty physical
not a concern because they utilize battery-backed RAMocations. The white boxes present physical locations that have been
or NVRAM. But, dirty buffers must still be written to mapped to a particular block (identified by the number on the box).
storage devices to make room in the cache for new dataDashed arrows present dependencies whereas solid lines show move-

. _ments that do not have any dependencies.
Although these systems do not necessarily need a persis-

tence policy, they still need a cache write-back replace-

reorganizer

ment pOIICy'. . . . NVRAM staging area

Cache write-back is a good application for a freeblock _unwritable blocks | writable blocks
subsystem. In most cases, there are no ordering require- H N S S S
ments and no |mr_ned|ate-_term tlmelme requirements for read-unwritable | [read-writable write
dirty blocks. Until a persistence policy or cache space session session session
exhaustion is triggered, write-backs are background ac- T l e coll AP
« ey . . . system ca
tivities that should not interfere with foreground disk ac- ¥
cesses (e.g., cache misses). ‘ freeblock subsystem

We modified FreeBSD’s cache manager to utilize our

in-kernel APL. It registers all dirty bL_jﬁers to be writ- Figure 3: Layout reorganizer architecture. This diagram illus-

ten for free through the use of tifie write call. Impor-  ates the design of the layout reorganizer implemented using our

tantly, cache blocks are not locked when the writes argramework. The read-unwritable session manages blocks whose de-

registered; when itgetbuffer fn is called by the free- pe”deTICli)‘Ts flla"ti ”tOt YEIbbeen j%'v‘ad- Thfh“?ag'writa;'e 5_955;0” mar
. ages all blocks that can be read because their dependencies have been

block Su_bSyStem’ the cache manager_ retivokL if solved. The write session manages all block writes. All data is tem-

the lock is not free. When iteallback fn is called, the  porarily stored in the NVRAM staging area.

cache manager marks the associated block as clean. If

the freeblock subsystem still has not written a buffer for o ,ses on planning an optimal movement pattern. Be-

free when the cache manager decides it must be writteRgse 4 freeblock subsystem is opportunistic, extensive
(@s a consequence of cache replacement or persistengg.ard planning is not useful, since one cannot predict
policies), then the cache manager converts the assoCizhich freeblock opportunities will be available when.
ated write to a foreground request Wiapromote. If a Planning disk reorganization is difficult because there

dirty buffer dies in cache, for example because itis partyre dependencies between block movements. If a block
of a deleted file, the task registered to flush it to disk iS5 14 pe moved to a location that currently contains live
aborted througfb_abort. data, the live data must first be read and either moved
4.3 Layout reorganizer or buffered. Although no block can directly de_pend on

_ _ . ~more than one other block, dependency chains can be
~ Disk access times are usually dominated by position-grpitrarily deep or cyclic. Figure 2 illustrates an example
ing times. Various layout reorganization heuristics havegf these dependencies.
been deve_loped to reduce access times. For_example, The reorganization module can break a dependency
blocks or files may be rearranged in an organ pipe fash1Jy reading a block into an NVRANIstaging area; once
ion, or replicated so each read can access the closegie data has been read from a location, new data can
replica [16, 32]. safely be written to that location. However, the reorga-

Layout reorganization is a background activity that
40ur experimental system does not actually have NVRAM. In-

can be made to fit our programming model. But, doing o=
. . - . stead, the layout reorganizer just allocates a block of memory and pre-
so requires that the implementer think differently aboutengs it is non-volatile. This emulates how the reorganizer might work

the problem. In the traditional approach, most work fo- in many modern file servers and disk array controllers.




nizer can still deadlock if it fills the staging area with system call interface

blocks that cannot be written to disk because of unre- $
solved dependencies. The goal of the reorganizeris to | g e @l
allow the freeblock system maximum flexibility while 7 translator

avoiding this deadlock case. To accomplish this objec- |
tive, our reorganizer, illustrated in Figure 3, logically |
partitions the staging area into two two parts: writable v v

and unwritable. foreground ckgroun
scheduler cheduler

The reorganizer uses three freeblock sessions to move

/ " background scheduler
in-kernel API

freeblock scheduler +
idle time detector

blocks. The “read-unwritable” session registers read \—‘ H »

tasks for all blocks that cannot yet be written, due to a — | Epwm

dependency. The “read-writable” session registers read queve # device driver s
tasks for blocks that can either be immediately written R -

after they are read (i.e., they have no dependencies) or
that clear a dependency for a currently buffered block.

When a read completes, it may eliminate the depen- Figure 4:Freeblock subsystem components.
dency of another block. If a read-unwritable task is
schgduled for this dependent block, the read-unwritables 1 Architecture and integration
task is abortedsys fb_abort) and re-registered as a read-
writable task. If the dependent block is already in the Figure 4 shows the major components of our free-
staging area, it will be changed from an unwritable block block subsystem. The background scheduler exports
to a writable block. A write is scheduled in the “write” the in-kernel API, and aystem call translator com-
session for each writable block in the staging area. WherPonent translates the application-level API calls to in-
a write completes, its buffer can be released from thekernel calls. This section describes these pieces and their
staging area and reclaimed. integration into FreeBSD.

In order to avoid deadlocking, the reorganizer en- Foreground and background schedulers: Our
sures that the number of unwritable blocks in the cachescheduling infrastructure replaces FreeBSD's C-LOOK
never exceeds a threshold percentage of the cadfie. scheduler. The foreground scheduler uses Shortest-
the number of unwritable blocks reaches the thresh-Positioning-Time-First (SPTF), and the background
old, the reorganizer suspendy{fb_suspend) the read-  scheduler uses freeblock scheduling (rotational latency
unwritable session. However, the read-writable sessior§aps and any idle time). Both schedulers use common
cannot increase the number of unwritable blocks in thelibrary functions, based on Lumb et al.'s software-only
staging area, and can be allowed to continue. When th@utside-the-disk SPTF models [20], for modeling the
number of unwritable blocks falls below the threshold, disk to predict positioning times for requests.
because of writes and/or cleared dependencies, the read- Like the original scheduler, our foreground scheduler
unwritable session can be restartedsyigfb_resume. is called from FreeBSD’slastrategy() function. When

The reorganizer must suspend both read sessioni&voked, the foreground scheduler appends a request
when the staging area is filled. However, it cannotonto the driver's device queubuyf queue, which is the
deadlock because the reorganizer limits the number oflispatch queue in Figure 4. It then invokes the back-
unwritable blocks in the staging area, thus assuringground scheduler, which may create and insert one or
that some number of the blocks in the staging area arénore freeblock requests ahead of the new foreground re-
writable. The reorganizer simply waits until enough of quest.
these writable blocks are written out to disk before re- When a disk request completes at the disk, FreeBSD’s

suming the read sessions. dadone() function is called. Into this function, we in-
serted calls to the background and foreground sched-
5 Thefreeblock subsystem ulers. The background scheduler code determines

This section briefly describes the freeblock subsyste whether the completed re_quest saﬂsﬁgs any freeblock
. . . : asks and performs associated processing and clean-up.
implemented in FreeBSD to experiment with our back-
o . The foreground scheduler selects a new foreground re-
ground applications. This infrastructure supports all the . . . :
i : . . quest, if any are pending, adds it to the dispatch queue,
background disk I/O APIs described in Section 3. De- g .
. . . : and invokes the background scheduler to possibly add
tails and evaluation of this infrastructure are available
in [29] freeblock requests. Thedadone() proceeds normally.
Freeblock system call trandator: The system call
5The threshold we use is 50%. translator implements the application-level API. Doing




so consists of translating system calls to in-kernel callscations of viable options, reducing the odds that the rota-
and managing the flow of data between the freeblocktional latency gap goes unused. During a second phase,
subsystem and the user-level application. When a freeall pending tasks from the winning session are consid-
block task completes, the translatocallback fn ap-  ered and given strict priority over pending tasks from
pends a record to the associated session’s buffers andther sessions.

if the buffers were empty, awakens any waiting appli- Idle time detection and usage: Previous re-
cation processes. When the freeblock subsystem readsearch [13, 26] reports that most idle periods are a few
data faster than the application processes it, the buffermilliseconds in length and that long idle time periods
associated with the session fill up and flow control iscome in multi-second durations. Our freeblock subsys-
needed. When this happens, the translator uses them utilizes both. Borrowing from prior work [13], a
fb_suspend call, suspending subsequent freeblock re-simple threshold (of 20ms) is used to identify likely idle
guests for the tasks associated with the given sessiomperiods. During short idle times, the scheduler considers
When the application fetches records and thereby clearpending freeblock reads on the same track. Such data
space, the translator usfisresume to re-enable the as- can be read and cached in the device driver with min-
sociated freeblock tasks. When an application exits ofimal impact on foreground access patterns, because no
calls sys fb_close, the translator clears all state main- mechanical delays are induced and no disk prefetching
tained by the freeblock system on behalf of the appli-is lost.

cation’s session(s). For each quanta of a long idle period, a session is
. selected via the lottery. Pending tasks of the winning
5.2 Background scheduler algorithms session are scheduled, starting with the most difficult to

The background scheduler includes algorithms forservice using rotational latency gaps: those near the in-
utilizing otherwise wasted rotational latency gaps andnermost and outermost cylinders.
for detecting and using disk idle time. Algorithm summary: Our outside-the-disk freeblock

Rotational latency usage: Recall that, during busy scheduler has the same “imperfect knowledge and con-
disk periods, rotational latency gaps can be filled withtrol” limitations described by Lumb et al. [20], and
background media transfers. Our freeblock subsystenthereby loses about 35% of the potential free bandwidth.
uses algorithms similar to those described by Lumb et alAn implementation embedded in a disk drive could be
[20, 21], modified to use less non-idle CPU time and to €xpected to provide correspondingly higher free band-
support fairness and priorities among freeblock sessiongvidth to applications. The introduction of conserva-

The search for suitable background transfers proceedtve CPU usage further reduces free bandwidth utiliza-
in two phases. The first phase checks only a few trackdion by 5-10%. Our evaluations show that the remain-
for potential background transfers adding an insignifi- ing free bandwidth is adequate for most background ap-
cant amount of computation<8%) to a busy CPU. plications. Detailed description and evaluation of the
The second phase only runs when the CPU is otherwis&eeblock subsystem’s data structures and algorithms are
in the idle loop. It searches all other options to refine thedvailable in [29].
best choice found until the request needs to be sent. .

Prior algorithms greedily scheduled freeblock re- 6 Evaluation
guests, assuming all were equal. As shown in Sec- This section evaluates how effectively the framework
tion 6.6, this can lead to poor behavior when freeblocksupports the three background applications.
sessions are mixed. In particular, full disk scans can .
starve other sessions. We introduce fairness, as We@-l Experimental setup
as support for priorities, using a simple form of lottery  All experiments are run on a system with a dual 1GHz
scheduling [30]. The initial tickets allocated to each ses-Pentium 1lI, 384MB of main memory, an Intel 440BX
sion are proportional to its assigned priority. chipset with a 33MHz, 32bit PCI bus, and an Adaptec

The lottery determines both which pending tasks areAHA-2940 Ultra2Wide SCSI controller. Unless other-
considered, since there is limited CPU time for search-wise stated, the experiments use a Seagate Cheetah 36ES
ing, and which viable option found is selected. During disk drive with a capacity of 18GB and results are aver-
the first phase, which runs for a shqttanta of time, as  aged from at least five runs. Two implementations of the
described in [29], cylinders closest to the source and desfreeblock subsystem are used: one in the FreeBSD de-
tination cylinders with pending tasks from the winning vice driver and one in user-level Linux. The user-level
session are considered. Any option from the winningLinux implementation can either do direct SCSI reads
session found will be selected. In addition, all pendingand writes or communicate with a simulated storage de-
tasks on the destination cylinder and within one cylindervice implemented by DiskSim [4]. All implementations
of the source are considered; these are the most likely louse the same scheduling core and conservatism factors



used in the FreeBSD implementation. 40

Three benchmarks are used throughout the evaluation
section. Thesynthetic benchmark is a multi-threaded
program that continuously issues small (4KB-8KB) read
and write 1/Os to disk, with a read-write ratio of 2:1,
keeping two requests at the disk queue at all times.

The TPC-C benchmark [8] simulates an on-line s | ﬂ ’» 77777777
transaction processing database workload, where each il
transaction consists of a few read-modify-write opera-
tions to a small number of records. We ran TPC-C on Disk utilization (%)
the Shore database storage manager [5]. We configured
Shore and TPC-C to use 8KB pages, a 32MB page buffeFigure 5:Freeblock subsystem efficiency. This diagram illustrates
pool, 50 warehouses (covering approximately 70% ofthe instantaneous free bandwidth extracted for a background disk scan
the Seagate disk’s capacity) and 10 clients per Ware_asafunction of the disk’s utilization. When the foreground workload

: . . , is light, idle time is the main source of free bandwidth. When the fore-

house_- The Shore volume is a file stored in FreeBSD %round workload intensifies, the free bandwidth comes from rotational
FFS file system. Thus, an I/O generated by Shore goegtency gaps.
through the file system buffer cache. Performance of a

[ from idle time from rotational gaps

free bandwidth (MB/s)

TPC-C benchmark is measured in TPC-C transactions 20T D applicationCOW M smapshot.COW
completed per minute (TpmC) 80 T
The Postmark benchmark [18] was designed to z ZZ _ T B
measure the performance of a file system used for elec- % 0 N
tronic mail, netnews and web-based services. It creates £ ,, o
a large number of small files and performs a specified g 5 .
number of transactions on them. Each transaction con- & 2o .
sists of two sub-transactions, with one being a create or 10 -
delete and the other being a read or append. The de- 0 ]
fault configuration used for the experiments conSISts Of .. | oioueee ioe 1owsac | 355 tpmc |20 tramervec
100,000 transactions on 800,000 files in 10,000 directo- w/backup| 010s/sec [15210s/sec| 250 tpmC [20 trans/sec

ries. File sizes range from 10KB to 20KB. The biases are
Postmark’s defaults: read/append=>5, create/delete=5. Figure 6: snapshot-based backup efficiency. This diagram illus-
trates the efficiency of the backup application when backing up 70% of

6.2 Freeblock subsystem effectiveness the Cheetah 36ES disk (18GB). The foreground workload is affected
less than 2% during the background backup as a result of access time

This section briefly evaluates the freeblock Subsys_mispredictions tha_lt result from the outside-the-disk implementation of
, . . .. freeblock scheduling.
tem’s effectiveness. Figure 5 shows the efficiency of
the freeblock subsystem, as a function of disk utiliza-
tion, with the synthetic benchmark as the foreground ap—6'3 Snapshot-based backup
plication. A background disk scan registers a freeblock This section evaluates the backup application de-
task to read every block of the disk. Tleallback fn  scribed in Section 4.1. We evaluate both the application-
re-registers each block as it is read, thus maintaining &opy-on-write (application-COW) and snapshot-copy-
constant number of blocks wanted. The synthetic benchon-write (snapshot-COW) strategies in the FreeBSD ker-
mark is modified slightly so that the number of I/Os per nel. When application-COW is used, all subsequent
second can be varied; the request inter-arrival times arenodifications to a block that the snapshot claims are
exponentially distributed with uniform means. sent to a new location. When snapshot-COW is used,
The freeblock subsystem ensures that background apall subsequent modifications go to the original location
plications make forward progress, irrespective of theof the block, and the snapshot system makes a private
disk’s utilization. As expected, the progress is fastestcopy of the block for itself. The native snapshot im-
when the disk is mostly idle. The amount of free band- plementation in FreeBSD supports only snapshot-COW;
width is lowest when the system is 40-60% utilized, be-we instrumented the kernel so that we could evaluate
cause short idle times are less useful than either rotaapplication-COW as well.
tional latency gaps or long idle times. Regardless of uti- Figure 6 shows the performance of our backup ap-
lization, foreground requests are affected by less tharplication when sharing the system with the three fore-
2%. For a full evaluation of the freeblock infrastructure ground benchmarks. The table beneath the graph shows
and algorithms, please refer to [29]. that the impact of the concurrent backup on foreground
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Figure 7 :Free cache cleaning with L RU replacement and syncer daemon. These graphs illustrate the efficiency of freeblock scheduling and

the impact it makes on the average response time of reads given a LRU replacement policy and a syncer daemon that guarantees no dirty block will
stay dirty for longer than 30 seconds. The x-axis contains the cache size and the read-write ratio. A read-write ratio of 0 means that all requests
are writes.

performance is less than 2%. During the syntheticwrites on the Seagate disk) and the implementation in
benchmark, the backup is completed faster than durfFreeBSD. The controlled experiments are used to un-
ing Postmark or TPC-C. This is so because the synderstand the relationship between the efficiency of the
thetic benchmark’s requests are uniformly distributedcache cleaner and the size of the cache, the workload
around the disk, maximizing the scheduler’s opportu-presented, and the replacement and persistence policies.
nities. The backup is slightly faster under TPC-C thanThe metrics of interest are the percentage of dirty blocks
under Postmark for several reasons. First, Postmark isleaned for free and the reduction in average response
single-threaded and has short disk idle periods, but thatime of other requests. In all buffer cache experiments,
are too short to be exploited. Thus, fewer freeblock op-the idle-time detector does not detect enough idle time
portunities arise during any given time period. Second,to be helpful.

the cache manager successfully coalesces many small The controlled experiments use a version of the syn-
dirty buffers for Postmark and thus issues larger I/Os tothetic benchmark. As indicated, we vary the read-write
the device, which reduces the effectiveness of freeblockatio and the simulated cache size while keeping the size
scheduling further. of the requests the same (4KB-8KB).

Inthe idle time case, the streaming bandwidth is about Effect of cache size and read-write ratio: Figure 7
35MB.° and the backup completes in little OVer 8 Min- ghas the efficiency of the cleaner and its impact on the
utes. The graph also shows that the application-COW,, o5 response time as a function of the workload’s
results in more efficient use of free bandwidth. This read-write ratio and the cache size. The replacement
is because, with snapshot-COW, the backup applicatio,qjicy is least-recently used (LRU), and the persistence
wastes some bandwidth reading blocks that have beepgjicy guarantees that no dirty buffer will stay dirty for
modified; it then needs to re-register reads for the ”ewlonger than 30 seconds. High and low water-marks are
locations of those blocks. The overall effect however, seq 1o address space exhaustion: whenever the number
is less then a 15% increase in the time to complete th%f dirty buffers in the cache hits the high water-mark,
backup. Thus, a backup application based on our frameg,e cache manager cleans up as many buffers as needed
work can be effective with whichever implementation is until the low water-mark is reached. Mimicking the no-
used by a particular system. tation used by FreeBSD’s cache managesreer dae-

6.4 Buffer cache cleaner mon i_mplements the per;istence policy, artnh._f.(er dae-
mon implements the logic that checks the high and low
We evaluate the efficiency of the buffer cache cleanemwater-marks.

designed USing our framework W|th bOth Controlled Severa' observations can be made from Figure 7.
experiments (using the Linux US?HEVd implementa- First, as the read-write ratio increases, a larger percent-
tion W|th a S|mu|ated CaChe and d|reCt SCSI I’eadS an%ge Of the d”‘ty buﬁers can be C|eaned for free’ be_

6The reported streaming bandwidth of the disk is 40MB/s. But, dueca‘use more and more freeblock opportunities are cre-

to head switch delays when changing tracks, the observed streamir%t?d- Writes dO.HOt go to disk immediately' because of
bandwidth is about 35MB/s. write-back caching. Instead, they go to disk as a re-
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sult of the syncer’s work or buffer daemon’s work. In
both cases, they go to disk in large bursts. Hence, the
foreground scheduler (using SPTF) does a good job in
scheduling, reducing the freeblock scheduler’'s chances
of finding rotational gaps to use.

Second, as the read-write ratio increases (beyond 1:2),
the impact of free cleaning on the average response time
decreases. This is a direct consequence of the decreas-
ing number of writes (and, hence, dirty buffers) in the  ° %™ e serrevia| ke LRU | SPTF-Evict]  FC
system. Third, the efficiency of the freeblock subsys- —reduction 17% 4% 1% 45% n% 4%
tem slightly decreases with increasing cache size. The
reason is that every time the syncer or buffer daemons=igure 8: Comparison of replacement and persistence policies.
wake up, they have a larger number of dirty buffers to These graphs illustrate the efficiency of the cache cleaner on a system
flush. Again, the foreground scheduler reduces the fregunder different replacement and persistence policies
block scheduler’s chances of finding rotational gaps to
use. However, we observed that the opposite happens,
i.e. the efficiency of the schedulercreases, when no
persistence policy is used.

Effect of replacement and persistence policies. Fig-
ure 8 examines the efficiency of the cache cleaner and
its impact on the average response time under different
replacement and persistence policies. The cache size
is kept fixed (512MB) and the read-write ratio is 1:1.

% dirty buffers cleaned for free
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% buffers cleaned for free

In addition to LRU, two other replacement policies are 0 Synthetic TPC-C Postmark
evaluated. The SPTF-Evict policy is similar to LRU,  w/cleaner]  18810s/sec 292tpm¢ 22 trans/sec
wo/ cleaner 156 10s/sec 253 tpmC 20 trans/sec

but instead of replacing dirty entries in an LRU fashion,
the entries closest to the disk head position are replaced
first. The FREE-CLEAN (FC) policy chooses to replace Figure 9: Cache cleaner efficiency in FreeBSD. The throughput
aclean entry that has been recently cleaned for free (if metric; below each bar show overall performance with and without
none exists, it reverts to LRU). By replacing a clean en-e® "Wite-acks.

try from the cache, FREE-CLEAN attempts to let the

remaining dirty buffers stay a little longer in the system FC is the best policy as far as the cache cleaner is
so that they may be written out for free. concerned. By leaving the dirty buffers in the cache a

dlittle longer, it can clean more of them for free. But,

without, a syncer daemon. A syncer daemon places there could be a detrimental effect on cache hit rate, and
hard limit (30 seconds in our case) on the time the free-N"€ Cache cleaning benefit observed is quite small.
block subsystem has to clean any dirty buffers for free. Cache cleaningin FreeBSD: Figure 9 illustrates the
Hence, fewer buffers are cleaned for free under this po|_eff|C|ency of the real cache cleaner, implemented as part
icy, irrespective of the replacement policy used. A cachef FTeeBSD's cache manager. At most, 3/4 of the sys-
comprised of non-volatile RAM, on the other hand, doest€m’s 384MB of RAM are devoted to the I/O buffering
not need such a persistence policy. subsystem. The read-write ratio of the synthetic bench-
The SPTF-Evict policy reduces the effectiveness ofnark is 1:1, the observed read-write ratio of TPC-C is

the freeblock subsystem most, thereby reducing its ben@PProximately 1:1, and the observed read-write ratio of
efit to the average response time. This is because n5>ostmark is approximately 1:3. In all three cases, a size-

write task can be satisfied during write 1/0s that hap_able percentage of the dirty buffers are cleaned for free.

pen as a result of the buffer daemon (because the dirt)lfostmark benefits less than the other benchmarks for the

buffer closest to the disk head is written first, there are>amMe reasons it lagged in the backup evaluation: write-
no other dirty buffers freeblock scheduling can squeeze?@cK clustering and unusable short idle periods.

in between foreground requests). Write tasks can still .

be satisfied during write 1/0Os that happen because of the6 -5 Layout reorganizer
syncer daemon. In the case when no syncer daemon is To evaluate the effectiveness of our reorganizer, we
used, all writes happen due to the buffer daemon, henceerformed a variety of controlled experiments. The
dirty buffers can be cleaned for free only during fore- foreground workload is the synthetic benchmark, which
ground read requests. keeps the disk 100% utilized. To avoid corruption of the

All three replacement policies are evaluated with, an
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Figure 10:Layout reorganizer efficiency. Each bar cluster shows Figure 11:Disk scrubbing and cache cleaning. This figure shows
the time required for the three reorganization actions for a differenfW0 concurrent background applications, disk scrubbing and cache
staging buffer capacity the percentage of the disk space being reorg@l®aning, in a system with and without fairness.
nized.

case, the freeblock scheduler’s fairness mechanisms are
FFS file system in FreeBSD, the experiments are run ingisapled and the scheduling algorithms lean toward a
the user-level Linux environment. In all experiments, the greedy approach. In the fair system, lottery schedul-
base unit the reorganizer is interested in moving at anyng makes sure that both applications are treated fairly.
time is 8KB (specified by thelksize parameter). Three Both applications are assigned the default priority. The
different reorganization actions are explored. cache size is fixed at 512MB, the replacement policy is

Random reorganization: Random 8KB blocks on | RU, and the persistence policy is implemented using
the disk are moved to other random locations. Fewthe 30-sec syncer daemon. The read-write ratio of the
blocks have dependencies using this method. foreground workload is 1:1.

Circular random reorganization: A list of unique Figure 11 shows the distribution of bandwidth with
random 8KB blocks is created, and each block is movedyng without fairness. The bandwidth given to the cache
to the location of the next block in the list. This creates q|eaner increases from almost nothing to about 0.3MB/s
the longest dependency chain possible: one includingyhen priorities are used. This bandwidth is very close
every block to be reorganized. to 0.34MB/s, which is the bandwidth the cache cleaner

Track shuffling: Similar to the random block reor- \yould get if it were the only background application in
ganization action above, but whole tracks are shuffledne system. The bandwidth of the scrubber, on the other
instead of blocks. hand, falls by a little more than the gained bandwidth of

We evaluated each action reorganizing from 1% tOthe cache cleaner. This 2-5% loss in efficiency can be
20% of the disk. Research on reorganization techniquegttributed to the scheduler’s decision to treat the cache
indicates that this range is generally the most effectivegieaner in a fair manner, thereby spending an equal time
amount of the disk to reorganize [1, 16]. The results aresearching for opportunities that satisfy tasks of that ap-

shown in Figure 10. Tests with more dependencies, likeyjication. These opportunities are smaller when com-
circular, take longer than those with few dependenciespared to the opportunities of the scrubber.

They also benefit more from an increase in buffer size.
The results are encouraging, showing that up to 20%y Summary
of the disk can be reorganized in a few hours on a fully

busy disk. This paper describes a programming framework for

developing background disk maintenance applications.

6.6 Application fairnessand priorities With several case studies, we show that such applica-
This section briefly evaluates the fairness of the?'onilcaﬂ bebadatpted to this fr%me(;/yokrk eﬁ‘ectlvtelyt.hA

scheduling algorithms. Two applications compete for reeblock subsystem can provide disk access 1o these

the free bandwidth: a simple disk scrubber and the Cachgpplica_xtipns, .using freeblock scheduling and idle time,

cleaner evaluated above. The disk scrubber simply trieg\’Ith minimal impact on the foreground workload.

to read all blocks of the disk once, without worrying

about consistency issues (hence it doesn’t use the snaﬁ—‘CknOWIedgementS

shot system). The experiment is run until the disk scrub-We thank Vinod Das Krishnan, Steve Muckle and Brian

ber has read all blocks of the 18GB Seagate disk. Railing for assisting with porting of freeblock schedul-
The bandwidths dedicated to the scrubber and cacheng code into FreeBSD. Special thanks to Chet Juszczak
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