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Abstract

Policy-based storage management has been advertised as the
silver bullet to overcome the complexity that limits the amount
of storage that can be managed by system administrators. Key
to this approach are: a mechanism to specify quality of service
(QoS) goals; a canonical virtual model of storage devices and op-
erations; and the mapping of the high level QoS goals to low level
storage device actions. In spite of prior research and industrial
standards the latter problem results in complex, manual, error-
prone processes that burden system administrators and prevent
the widespread acceptance of policy-based storage management.
This paper proposes the Polus framework which specifically ad-
dresses this open problem.

Polus removes the need for system administrators to write code
that maps the QoS goals to low level system actions. Instead, it
generates this mapping code by using a combination of rule-of-
thumb specification mechanism, a reasoning engine and a learn-
ing engine to change the implementation paradigm of policy-based
storage management. This paper also provides a quantitative anal-
ysis of the Polus framework within the context of a storage area
network (SAN) file system to verify the feasibility of this new ap-
proach.

1 Introduction

Capacity planning, application/storage performance
management, backup/restore operations, configuration
management, security, and availability analysis are some
of the key storage management responsibilities of a
system administrator. Typically, storage administra-
tors write scripts that automate many of these stor-
age management tasks. As the number of business ser-
vice level agreements, department policies, QoS goals,
storage devices, protocols, applications, and users in-
creases, it becomes difficult for system administrators
to ensure performance, provisioning, availability and se-
curity goals by using ad hoc script writing approaches
. Thus, systems management has been identified as
one of the most important research areas by many
leading researchers [9, 26]. Storage vendors are trying
to add sophisticated systems management functional-
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ity into databases, file systems, storage controllers, stor-
age resource managers, storage area network managers,
capacity planning managers and other storage manage-
ment software. The major focus of these products is to
reduce management complexity by allowing a system ad-
ministrator to specify high level QoS goals with respect
to expected performance,availability, provisioning, and
security, and to automatically transform these high level
QoS goals into low level system actions.

Currently, this transformation process is built using
the policy-based paradigm, where policies are specified
as collection of rules that are in the ECA format (Event-
Condition-Action) [14]. Rules define how the system be-
haves for different possible system states and goal values.
At run-time, the management module simply invokes the
rule that is applicable based on the event and system
condition. Even though goal based storage management
approach has been advocated as the silver bullet that
can help to reduce the management complexity for sys-
tem administrators, this approach has not gained much
traction because current policy management frameworks
are providing support for only simple and trivial storage
management scenarios.

1.1 Problem Statement

Design of high level QoS goals to low level storage ac-
tions transformation mechanisms in management soft-
ware is done by experts with many years of prior experi-
ence as system architects and administrators. However,
even the experts are encountering the following types
of problems while designing robust storage management
systems:

Complexity : The level of details, required to write the
specifications is non-trivial. ECA rules are written
as a certain storage management action being taken
when a system observable violates a predetermined
threshold. The transformation code is specified as
ECA rules (e.g. if throughput goal violated AND
Sequential/Random ratio > 1, then increase data



prefetching size by 20%) where actions are taken
upon the violation of threshold values. It is diffi-
cult for the composers of ECA rules to: (1) choose
which combination of system parameters to observe
from a large set of possible observables; (2) deter-
mine appropriate threshold values after considering
the interaction of a large set of system variables; and
(3) select a specific corrective action from the large
set of competing options. As the number of users,
storage devices, storage management actions, and
service level agreements increase, it becomes com-
putationally exhaustive for system administrators
or storage management tool developers to consider
all the alternatives.

Brittleness: It is difficult for vendors to provide
prepackaged transformation code with their prod-
ucts because this code becomes brittle with respect
to changing system configurations, user workloads,
and department/business constraints. It is difficult
for the storage management vendors to envision all
of the potential use case scenarios ahead of time,
and thus, many of the current storage management
solutions provide work-flow environments which, in
turn, pass the responsibility of transforming high
level QoS goals (via work-flow scripts) to an orga-
nization’s system administrators and infrastructure
planners.

To summarize, we restate the discussion-panel con-
clusion in FAST’03: Existing storage management
frameworks are like a “four-year old kid”- “They
mess up more than they are actually useful.”

1.2 Bird’s eye view and Contributions of
Polus Framework
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Figure 1. An innovative approach for QoS management

This paper proposes the Polus framework that tries

to take away the complexity of writing policy mapping
code from human experts and moves it to a combination
of reasoning and learning engines (as shown in Figure 1).
The Polus framework addresses the complexity and brit-
tleness problems described in section 1.1, in the following
manner.

In Polus, as shown in Figure 2, the system adminis-
trator inputs knowledge in the form of rules of thumb.
For example, “To invoke Prefetch action requires mem-
ory”, “Invoke Prefetch action requires the workload to
be Sequential”, “Prefetch action improves throughput.”
The generic form of the specification is (<Relationship
>[Type of relationship]) where the Relationship is be-
tween actions and resources, workload characteristics,
system behavior. The optional Type of relationship gives
a hint about the nature of the relationship (e.g., im-
proves, requires). It should be noted that the rule-of-
thumb specifications do not require the system admin-
istrator to quantify the threshold values for actions, ob-
servables, workload characteristics and resources. In ad-
dition, he does not have to spell-out the details of the
action to be invoked for a given state of resources, work-
loads, and observables.

The relationships defined in the rule-of-thumb speci-
fications are quantified by the use of a learning engine.
The system management actions, the state of the system
resources/workload characteristics when the a particu-
lar action was taken, and the current values of the ob-
servables (e.g., throughput, latency, etc.) are monitored
and stored as part of the knowledge base. The learn-
ing engine uses this monitored information to predict
and quantify the relationships described in the speci-
fications; for example, “Prefetching improves through-
put when available memory is greater than 20 percent”,
and “Use prefetching when Sequential/Random ratio is
greater than 0.4.” It is important to note that the rule-
of-thumb specifications help to prune the number of vari-
ables used in the interpolation function, which in turn
helps improve the convergence rate of the learning func-
tion. For example, while interpolating relationships of
the prefetch action, the system is not required to take
into account observables related to security. In the cur-
rent implementation of Polus, the learning engine does
not discover additional relationships (apart from those
in the specifications) and also assumes that the hints in
the specifications are correct. In the future, these as-
sumptions will be addressed using learning approaches
such as “bagging” [5].

When a particular QoS goal is violated in the system,
the Polus reasoning engine is invoked. The semantics of
the reasoning engine are expressed in first-order predi-
cate calculus and are similar to the thought-process that
is implicit in ECA rules. For example, an action (x) can
be invoked only if the resource required (precondition)



for its invocation are available in the current-state (cs).
The current-state is defined in terms of values of re-
sources, workload characteristics, and observables. This
is expressed in first-order predicate calculus as:

∀ x, invoke(x, cs) ⇒

(available(cs) > precondition(x))

Using the current-state as input and the information
(i.e., combination of specifications and learning) in
the knowledge base as facts, the reasoning engine de-
rives the actions to be invoked at run-time. For ex-
ample, when the reasoning engine tries to invoke the
prefetch action the invoke function is instantiated as
invoke(prefetch, cs) which will be true if

(available(cs) > precondition(prefetch))

In this predicate, cs is unified with the values that were
passed as input to the reasoning engine, and the infor-
mation of the prefetch action is retrieved from the knowl-
edge base.

It is important to note that combinations of declara-
tive specification and predicate calculus (as done in Po-
lus) are the basis of the well-known field of logic based
programming [16, 10]. Polus is applying and extending
these concepts for the domain of storage management.
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Figure 2. Contributions of Polus

1.3 Paper Organization

Sections 2 and 3 provide the details of ECA and Po-
lus respectively. Section 4 describes the experimental
framework. Section 5 presents the experiment results.
Section 6 contains a discussion of the experiment results.
A survey of previous expert systems, policy frameworks
and storage management solutions is provided in sec-
tion 7. Finally, section 8 presents our concluding re-
marks.

2 Background: QoS Management Using
the ECA Approach
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Figure 3. Simulator of a SAN file-system

In this paper, the effectiveness of the competing ECA
and Polus management approaches will be discussed us-
ing the example of a storage area network (SAN) file
system [12, 21]. As shown in figure 3, in a SAN file sys-
tem, the clients contact a metadata server to obtain the
necessary metadata for a particular file. Subsequently
the clients go directly to the storage controllers via a
SAN protocol to access the storage. The clients cache
both the file metadata information and the user block
data in two separate caches. In order to write ECA rules
for this system, a system administrator needs to do the
following:

Establish Goals: System administrators are usually
interested in ensuring that certain performance
(throughput, latency), reliability and security goals
are being met in their SAN file system deployments.
For example, they could specify their QoS goals as:
(1) ensure that each client has a throughput of at
least 40MBps; and (2) ensure that the system has
99.999 percent availability.

Determine the observables to analyze: System adminis-
trators have access to many static and dynamic sys-
tem observables such as the available memory size,
the SAN bandwidth being provided to a particular
client, and the cache hit rate at the client, the meta-
data server or the storage controller. The system



administrators also have to access to workload char-
acteristics such as the read/write ratio, workload
type (random or sequential), and the block size.

Assess the available actions: System administrators
need to be aware of the different possible storage
actions that they can perform to manage the stor-
age, such as replication, migration, clean delay [18],
request throttling, zoning etc.

Determine thresholds for the observables: Based on
prior empirical data or experience, system admin-
istrators need to determine the threshold values
which, when violated should result in the trigger-
ing of corrective management actions. For example,
if cache miss rate > 20% then take a corrective
action.

Select a particular action: If the threshold value of a
particular observable is being violated then the sys-
tem administrator needs to choose a correction ac-
tion such as increasing the prefetch size or replica-
tion of data.

Determine the granularity of the action: For example,
when the corrective action being taken is to increase
the data prefetch size, then the system administra-
tor needs to also specify the unit of the prefetch size
increase.

To put it all together, if the QoS goal of 10 millisecond
latency is not being met for a particular client, then the
system administrator needs to write the following sets
of ECA rules (not exhaustive) to find a remedy:

[Rule 1] If the throughput of a storage controller is
at its maximum, then migrate this client’s data to
another controller that has the necessary available
bandwidth.

[Rule 2] If the client cache miss rate > 20% and
the workload is sequential then increase the data
prefetch size by 4 objects.

[Rule 3] If a particular client is exceeding its allotted
bandwidth then throttle its request.

Thus, for a particular QoS goal, the system adminis-
trator needs to evaluate the values of all the relevant sys-
tem observables, assess whether they are violating a par-
ticular predetermined threshold value, and then choose
a corrective action from a list of possible system man-
agement actions. The objective of Polus is to reduce the
number of details that a system administrator needs to
consider.

3 Details of the Polus Approach

This section presents the details of the Polus frame-
work by both presenting the technical details of the
framework and also by illustrating how Polus provides
storage management guidance to a Storage Area Net-
work (san) file system.

3.1 Polus Terminology

Before describing the system model, we define the
terms behavior, goals and actions. In Polus, behav-
ior is a defined as a set of QoS dimensions such as
{throughput, latency, availability, reliability}. These
dimensions are also referred to as observables. Goals are
defined as threshold values on behavior dimensions. e.g.
response-time for reads should less than 5 sec, a client’s
average throughput should be 150 MBps etc. The defi-
nition of actions is domain-specific. In Polus, the actions
are divided into two categories: a) tunable parameters
i.e., changing the value of configuration parameters such
a prefetch size, clean-delay, etc., and b) internal actions
such as migration, replication, and back-up of data.

The model of the system is shown in figure 4. It con-
sists of two key entities: the management software and
the managed system. The management software is as-
signed QoS goals and is responsible for ensuring that
the managed system meets these goals. The interaction
between the management software and the managed sys-
tem is via sensors and actuators. Monitors gather infor-
mation about the managed system, while the actuators
effect the actions invoked by the management software
on the managed system.

The managed system consists of physical components
that interact to service the application requests. The
components service the requests in a particular sequence,
with each component processing the information before
handing it to the next component. For example, within
a SAN file system, the components are client machines,
metadata servers, storage controllers and disks. A com-
ponent has pre-defined properties such as the maximum
number of requests that it can service, the error rate,
the average down-time etc. Each component consists of
one of more atomic entities referred to as resources. In
other words, resources serve as an abstraction to refer to
components in a generic fashion. In Polus, the possible
resources are memory, CPU, network, and storage. For
example, the storage controller component consists of
memory and storage resources, the client machine com-
ponent consists of CPU, memory and network resource.

Sensors collects information about the state of the
managed system. The state of the system is defined
as a quadruple <S, Rcurrent, IP, Bcurrent >, defined as
follows:
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• Workload Characteristics (S): S is represented
as set of measurable parameters that character-
ize the application requests. These characteristics
are dynamic and constantly changing. For exam-
ple, in a storage system, typical dimensions are
the read/write ratio of access requests, the access
pattern (sequential/random), and block size of re-
quests.

• Rcurrent: Represents the current usage of the re-
sources on a per component basis.

• Invocation Path (IP ): Represents the sequence in
which the components are invoked while servicing
the application requests. For example, client ma-
chine → storage controller 2 → LUN 8 represents a
possible invocation path

• Bcurrent: Represents the current values of the be-
havior dimensions.

Actuators invoke the actions selected by the manage-
ment software. The impact of invoking an action is not
constant and is a function of the state. Furthermore,
whether an action can be invoked or not is dependent
on the state (i.e. not all actions are applicable within a
particular state).

3.2 Polus Framework

The three main parts of the Polus framework are:

Modeling of information: The model describes how
actions such as prefetching, replication, etc are rep-
resented in the system.

Generation of the knowledge base: How rule-of-
thumb specifications and learning are used in con-

junction to generate the details of the information
model.

Reasoning: During the detection of a QoS violation,
the reasoning engine decides which action to invoke
using the information in the knowledge base. The
management semantics of the reasoning engine are
expressed using first-order predicate calculus.

3.2.1 Modeling of Information

In Polus, an action is represented as a software object
and is referred to as an action object. The attributes of
the action object are a triplet of the form < I, P, B >,
defined as follows:

Implications I : This defines the impact of action in-
vocation on the system behavior. The value of the
impact function is dependent on the current state.

Preconditions P : This represents the dependencies of
the action on system state (i.e. the prerequisites for
invoking the action). The prerequisites are defined
in terms of thresholds on resources and workload
characteristics. Preconditions can be visualized as
defining boundaries to the state-space, since the im-
pact of invoking the action beyond the boundaries
is not captured by the action object. Preconditions
are represented as exclusion/inclusion lists.

Base behavior B : This attribute defines the details
associated with the actual action invocation. This
includes parameters that need to be passed during
invocation function( e.g., to invoke prefetching, the
prefetch size needs to be passed), the increment size,
and the transient resource costs for action invoca-
tion. The details of action invocation are defined
in terms of unit invocation, which is similar to that
used in implications.

Figure 5 gives the example of the prefetch action ob-
ject. More complex actions such as replication have ad-
ditional base invocation parameters such as number of
replicas, the data-set to replicate, selecting the compo-
nent where the replicas will be stored. Polus assumes
that the semantics for generating the values for these
replication parameters will come from a separate re-
source planning tool.

3.2.2 Generation of Knowledge base

In Polus, the details of the action object are generated
using a combination of rule-of-thumb specifications and
learning. Figure 6 shows how the prefetch object is in-
ternally maintained by Polus. The details of the action
object may not all be available when the system starts
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off. A part of the information is generated using user-
defined specifications (rule-of-thumb) and rest is gener-
ated using learning functions (as will be explained in
this subsection). There is a “confidence” value associ-
ated with every piece of generated information. The
confidence value is based on the error value of the learn-
ing algorithm that signifies the difference between the
predicted value and the actual observed value.

Rule of thumb specifications

The rule of thumb specifications are simple declarative
statements. They fundermentally serve two purposes:

• They specify the relationship between actions, re-
sources, workload characteristics, and behavior di-
mensions. For example, prefetching requires mem-
ory.

• They specify “hints” for the possible values associ-
ated with the relationships. For example, prefetch-
ing is dependent on the sequential/random ratio.
A higher value of this ratio is more favorable. This
hint helps the learning algorithm to perform lin-
ear classification within the behavior space (i.e., if
invoking prefetching did not improve throughput
when the sequential/random ratio = β, then the
hint allows the learning algorithm to interpolate
that for all values less than or equal to β, invok-
ing prefetching may not be beneficial).

The template for the rule-of-thumb specifications has
similar categories as those of the action objects:

<action name = PREFETCH>

<behavior_implications>

<implication dimension = throughput

impact = up>

</behavior_implications>

<preconditions>

<precond dimension = sequential/random

ratio value = high>

<precond dimension = read/write ratio

value = high>

<precond dimension = memory value = *>

</preconditions>

<base invocation>

<function name = change_prefetch_size>

<parameter type = float>

</base invocation>

</action>

Learning

Learning algorithms quantify the rule of thumb speci-
fications and they interpolate the value sets for the re-
lationships defined in the specifications. A learning al-
gorithm is treated as a black box that interpolates in-
formation for the (n + 1)th data point given a previous
sample of n data points. The rule-of-thumb specifica-
tions help in pruning the learning space. For example,
the implication of invoking prefetching is a function of
all the observables, i.e., Implication(Prefetching) →
f(all observables). Using the rule of thumb specifica-
tions, the interpolation of the implication function is:
Implication(Prefetching) → f(throughput, latency).

Given that specifications prune the learning space, the
question of what happens if the rule-of-thumb specifica-
tions are incomplete arises. The current implementa-
tion of Polus does not handle this scenario as it assumes
that the specifications are complete. However, one can
overcome incomplete specifications using existing ma-
chine learning approaches such as “bagging” [5], which
discover unspecified relationships and add them to the
specifications.



In Polus, the process of learning is a combination of
off-line training and on-line refinement. Initially, when
the management software is installed, learning is an off-
line process, which means that the learning algorithms
are just recording the system state along-with the ac-
tions invoked by the administrator. After a sufficient
number of training data points are recorded, the learning
algorithm switches to the on-line approach in which it
keeps refining the interpolation function generated using
the training data points. This refinement is based on the
difference between the interpolated value and the value
actually obtained from the invocation (also referred to
as re-enforcement learning [20]).

Conjunction of specifications and learning

The attributes of the action object are derived using a
combination of specifications and learning. In the cur-
rent implementation of Polus, the rule-of-thumb spec-
ifications forms the static part of the knowledge base
i.e., the system does not discover additional relation-
ships. The information associated with the learning al-
gorithms forms the dynamic part of the knowledge base
as this information is constantly updated by monitoring
the system and refining the interpolation functions.

The reasoning engine accesses the information in the
knowledge base. The access is a query of the form Does
Action X affect throughput and if yes, by how much?.
The query is translated into a sub-query which is first
handled by the specification sub-part of the knowledge
base that looks-up to see if there is a relation defined
between Action X and throughput. If yes, it generates
another query for the learning sub-part that contains
the interpolation function for action X, current-state and
throughput. Figure 7 illustrates this in the context of
prefetching.

Learning
Module

Reasoning Engine

Current State

N Y

throughput?
for

Implication attribute

By how much?

by 10%
improve throughput 
state, action can 

Answer: In the current

Specs

Figure 7. Conjunction of knowledge with the specifications and learn-
ing module

3.2.3 Reasoning

The reasoning engine is triggered whenever any of the as-
signed goals are violated. The objective of the reasoning
engine is to select the action(s) that need to be invoked

at run-time, in response to the violation of goals. The
operation of the reasoning engine is a three step process:

Problem determination: Analyzes the components in
the invocation path; determines components that
are saturated or the components that need to be
tuned for the current state.

Base-level reasoning: Searches the action objects,
based on the queries generated by the problem de-
termination module (can be visualized as an object
interpreter).

Meta-level reasoning: The meta-level is responsible
for higher-order optimizations such as deciding be-
tween multiple candidate actions based on invoca-
tion cost, error functions, side-effects and so on.

In the SAN file system example, if the prescribed
throughput goal of 100 MBps is being violated, the steps
that are taken by the reasoning engine to rectify the
problem are described in the following subsections.

Problem determination

Input: The current state and the goals being violated.
Output: The components whose behavior needs to
change and the type of change. This is expressed as
a query of the form:

φ = {(c, b, change)| cεComponent,

bεBehavior, bnew = (1 + change)bcurrent}

Approach: Problem determination has been an area
of ongoing research. We briefly describe a simplified
approach to illustrate how problem determination, base-
reasoning and meta-reasoning work together.

• Determine the components being used in the invo-
cation path.

• Compare the current behavior of these components
with the static capabilities of the components. This
is similar to system diagnosis using model-based
reasoning [22].

• Additionally, compare the current state with a pre-
vious state (in which the goals were met). This
change analysis generates additional parameters
used to search the specifications and tune compo-
nents in the invocation path that are not saturated.
The changes in the system state can be along one or
more of the following dimensions: a) Resources uti-
lization (accounts for failures, resource-additions,
and application request rate), b) Workload char-
acteristics c) Assigned goals, d) Invocation path
(accounts for changes in active datasets or physi-
cal components).



In the SAN file system example, by analyzing the in-
vocation path (i.e. client machine, controller, disks), we
determine that disks are saturated (i.e. the current i/o
rate is the maximum they can support). Furthermore, a
change analysis with a previous state reveals that client
i/o request rate has increased by 40% and that the se-
quential/random ratio of the workload has changed from
0.1 to 0.7. Based on the problem determination analysis
the following two queries get generated: Query 1: Se-
lect an action that improves the throughput of the disks
by 25% (the fact that it is saturated will show-up in
the preconditions of actions). Query 2: Select an ac-
tion that improves the throughput of the (controller or
client machine) by 25%, and is optimized for sequential
workloads.

Base-level reasoning

Input: The set of queries φ derived by problem deter-
mination
Output: A set of candidate actions that partially or
completely satisfy elements in φ.
Approach:
The logic for searching the knowledge base is expressed
in first-order predicate calculus. The logic captures the
thought process that is implicit while writing impera-
tive specifications. The information model of the action
object makes it possible to express these semantics and
derive the actions to be invoked “on-the-fly.” A few ex-
amples of the thought process, expressed as first-order
predicates, are described below.

At the high-level, a candidate action is one that affects
the component in φ, satisfies the preconditions (p) in the
current-state, and has the desired implications (i).

∀ a, s, φ candidate(a, s, φ) ⇒

component(a, φ) ∧ p(a, s) ∧ i(a, s, φ)

where: { a ε Action, s ε State}

Satisfy implications (i) is derived (as explained in
Section 3.2.2) by combining the implication attribute
present in the specifications (SpecI) and the associated
interpolation function (interpolate) derived by learning.

∀ a, s, φ i(a, s, φ) ⇒

∀ x SpecI(a, x) ∧ (interpolate(x, s) > 0)

Similarly, satisfy preconditions (p) is defined as:

∀ a, s p(a, s) ⇒ ∀ y SpecP (a, y)

∧ ¬(Exclusion set(y) ε V alue(s))

At each step in the reasoning process, while selecting the
candidate-actions, Polus maintains a log of the available

choices and the option that was selected. This can later
serve as an explanation to the human administrator, re-
garding how a specific action was selected.

In the example, assume the two candidate actions that
are selected based on Query 1 and 2 are:

1. Invoking prefetching at the client machine
2. Invoking data replication at the disks

Meta-level operations

Input: A set of candidate actions, and φ generated by
the problem determination module
Output: The actual set of actions to be invoked
Approach:
The aim is to select a candidate action, using an opti-
mization function based on the following parameters:

• The transient overhead associated with the action
invocation. For example, invoking replication has
more overhead compared to invoking prefetching.

• The behavior side-effects of the action (i.e., an ac-
tion, in addition to improving the violated goals,
can possibly have a negative impact on other be-
havior dimensions). For example, invoking data
backup improves availability, but it has a negative
side-effect on throughput and latency.

• The confidence level associated with the details of
the action object. As mentioned earlier, the con-
fidence level is associated with the learning func-
tion error, measured as a difference between the
predicted and the actual observed values.

An important requirement for this optimization is that
it should not be based on short term goals (e.g., invoking
replication has high overheads, but it might be benefi-
cial in the long-run compared to invoking prefetching
multiple times).

In Polus, the optimization algorithm is using n-step
look ahead [20], which is extensively used in game the-
ory. In n-step look ahead, the system simulates the im-
pact of pursuing different options. The simulation is
repeated n times, and the end result of the simulation is
used to decide on the option to be selected in the cur-
rent state. The simulation is based on the implication
and precondition information of the action object. The
n-step look ahead is just a rough estimate for the op-
timization, because external factors such as changes in
workload or resources may render the predictions inac-
curate. But it definitely helps in detecting instabilities
arising due to cycles in state transitions (i.e. the system
ping-pongs between two states, invoking the same set
of actions repeatedly). It also helps in avoiding choices
where a single action leads to a series of actions being
invoked due to the cumulative side effects of actions.



Finally, in addition to considering the candidate ac-
tions independently, it is possible to reason with combi-
nations of actions. For example, instead of considering
the choices of invoking either prefetching or replication,
it is possible to consider a combination of prefetching
and replication as an additional candidate choice. Com-
posite actions can be handled using vector arithmetic
addition techniques but the description of these tech-
niques is beyond the scope of this paper.

4 Experimental Setup

In the experimental setup, a SAN file system simu-
lator is being used as the managed system. For the
management software, we use an implementation of
the Polus toolkit and compare it with its rule-based
ECA counterpart. The Polus toolkit is built using
ABLE (Agent Building and Learning Environment) [4].
ABLE provides the basic building blocks for Polus,
namely learning algorithms such as neural networks, self-
organizing map, JDBC connectivity for interfacing with
the database, and data filters. The Polus modules are
implemented as Java beans or agents. The implemen-
tation consist of agents for: Specifications (input), Rea-
soning, Learning, Sensors and Actuators. The rest of the
section describes the implementation of the file system
simulator.

The entities within the SAN file-system simulator are
similar to those introduced in Section 2. The cost of
atomic operations used in the simulator are shown in
table 1. The simulator models the following actions
that are invoked by the management software via actua-
tors: Pre-fetch size tuning, Data replication, Backup and
Clean-delay interval. i/o operations within the SAN file
system are invoked by the client and can have multiple
possible paths, depending on whether the data is cache
or not. The simulator considers the following paths:

MHDH Metadata and data hit in the client

MHDM Metadata hit and data miss in client

MMDM Metadata and data miss in the client

The summation of each of these probabilities of the
invocation paths PMHDH + PMHDM + PMMDM = 1

The average I/O latency is given by:

L =PMHDH ∗ LMHDH + PMHDM ∗ LMHDM +

PMMDM ∗ LMMDM

where:

LMHDH = Lm + Ld

LMHDM = Lm + LDM

LDM =PController−hit ∗ QC ∗ SController +

(1 − PController−hit) ∗ QC ∗ SDisk

LMMDM = Queue depthServer ∗ SServer + LDM

Operation Cost
Size of metadata object 1000 bytes
Latency to access from metadata 20 µsec
cache (Lm)
Latency to read from datacache 20 µsec
(Ld)
Service time of server (Sserver) 420 µsec
Service time from controller cache 0.6 msec
(Scontroller)
Service time of disk (Sdisk) 6 msec
Queue depth at controller (QC) 256 (max)
Size of metadata cache 128 MB
Size of data cache 1 GB
Size of controller cache 256 MB

Table 1. Cost of atomic operations in the file system simulator

The values for probabilities such as PMHDH , and
PController−hit are modeled by representing the caches
as finite sized-arrays and keeping track of data blocks in
the elements. Similarly, the average queue depth such
as QC are actually modeled by using service time to
complete each request.

Each action is modeled to reflect its impact on the
invocation path, system resources and changes in the
workload characteristics (table 2). To activate the ac-
tions in the file system simulator, specifications are fed
into Polus and rule-based management. The specifica-
tions for a rule-based system consist of ECAs that de-
scribe the system-behavior for different system-states.
The ECA specifications in this example run into 7 pages
(76 rules). The exact Polus specifications that are fed
are given in figure 8.

5 Experimental Analysis

The experimental analysis consists of a quantitative
comparison of Polus and Rule-based systems for differ-
ent system states. During evaluation, the values (thresh-
olds and action invocation) for rule-based systems are
assumed to be correct and empirically obtained from
prior runs.

The file system is driven by a trace generator that
imposes different states on the system. The generated



Action Description Invocation path Resources affected
parameters affected

Prefetching Readahead of data PMHDH and PMHDM Data cache, metadata cache
and metadata and interconnect bandwidth

Replication Creates replica of data QC Storage space (ignoring
on a different volume transient effects)
in the controller

Data backup Consider only transient PMHDH , PMHDM , PMMDM Memory, interconnect
effects since we are not QC , QServer bandwidth and storage space
considering availability

Clean delay Frequency at which dirty Only for writes – PMHDH Metadata cache and data
buffers are flushed to disks bursty traffic for storage cache (metadata cannot be

controller QC : evicted till data is written)

Table 2. Modeling actions within the file system simulator

Parameter:
backupThroughput
Function:
invokeBackup

<Trigger = backup, value = *>
<Resource = storage value > 35%> 

<Latency, impact = down>
<Throughput, impact = down>
<Reliability, impact = up>

Data
backup

Parameter:
cleanDelay interval
Function:
changeDelay

<Workload = read/write, value = low>
<Workload = writes, value = async>
<Resource = memory, value = *>

<Latency, impact = up>
<Throughput, impact = depends>
<Reliability, impact = down>

Clean
delay

Parameter:
numReplicas
Function:
invokeReplication

<Workload = read/write, value = high>
<Workload = Queue-depth, value > 16>
<Resource = storage-disks, value = *>

<Availability, impact = up>
<Latency, impact = up>
<Throughput, impact = depends>

Replication

Parameter:
prefetchSize
Function: 
changePrefetchSize

<Workload = sequential/random, value = high>
<precond dimension = memory, value >20%>
<precond dimension = fc_bandwidth, value = *>

<Throughput, impact = up>Prefetch

Base InvocationPreconditionsImplicationsAction

Figure 8. Specifications fed to the Polus framework

state is a triplet of the form: <Workload characteristics,
Available Resources, Goals >. The values for the goals
are different than their current values. For each of these
system states, we compare the response of both Polus
and an ECA based rule system. Table 3 categorizes the
possible system state.

The analysis of Polus and ECA for each of the cate-
gories is described as follows:

Category 1: Single action applicable

Analysis: The comparison is shown in figure 9. This is
a simple category with a single candidate action. Po-
lus generally selects the same action as an ECA-based
system. ECA is assumed to have the right value for in-
vocation while Polus uses the incremental approach for
invocation. Learning improves the incremental approach
by interpolating the starting point for incremental invo-
cation.

Insights: The efficiency of the incremental algorithm is
dependent on the impact function of the invoked action,

Figure 9. Comparing Polus and ECA for category 1 (single candidate
action). In the graph, the throughput goal = 100 MBps.

which could be linear, quadratic, exponential and so on.

Category 2: Multiple actions applicable

Analysis: This category (figure 10) exposes the ”weak-
spot” in Polus. When the candidate actions are indis-



Categories Description Example (File system simulator)
Category1: Single
action applicable

The system states in this category
are such that only a single candi-
date action is applicable, i.e., search-
ing the specifications leads to a single
candidate action

Workload: Sequential, read dominated with
read/write ratio of 0.9, avg. queue-depth = 6 Cur-
rent Throughput = 80 MBps Goal = 100 MBps Po-
lus specification search: The only action that be-
comes applicable is Prefetching.

Category 2: Multi-
ple actions applica-
ble (they appear to
have similar precon-
ditions and/or im-
plications)

In this category more than one
action have similar preconditions
and/or implications and are indistin-
guishable. In reality, these actions
are not similar This category be-
comes increasingly common during
initial bootstrapping, i.e., the system
hasn’t learnt values for preconditions
and implications

Workload: Read dominated, sequential/random ra-
tio = 0.2, average queue-depth = 8. Current
Throughput = 80 MBps Goal = 100 MBps Po-
lus specification search: Prefetching and Replica-
tion are selected as candidate actions. In reality
Prefetching is not applicable as the workload is not
sequential, but Polus does not have the threshold
value for the sequential/random ratio in prefetch
specifications

Category 3: More
than one goal not
met

In this category, more than one ac-
tion needs to be invoked as a sin-
gle action cannot satisfy the goal re-
quirements

Workload: Sequential, read/write= 0.3 Current
Throughput = 80 MBps Goal = 100 MBps , Current
Latency = 6msec Goal = 4.5 msec Polus specifica-
tion search: Prefetching and Clean delay are both
invoked as the former improves throughput while
the later improves latency

Category 4: Re-
current action
invocation (One
action, leads to
chaininvocation of
actions)

In this category, invocation of an ac-
tion leads to a chain-invocation of a
series of actions. Ability to detect
and prevent recurrent action invo-
cation is a required property of the
management software

Workload: Trigger for data backup with window
= 4 hours Polus specification search: Theoretically,
backup can be invoked since the goals are being met.
But invoking backup at this time will cause latency
goals to be overshot

Category 5: No
action applica-
ble (Negation of
previous actions
required)

Actions are negated under two sce-
narios: to make resources available
for another actions, and the work-
load preconditions change

Workload: Changes from large block sequential
to small block random Polus specification search:
Prefetching hurts performance as memory and stor-
age resources are used for acquiring data that is
never used

Table 3. Categorizing the possible system states

tinguishable, Polus tries them one-by-one till it either
leads to a negative impact on the observable values or
the goals are met. As shown in the graph, Polus ini-
tially selects the wrong action (i.e. prefetching). After
the value dips further, Polus tries the next candidate
action (i.e. replication). Learning adds the threshold
values (in this example at the pre-conditions level) and
enables distinguishing between the actions.

Insights: In systems with larger action-sets, it is quite
possible that Polus never converges due to side-effects of
trying wrong actions.

Category 3: More than one goal not met

Analysis: Rule-based systems will invoke a single action
in each iteration without analyzing the combined impact
of the actions. On the other hand, Polus considers dif-
ferent permutations to combine the actions (figure 11).
This is beneficial when the two actions act on the same

resources, such that the invocation of one action beyond
a threshold can violate the pre-conditions of other ac-
tions. As shown in the graph, ECA does not meet the
latency goal due to lack of memory resources. In its
previous iteration Prefetching was invoked for through-
put goals and the rules did not consider the combined
state while deciding the value for prefetching. Learning
refines the attributes of actions allowing better combi-
nation strategies.

Insights: Higher-order operation are powerful in deriv-
ing permutations that cannot be possibly defined stati-
cally.

Category 4: Recurrent action invocation

Analysis: The comparison in shown in figure 12. Polus
uses look ahead while invoking actions to estimate the
impact of the action on the goals. Rule-based systems
don’t have an equivalent of this (though it is possible



Figure 10. Comparing Polus and ECA for category 2 (multiple can-
didate actions). In the graph, the throughput goal = 100 MBps

Figure 11. Comparing Polus and ECA for category 3 (more than one
goal not met). In the graph, the latency goal = 4.5 msec

to write separate rules to cater for this). As shown in
the graph, ECA invokes the Backup action that leads
to invocation of a series of actions (Replication in this
example). Polus does a look-ahead and does not invoke
Back-up during the current system-state. ( For Back-up
we are assuming a time-window)

Insights: Look-ahead is a required operation and effec-
tive only with some learning of the action model. Hence
there is only a single curve in the graph.

Category 5: Negation of previous actions

Analysis: Both Polus and Rule-based systems can cater
to negation of actions (figure 13). ECA can accommo-
date by writing separate rules. Learning does not play
a significant role in this category

Insights: Explicit need to write separate rules in rule-
based systems for negation whereas the Polus reasoning
engine can account for this without any additional spec-
ifications.

Figure 12. Comparing Polus and ECA for category 4 (recurrent action
invocation). In the graph, the latency goal = 4.5 msec

Figure 13. Comparing Polus and ECA for category 5 (negation of
previous actions required). In the graph, the throughput goal = 80
MBps

6 Discussion

During the evaluation of the Polus framework, we
made a few simplifying assumptions.

• The system state is assumed to remain constant
during the time that an action is invoked. While it
may be argued that this is an unrealistic assumption
for actions that require significant time to complete,
it is a reasonable one for most actions that involve
small overhead.

• We do not consider the case where the specification
provided by a administrator may be incomplete or
contains incorrect information that may mislead the
management software in its decision making.

• The experimental evaluation contains a single im-
plementation of learning, reasoning and base invo-
cation algorithms. These algorithms have not been
fine tuned or optimized, and it is possible to plug-
in more sophisticated algorithms for tree searching,
incremental base invocation and learning. An eval-
uation by varying these algorithms is beyond the
scope of this paper.



In real life deployments of Polus, system vendors can
provide templates containing rules of thumb specifica-
tions and initial threshold values (obtained from train-
ing runs) for different workloads and system configura-
tions. The adaptive behavior of the Polus framework
will fine tune the knowledge base (i.e. threshold values)
and tailor it to specific user environment and workload
characteristics.

The evaluation framework presented in the paper is
a system with just four possible actions. Hence, it is
important to note that our aim was to understand the
possible weaknesses of the Polus approach, and to get
a first cut estimate of the number of iterations required
in converging towards a specified QoS goal for differ-
ent system states. As shown in the experiment section,
the initial results show that this approach is promising;
thus, we are currently implementing Polus as part of a
real storage QoS management system. Polus can also
be initially deployed as an aid to system administrators
that allows them to perform what if analysis with respect
to whether a system can support different QoS goals.

7 Related Work

Rome [25], Minerva [1], Hippodrome [2], and
“attribute-managed storage” [13] projects from HP,
SELF* project [9] from Carnegie Mellon, Storage
Tank [21], SledRunner [6] projects from IBM, Control
Centre product line from EMC, Storage Central prod-
uct line from Veritas, and BrightStor product line from
Computer Associates all aim to simplify storage man-
agement by automating different aspects of storage man-
agement. The Polus framework presented in this paper
is complementary to these projects, since none of these
projects specifically address the QoS goal transforma-
tion problem being addressed in this paper. Moreover,
there is nothing inherent in the Polus framework that
prevents its adoption by these different frameworks and
products as part of their QoS solutions.

The Polus framework was built using specification,
learning and reasoning techniques from the artificial
intelligence (AI) domain. These technologies have a
proven track record as they have been successfully used
to build expert systems in medical, system configuration,
video games and speech/handwriting processing appli-
cation domains. To the best of our knowledge, Polus
is the only system of its kind (in the domain of stor-
age performance management) that integrates a rules-of-
thumb specification model, reasoning (including higher-
order operations) and a self-refining learning engine to
manage a storage system.

Polus leverages concepts in AI and uses them as build-
ing blocks in its solution. Techniques for specifica-

tion in expert systems are broadly classified as impera-
tive (e.g. rule-based), declarative (e.g. logic program-
ming) or mixed. Brittleness has been identified as the
biggest drawback of imperative rule-based systems [7],
whereas, logic based systems overcome this problem by
using a reasoning engine to combine facts/beliefs in the
knowledge base to draw conclusions. The Polus spec-
ification of action attributes is similar to the declara-
tive approach. Further, reasoning in Polus is a com-
bination of specification search algorithms and higher-
order operations. Polus uses forward chaining to search
the specifications, but it is possible to use other ap-
proaches such as backward chaining or heuristic-based
searching. Other popular approaches for reasoning are:
Model-based, Constraint-based, and Case-based reason-
ing [17]. As explained earlier, Polus uses CBR as part
of the reasoning engine to tie in the knowledge acquired
by learning in the decision-making. Finally, learning in
Polus systematically refines the specifications. It lever-
ages research in the domain of machine learning algo-
rithms such as neural networks and reinforcement learn-
ing [11, 15].

Currently, there are many competing policy specifi-
cation standards [14, 19]. Polus can leverage any one
these existing standards for specifying the base rules-of-
thumb. Furthermore, there are no in-built dependencies
that prevent Polus from leveraging the canonical SNIA
SMI-S storage device standard [23] as the representation
for low level system actions.

A Case-Based Reasoning approach, in which a system
starts off with no specifications and uses the previously
learnt cases to decide how a goal should be transformed,
has been employed in the web-server configuration do-
main [24]. The bootstrapping behavior of that approach
is not attractive in real-world scenarios where the rea-
sonable number of cases that need to be learned a priori
are zero (resource states, workload characteristics, goals,
action set). In comparison, as shown in the experiment
section, the combination of rule-of-thumb specification
and a learning engine has a reasonable bootstrapping
behavior. That is, the Polus approach is able to dynam-
ically adapt even when it does not start from the most
desired bootstrapped state. Mark, et al., [3] propose an
approach to separate the goal from the base rule spec-
ification. They create a mapping between the rule and
user-requirements, making it easy for validation and us-
age. The Polus approach is more sophisticated, in that
it encodes the goal implications and uses them to auto-
mate the reasoning process.

Another approach [8] uses genetic algorithms for self-
tuning. In this approach each system parameter is tuned
by an individual algorithm and the genetic algorithm de-
cides the best combination of algorithms. Unlike Polus,
this approach does not allow refinement of the decision-



making based on learning. Zinky, et al., [27] present
a general framework, called QuO, to implement QoS-
enabled distributed object systems. The QoS adaptation
is achieved by having multiple implementations. Each
implementation is mapped to an environment and to
a QoS region. The QuO approach is static, as it does
not implement semantics for reasoning about the various
possible configurations.

8 Conclusion

Policy-based QoS management has been advocated as
a “silver bullet” that can help to drastically increase
the amount of storage that can be managed by system
administrators. It is typically implemented using the
ECA rules mechanism. However, as shown in this paper,
the policy-based QoS management approach is not gain-
ing much traction because of the associated difficulty in
mapping high level QoS goals to low level system actions
using the ECA approach.

In this paper we provide an alternative paradigm for
mapping high level QoS goals to low level system ac-
tions. Our Polus approach leverages the proven AI tech-
niques of learning and reasoning, and combines them
with a declarative specification approach. Using this ap-
proach, system administrators can specify general rules
of thumb to describe their knowledge instead of com-
plex ECA rules containing detailed threshold values. In
Polus, these threshold values are derived using learning
algorithms. Furthermore, the use of reasoning engine al-
lows Polus to automatically select the right action from
amongst the various competing alternatives.

In conclusion, this paper presents a new approach to-
wards how QoS goals can be mapped to low level system
management actions. The aim of this approach is to re-
duce the number of inputs that are required from sys-
tem administrators. We have analyzed the key concepts
of this approach by using Polus to manage a simulated
SAN file system and this is the first stepping stone to-
wards the use of Polus-like approaches for managing real
storage systems.
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