USENIX Association

Proceedings of the Third USENIX
Conference on File and Storage Technologies

San Francisco, CA, USA
March 31-April 2, 2004

THE ADVANCED COMPUTING §YSTEMS ASSOCIATION

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.
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Losing information when a storage device or data center fails can bring a company to its knees—or put it out of
business altogether. Such catastrophic outcomes can readily be prevented with today’s storage technology, albeit
with some difficulty: the design space of solutionsis surprisingly large, the configuration choices are myriad, and the
alternatives interact in complicated ways. Thus, solutions are often over- or under-engineered, and administrators
may not understand the degree of dependability they provide.

Our solution is a tool that automates the design of disaster-tolerant solutions. Driven by financial objectives and
detailed models of the behaviors and costs of the most common solutions (tape backup, remote mirroring, site
failover, and site reconstruction), it appropriately selects designs that meet its objectives under specified disaster
scenarios. Asaresult, designing for disasters no longer needs to be a hit-or-miss affair.

1 Motivation

“ The cascading blackout that swept through cities from
Detroit and Cleveland to Ottawa and New York City
was a harsh reminder to enterprises—to companies of
all sizes, in fact—that disaster-prevention and business-
continuity plans should be at the top of the priority

list.” — Techweb, August 22, 2003

Hardware breaks. Software has defects. Viruses propa
gate. Buildings catch fire. Power fails. People make
mistakes. Although we prefer that these events never
occur, it is only prudent to defend against them. The
cost of data unavailability can be large: a quarter of the
respondents to a 2001 survey [EagleRock2001] esti-
mated their outage costs as more than $250 000/hour,
and 8% estimated them as more than $1M/hour. The
price of data loss is even higher. Recent high-profile
disasters have raised awareness of the need to plan for
recovery or continuity: since data is a critical asset, the
key challenge is to construct dependable storage sys-
tems that protect data and the ability to accessit.

Primary site

Figure 1 illustrates the most commonly-used alterna-
tives to protect and recover stored data. In al cases, a
primary copy of the data is protected by making one or
more secondary copies, which are isolated from failures
that may affect the primary copy. Recovery involves
either site failover to a secondary mirror, or data recon-
struction at the primary site or a secondary site.

Each technique provides some of the necessary protec-
tion; combined, they create a large and complex design
space. For example, a popular combination combines
internally-redundant disk arrays (RAID), remote mirror-
ing, snapshot and backup to tape: RAID protects against
disk failures, mirroring guards against site failures,
snapshots address user errors, and tape backup protects
against software errors and provides archival storage.

These building blocks for data protection are proven
technologies, and they continue to be improved. Even
so, it is difficult to combine and configure them to cre-
ate well-engineered data dependability solutions. No
solution can ever provide an absolute guarantee of
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Figure 1. an overview of the
disaster recovery alternatives
considered in this paper. The
standard solutions include inter-
array mirroring (local and
remote, synchronous and
asynchronous), tertiary storage
(e.g., tape) backup, remote
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combined with recovery by
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safety, so designers must trade off the desire for rapid
recovery and minimum data |oss against each solution’s
price, operational costs, and performance impact across
arange of configuration choices. Over-engineered solu-
tions may incur excessive costs to defend against negli-
gible risks. Under-engineered solutions have their own
costs in a disaster: crippling outages, loss of critical
data, or unacceptably degraded service. Faced with
these choices, designers often resort to ad hoc attempts
to strike the right balance, guided by rules of thumb and
their own limited (or even irrelevant) experience.

The key contribution of this paper is to show how to
design data dependability solutions automatically, given
specifications of workload properties, system compo-
nents, data value, and expected rates of primary copy
failures. We describe and evaluate a design tool that
combines quantitative models of the standard protection
and recovery techniques (depicted in Figure 1) with an
off-the-shelf optimizing solver. The output of the tool
is a cost-effective data dependability design.

The paper makes three further contributions, each of
which is essential to automating dependability design:

1. Dependability metrics. We describe metrics to spec-
ify data dependability requirements, covering both
data reliability (i.e., the absence of data loss or cor-
ruption) and data availability (i.e., the ability to ac-
cess data when desired). These metrics characterize
the severity of afailure in terms of the financial cost
of the resulting data loss and service outages.

2. Models of data protection alternatives. We develop
guantitative models of the dependability properties
and costs of common disaster tolerance solutions.

3. Optimization framework. We show how to formulate
data dependability design as an efficient optimization
problem to balance cost and risk exposure—precisely
the kind of task that automation can aid. The optimi-
zation objective is to minimize the sum of outlays
and the financial penaltiesfor failures.
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Figure 2: structure of the dependability design tool.
Section numbers on the graphic indicate the sections
that discuss each topic in the text.

2 Oveview

To automate the design process, we must first capture
the design objectives in a quantitative way. The formu-
lation must be solution-independent, which means it
specifies only the goals, and not the solutions. “Backup
my data once a day” describes an implementation,
rather than the underlying objective. A better choiceis
“lose no more than 24 hours updates.” Better till is
“minimize my total costs if each hour of lost updates
costs me $500,000.”

In a business context, most choices come down to
money. A key premise of our work is that effective
dependability design must meet concrete objectives
specified in financial terms. This section explains our
financial framework for specifying dependability goals
and configuring cost-effective solutions for data protec-
tion and recovery.

2.1 Failuresand recovery

Data dependability solutions protect against several
threat categories:

« Dataloss: threats that cause data to be lost, including
failures of the storage devices themselves, or an en-
compassing failure, such as a building fire. Recent
updates may be more vulnerable to loss because they
may not have propagated to fully protected storage
(e.g., they might reside in a volatile OS buffer, or
might not have propagated to a remote site yet).

« Data corruption: threats that change data into a form
that cannot be used. Corruption may result from user
error, defective software or firmware, and attacks.

« Data inaccessihility: threats that do not damage data,
but prevent access to it, such as failure of a network
link, switch, or disk array controller.

To limit the scope of this study, we focus on data loss
events for the primary copy, such as a primary site dis-
aster or failure of a primary disk array. Data corruption
and inaccessibility threats can be mapped into loss of
the primary copy. We leave a treatment of secondary
failures to future work.

After afailure, normal operation resumes when either of
two states is achieved:

1. Failover: the secondary is usable as the primary.

2. Reconstruction: the primary is restored and usable
again, either at its original site or at another site out-
side of the scope of the failure.

Our tool considers only the minimum repairs needed to
restore service. In practice, repair is not fully complete
until the original level of redundancy is restored, so the
secondary can tolerate another failure. In the case of



failover, typically a planned fail-back operation restores
each site or copy to its pre-failure role.

2.2 Recovery time and recovery points

Business continuity practitioners currently use two met-
rics to capture data dependability objectives:

1. Recovery time. The Recovery Time Objective (RTO)
specifies the maximum alowable delay until
application service is restored after a failure event.
The RTO can range from seconds to days.

2. Data loss. Recovery may require reverting to some
consistent point prior to the failure, discarding up-
dates issued after that recovery point. The Recovery
Point Objective (RPO) gives the maximum allowable
time window for which recent updates may be lost.
The RPO can range from zero (no lossis tolerable) to
days or weeks.

Discussions with storage designers suggest that the de-
pendability objectives for the repair step are to restore
the original level of redundancy “soon.” How soon and
at what expense are less well-defined: best-effort solu-
tions are generally used.

2.3 Penalty rates

Choosing the rigt RTO and RPO requires
understanding (1) the business costs of service outages
and data loss and (2) the recovery behavior and cost of
all available solutions to achieve each RTO and RPO.
This process is a complex optimization problem in a
large design space, and is hard to do well by hand.

Instead of fixed RTO and RPO targets, our approach
guantifies the financial impacts of outages and data loss
as penalty rates, expressed as $/hour. The loss penalty
rate specifies the cost per hour of lost updates. The
outage penalty rate specifies the cost per hour of ser-
vice interruption. Our design tool uses these rates to
balance expected failure impacts against outlays to ar-
rive at a cost-effective solution. The tool identifies the
RTO and RPO as a side effect of this design process.

Determining penalty rates is still not easy, but it can be
done using techniques such as Business Impact Analysis
(BIA), and tools (e.g., http://www.availability.com) that
help managers quantify their exposure to outages and
data loss. The insurance industry regularly assesses
threats and exposures in many other domains of equiva
lent complexity. Assessing these penalty rates is a
strictly ssimpler and less error-prone task than determin-
ing the right RTO and RPO values.

Even though site and regional failures are extremely
rare in North America, government regulation or liabil-
ity obligations [CNT2003] may mandate specific

maximum RPO and RTO values. More stringent re-
quirements are particularly likely in the financial indus-
try [SEC2002]. Mandated values can be specified as
bounds for the RPO and RTO results obtained from our
approach, although the bounds are rarely tight.

2.4 Putting it all together

Our design tool works as follows. Firgt, it uses the
models described in Section 3 to explore the solution
space—including the ranges of configuration parameter
settings for each aternative—and to predict the de-
ployment outlays, worst-case recovery time, and worst-
case data loss for each candidate solution. The tool
then selects the best design aternative (e.g., synchro-
nous mirroring), together with the best values for its
configuration parameters (e.g., two wide area links) and
the best recovery aternative (e.g., failover to the secon-
dary site). This optimal configuration balances the sys-
tem cost (outlays) with the worst-case financial costs
(penalties) for expected primary failure events.

3 Modeling protection techniques

This section outlines the models and parameters for the
data protection and recovery alternatives considered in
this paper. Each model defines a set of input parame-
ters (e.g., component outlays and performance attrib-
utes) and their values, a set of configuration parameters
(e.g., number of tape drives or network links to aremote
mirror) and their ranges of valid settings, and equations
relating the parameters to the measures of interest:
worst-case data loss and recovery time. It is trivial to
model different parameter settings for system compo-
nents, and it is straightforward in principle to incorpo-
rate new data protection techniques into the design tool.

To normalize costs, all capital outlays are depreciated
linearly over three years, and all recurring costs (e.g.,
leasing and support costs) are given at an annual rate.

3.1 Workload characteristics

Data dependability designs are sensitive to characteris-
tics of the storage workload. Many data protection
schemes are sensitive to the average update rate: the
volume of updates over a given interval, divided by the
interval length. Techniques that accumulate modifica-
tions over an interval (e.g., incremental tape backup)
are more sensitive to the workload's unique update
rate, the number of unique data items written over an
interval. Longer accumulation intervals alow more
time for overwrites, so they often have lower unique
update rates. We model this rate by a series of tuples of
the form <interval duration, unique update rate>. Syn-
chronous mirroring solutions are also sensitive to the



short-term peak-to-average burstiness of writes, which
istypically 3-10x the long-term average update rate.

These characteristics can be measured from an existing
system or estimated by a person or a tool from a reper-
toire of well-known workloads. Table 1 quantifies the
relevant workload characteristics for the cello2002
workload [Ji2003], a publicly available trace of atime-
sharing system at HP Labs. The experiments reported
in Section 5 use this workload.

Parameter Description Values

wkldCapacity overall workload 1.36 TB
capacity

avgUpdateRate  average update rate; 799 KiB/s
no rewrite absorption

burstMultiplier short-term burst 10x

update-rate multiplier

<1 min, 727KiB/s>
<5 min, 689KiB/s>

<1 hr, 581KiB/s>

<4 hr, 458KiB/s>
<12 hr, 350KiB/s>
<24 hr, 317KiB/s>
<48 hr, 317KiB/s>

duration x
uniqueUpdate-
Rate(duration)

uniqueUpdate-
Rate(duration)

unique update rate
over the given
interval, after
absorbing overwrites:
<interval duration,
unique update rate>

uniqueCapacity
(duration)

total size (capacity)
of unique updates
during given duration

Parameter Description Values
maxDisks upper bound on number 256
of disks in each array
diskCapacity capacity per disk drive 73 GB
arrayCacheCapacity array cache capacity 32 GiB
arrayReloadBW maximum disk array 512 MB/s
reload (restore) rate
enclosureCost outlay cost of disk array $189 890/
enclosure enclosure
diskCost outlay cost of disk $3549 / disk
fixedFacilitiesCost fixed outlay cost $60k / year
varFacilitiesCost variable outlay cost $1/GB/ year
depreciationPeriod  amortization period for 3 years

capital outlay costs

Table 1: workload attributes for cello2002.

We ignore workload characteristics that do not affect
the choice of dependability solutions. Existing tools
can address these design issues (e.g., [Anderson2002a)).

3.2 Theprimary copy

We assume one or more disk arrays store the primary
copy of data. We assume that they protect data against
internal single-component failures, and consider only
complete failure of the primary array or site. For sim-
plicity, we consider the case where the entire dataset is
protected in the same way; in practice, different storage
volumes may be protected differently.

Our disk array cost model is based on a diverse set of
disk arrays from Hewlett-Packard, including the
HSG80, EVA and XP1024 arrays. The model captures
details such as the costs of the array chassis/enclosures,
redundant front-end controllers (including caches),
XP1024 back-end controllers, and the disk drives and
the trays in which they are mounted. It estimates the
cost of floor space, power, cooling, and operations by
using a fixed facilities cost plus a variable cost that
scales with capacity. For the experiments reported here
we used RAID-10 configurations of the EVA model
summarized in Table 2.

Table 2: primary copy model parameters for the HP
EVA disk array and facility costs. These EVA costs
were representative at the end of 2003, and may not be
actual list prices. The facility costs are estimates.

The overall annualized outlay cost for disk array storage
and facilities for the primary copy is:
primaryCost =
numDiskArrays x enclosureCost
(+ numDisks x diskCost ]
depreciationPeriod
+varFacilitiesCost xwkldCapacity
+ fixedFacilitiesCost

Parameter Description Values

mirrorCache- size of buffer 100 MiB

Capacity used to smooth
update bursts

intervalasyncs asyncB batch 1 min, 5 min,
duration for 1hr, 4 hr, 12 hr, 24 hr
coalescing writes

linkBW link bandwidth T3: 6MiB/s

OC3: 16MiB/s

linkSmax upper bound on 16
number of links

linkCost annual outlay T3: $60 000 / year

cost for link OC3: $456 000 / year

Table 3: parameters for the remote mirroring model.
Link cost estimates come from [Ji2003].

3.3 Remotemirroring

Remote mirroring protects against loss of the primary
by keeping an isolated copy on one or more disk arrays
at a secondary site. Our remote mirroring model in-
cludes a transfer rate (bytes/s) for the network link con-
necting the mirrors, a link cost ($/year), and an upper
bound on the number of links that may be deployed.
We currently model T3, OC3, OC48, and local and
metropolitan-distance (10km) optical FibreChannel
links. Adding new link typesis as simple as specifying




their parameter values. Table 3 shows the parameters
for the T3 and OC3 link types used in the experiments.

The primary cost factors for remote mirroring systems
are the costs of (1) the storage for the remote copy and
(2) the network links required to match the write rate at
the primary. The costs and penalties depend on the re-
mote mirroring protocol [Ji2003]:

» Synchronous mirroring (sync): the secondary re-
ceives and applies each write before the write com-
pletes at the primary. This scheme requires low la-
tency (e.g., close proximity) between the sites to ob-
tain good performance, but no data is lost if the
primary fails: dataLoss = 0. Links are provisioned to
support the short-term burst write bandwidth:

links_. = (angpdateRgte x burstMultiplier W
min linkBW
» Write-order preserving asynchronous mirroring
(async): this conservative protocol propagates all
primary writes (without coalescing rewrites) to the
secondary as fast as the inter-array interconnect al-
lows. Updates are applied in the same order at both
sites, but updates to the secondary may lag. This
asynchrony can improve the performance of the fore-
ground workload beyond inter-site distances of afew
tens of km, but updates may be lost if the primary
fails. We configure the primary with a write buffer
that is large enough to smooth the observed worst-
case update bursts for the workload. As aresult, the
links are provisioned to support the long-term aver-
age (non-unique) update rate:

avgUpdateRate
linkBW

Iinksmin = (

If the primary fails, then any updates buffered in the
write buffer are lost. The worst-case data loss win-
dow is given by the timeto fill or drain the buffer:

mirrorCacheCapacity x numDiskArrays

dataLoss = — - -
mln(angpdateRate, (numLinks x IlnkBW))

 Batched asynchronous mirroring with write absorp-
tion (asyncB): this protocol reduces bandwidth costs
by coalescing repeated writes to the same data. Up-
dates accumulate into batches at the primary and pe-
riodicaly propagate to the secondary mirror, which
applies each update batch atomically [Patterson2002,
Ji2003]. We declare batch boundaries at fixed time
intervals (intervalasyncs) ranging from one minute to 24
hours. The link bandwidth must support the worst-
case unique update rate over the batch interval:

) uniqgueUpdateRate(interval asyncg)
links . = -
min linkBW

The potential data loss is the size of two delayed
batches (one accumulating and one in transit to the
secondary), so we approximate the worst-case loss
window as twice the batch interval:

dataloss = 2 x intervalasynce

The overall annualized outlay cost for mirroring isjust

the cost of the secondary copy plusthe links:
mirrorCost = secondaryCost + numLinks x linkCost
secondaryCost = primaryCost

Failover to a remote mirror and active standby host re-
sources causes a short, temporary outage (30 seconds in
our model). Reconstructing the entire data set on the
primary from the secondary across the network takes
longer:

recoveryTime = wkldCapacity / (linkBW x numLinks)

The time to restore an array’s worth of data after an
array failureis calculated in a similar fashion, but scaled
by numbDiskArrays.

Both failover and reconstruction aternatives may re-
quire spare storage and/or computational resources at
the secondary site. These may impose additional costs
and/or recovery delays (see Section 3.5).

3.4 Tapebackup

Table 4 summarizes the parameters of the tape backup
model. Backups occur at fixed intervals ranging from 4
to 48 hours. Periodic full backups are optionally inter-
spersed with cumulative incremental backups, which
copy only the data modified since the last full backup.
For example, backup intervals of 24 hours with incre-
mental cycle counts of 6, 13 or 27 days correspond
roughly to weekly, bi-weekly, or monthly full backups
interspersed with daily incremental backups.

<— one backup cycle —

o b

full backup incremental

one backup backup

original copy

updates continue to original
IIIIIIIIIIIIIIIIIII’@
create snapshot .
\atomically p resync (resilver) -

backup copy
snapshot

copy data to tape

Figure 3: the backup cycle.



Parameter Description Values
tapeCapacity tape media capacity (B) SDLT: 320 GB
LTO: 400 GB
tapeDriveBW tape drive rate (B/sec) SDLT: 16 MB/s
LTO: 60 MB/s
tapeDriveSmax upper bound on number 16
of drives in library
tapeSmax upper bound on number 600
of tapes in library
intervaly interval for full backups 4 hr, 12 hr,
24 hr, 48 hr
intervaliner interval for incremental 4 hr, 12 hr,
backups 24 hr, 48 hr
cycleCount number of incrementals 0, 6, 13, 27
between full backups
intervaleycle interval between full = intervalw +
backups cycleCount
xintervaliner
retrievalTimeyay:  time to retrieve tapes 1hr
from offsite vault
tapeLibraryCost  outlay cost for tape $148 342
library, including chassis per library
plus media slots
tapeDriveCost outlay cost for tape SDLT, LTO:
drive $19 554 / drive
tapeCost outlay cost for tape SDLT: $125
media cartridge LTO: $150
fixedVaultCost outlay for tape vault $25 000 / year
vaultPer- outlay cost for a $50 / shipment

ShipmentCost shipment to tape vault

Table 4: summary of tape backup parameters.

Figure 3 illustrates the backup process. It creates a con-
sistent, read-only snapshot of the primary data, and then
uses the snapshot as the source for the backup to tape
(be it full or incremental). Snapshots may be taken us-
ing space-efficient copy-on-write techniques (e.g., [Pat-
terson2002, Leel996]), or by isolating a local mirror
and synchronizing it with the primary copy after the
backup is complete (e.g., [EMC-SRDF, HP-XP-CA]).
The disk space required for a space-efficient incre-
mental snapshot is determined from the average unique
update rate and the backup interval.

Each backup must finish before the next one starts, ef-
fectively defining a backup window equal to the interval
duration. The tool provisions sufficient tape drives to
complete each backup within its window:

tapeDrivesmin = max(tapeDriveSmineul, tapeDriveSmininer)

where the number of drives needed for afull backup is:

wkldCapacity

tapeDrives_. =
p minFull intervalg, x tapeDriveBW

and the number of tape drives required for the largest
incremental backup is:

_| (cycleCount - 1) x uniqueCapacity(intervaliner )

tapeDrives = - -
intervalj,c, x tapeDriveBW

minincr

Tapes are retained for a single full backup cycle, which
includes the last full backup and all subsequent incre-
mental backups. Each full backup is written onto a new
set of tapes rather than the tapes for the previous full
backup, in case it failsto complete. When afull backup
completes, the tapes for the previous full backup are
sent to the vault, and the tapes at the vault are recycled
back to the primary site. The tapes are kept at the pri-
mary until this time in case they are needed quickly to
respond to operator errors (e.g., rm *). Thus the total
number of retained tapesis:

numTapes = 2 x numTapess + numTapeSinc

where the number of tapes required for afull backup is:

numTapes; ;| = [wkldCapacity/tapeCapacitﬂ

The number of tapes required for al incremental back-
ups during a cycle is calculated by summing the number
of tapes used for each one. We assume that each
backup starts on a new tape. Taking into account the
fact that the full backup interval may be larger than the
incremental one, we get:

cycleCount-1_ Ofiner (i)
— sizeOfIncr (i
numTapes;,., = Z ( tapeCapaCityW
i=0
sizeOfIncr (i) = uniqueCapacity(interval )

+i xuniqueCapacity(intervaliner )

Tape libraries hold both tape drives and tape cartridges.
We model HP's series ESL9595 libraries, which can
handle 2 to 16 drives, up to 600 cartridges, and three
different tape cartridge/drive technologies (DLT, SDLT
and LTO). The number of tape libraries needed to
house the tapes and tape drivesis:

numTapeLibraries = maxg numTapeDrives w {numTapes U

tapeDrivesmax tapes max

We assume that tapes are replaced every year, to guard
against media failures. Thus, the minimum annualized
outlay cost for backup is:

numTapeLibraries x tapeLibraryCost +
[numTapeDrives x tapeDriveCost J
depreciationPeriod

+numTapes x tapeCost

backupCost =

To protect against site disasters we add a second tape
library at the reconstruction site. Disaster protection
also incurs an annual cost for tape vaulting:



numTapeDrives x tapeDriveCost
depreciationPeriod
+numTapes x tapeCost
+ fixedVaultCost
+vaultPerShipmentCost x shipmentsPerYear

(numTapeLibraries x tapeLibraryCost +]
=2x

backupCost

3.4.1 Dataloss

A primary array failure may destroy any backup in pro-
gress at the time of the failure, possibly losing all up-
dates from both the current (accumulating) backup in-
terval and the previous (propagating) backup interval.
Assuming full intervals are at least as long as incre-
mental intervals, the worst-case dataloss window isthe
sum of the full and incremental backup intervals:

datalLoss = intervals + intervaliner

In the event of a primary site disaster, the worst-case
data loss occurs if the site is destroyed just before the
new full backup completes and the old full backup is
shipped offsite. In this case, the data at the vault is out-
of-date by twice the full backup cycle duration, plus the
interval for the latest full backup:

dataloss = 2 x intervaleycie + intervali
3.4.2 Recoverytime

Recovery from tape is a three-phase process. first, if the
tapes are stored at an offsite vault, they must be re-
trieved to the reconstruction site; second, the latest full
backup is restored and third, the latest subsequent in-
cremental backup isrestored. Vaults can be close to or
far away from the target reconstruction site. The largest
capacity incremental backup is the last one of the cycle.
We make the following simplifying assumptions: al the
tape drives in each library operate in paralel during
each phase, and data is spread evenly across the tapes
and drives. We ignore tape load time because it is typi-
cally less than 5% of the time to read the tape.

The number of tapes for the last incremental backup is:

_ (cycleCount —1) x uniqueCapacity(interval ner )

numTapesm',MnCIr =

tapeCapacity

For a site disaster, the worst-case recovery time is the
time to retrieve the tapes from the offsite vault, plus the
time to restore the last full and the last incremental
backup of acycle:

recoveryTime = retrievalTime gt +
recoveryTimesy + recoveryTimejncr
tapeCapacity x numTapesg
tapeDriveBW x numTapeDrives
recoveryTime, _ = tapeCapacity X numTapesma?dncr
tapeDriveBW x numTapeDrives

recoveryTime, , =

incr

|

Recovery after an array failure is analogous; the main
differences are that the tapes are not yet offsite (e.g.,
Zero retrievalTimevaur), aNd the tape counts for the full and
last incremental backups are scaled by numDiskArrays.

3.5 Spareresources

After a failure, recovery can begin immediately if hot
standby resources are available. Otherwise, resources
must be found or acquired, drained if they are in use for
another purpose, and (re)configured or (re)initialized if
necessary. Solutions may minimize recovery time by
keeping spare equipment in various states of readiness.

Failover or reconstruction at the secondary site requires
computational resources at the target site. Since our
focus is on storage system design, our tool always pro-
visions hot spare server(s) at the target site if it selects
one of these recovery alternatives. For simplicity we set
the cost equal to the outlay cost of the primary disk ar-
rays for the workload, following the rule of thumb that
storage and servers each account for one third of the
cost of atypical server site.

For reconstruction aternatives, we consider only recon-
struction at the secondary site or at the primary over the
same interconnect provisioned for backup or mirroring.
Reconstruction at a third site would require additional,
independently provisioned network links.

Reconstruction requires one or more disk arrays to
serve as target for the restoration. We model a spec-
trum of spare resource options by the outlay cost of
maintaining them and the time to provision and config-
ure them. Table 5 gives the model parameters, and Fig-
ure 4 illustrates the aternatives. In all cases, we assume
that any spare resources consumed by recovery are
eventually replaced with new equipment, and factor the
replacement equipment cost out of the equations.

Parameter Description Values

spareCost outlay cost of spare disk

array storage and facilities

=primaryCost

spareDiscount  discount factor for shared 0.2
resources (fraction in [0,1])

torder time to order, deliver, and 24 hr
set up new resources

tidentify time to identify that 60 sec
resources are available

teonfigure time to configure resources 10 hr

tscrub time to scrub resources 5 hr

thegotiate time to negotiate the release 4 hr

of shared resources

Table 5: model parameters for spare resources.
Spare costs include the cost of the entire target site for
site disasters; for array failures, costs include only the
array and related capacity-dependent facilities costs.




None
(not present)

Occupied
(wrong config)

drain: tnegotiate_'— tscrub purchase: tDrder

Unconfigured
(empty)

Occupied
(correct config)

Hot
(ready to use)

identify and claim: t.

Active
(in use)

Figure 4: spare resource alternatives, and their
preparation times. The time to provision spare
resources is calculated by summing the times along the
path from the chosen alternative to the active state.

configure: drain:

tcormgure tnegot\ate"' tscrub

identify

One way of gaining access to spare resources is to rent
access to a shared resource pool. Several companies
offer such a service, which can be much cheaper than a
dedicated backup site. We model the cost of shared
resources by a fixed discount factor (a fraction in [O,
1]). However, the lower cost comes at arisk:

“ During the days following September 11, some

disaster recovery vendors found they were unable to

accommodate all of their affected clients, with the

result that several institutions found themselves without

the anticipated backup facilities.” [SEC2002]

4  Automating dependability design

Our automated design tool, or solver, uses the data pro-
tection and recovery models described in the previous
section to determine the most cost-effective solution for
a given set of workload inputs, component parameters,
assumed rates of primary array failures and primary site
disasters, and failure penalty rates. Outputs from the
solver include the choice of design alternative, the
worst-case data loss window and recovery time (RPO
and RTO), and the outlays and expected penalties. The
solution also specifies settings for configuration pa-
rameters such as the number of tape drives, backup in-
tervals, update batch interval, and other model parame-
ters discussed in Section 3.

4.1 The optimization problem

We based our solver on mathematical programming
primarily because of its expressive power and efficiency
in traversing a large and complex search space. The
technique has the added advantage that it arrives at a
mathematically optimal solution; however, because the
faillure penalty rates are merely estimates, this fact is
less important. Because our emphasis is on storage

system design and not optimization technology, we used
an off-the-shelf optimization tool, rather than develop
our own. We cast the problem as a mixed-integer opti-
mization with constraints. Our prototype is written in
the GAMS language for the CPLEX solver
[GAMS1998, ILOG2002].

The solver's objective is to minimize overall business
cost, defined as outlays plus failure penalties. Within
the solver, a set of binary decision variables represents
the data protection aternatives and their base configura-
tions. Each binary variable corresponds to a single pro-
tection alternative (e.g., mirroring or backup) and a spe-
cific set of discrete configuration parameters (e.g.,
“batched asynchronous mirroring with a write absorp-
tion interval of one minute”). A second set of binary
decision variables represents the alternatives for recov-
ery and spare resources (e.g., “use failover”). Integer
decision variables represent the number of bandwidth
devices (e.g., network links or tape drives) for each
protection alternative.

The solver uses the following optimization constraints:
« Exactly one protection alternative must be chosen.
» Exactly one recovery alternative must be chosen.

e The number of bandwidth devices for a data protec-
tion alternative is either zero (if that aternative has
not been chosen), or it is within the range specified
by the upper and lower bounds calculated or speci-
fied for the alternative (e.g., [linksmin, linkSmax])-

» The aggregate device bandwidth may not exceed the
aggregate reload rate for the primary disk array(s).

4.2 Optimizing the optimization

The multitude of parameter combinations leads to a
complex search space. We applied severa techniques
to make the solver more efficient. With these improve-
ments, the optimization runsin just afew seconds.

First, we reduced the search space considerably by
quantizing the values of certain continuous parameters,
such as backup intervals and the batch intervals for the
batched asynchronous remote-mirroring scheme.

Second, we divided several continuous, non-linear func-
tions to a set of piecewise-linear segments. When for-
mulated in the straightforward fashion described above,
the recovery time models have terms that depend in-
versely on the number of links or tape drives y. The
resulting optimization problem becomes non-linear.
Although solvers exist for certain classes of non-linear
optimization problems, they may take an unacceptably
long time to find a solution, or fail to find one at all.
Linear solvers exploit well-known theoretical results
about the search space structure to solve significantly



larger problems in seconds. To linearize our problem,
we defined new variables z standing for the inverse of
the problematic y terms. We introduced new constraints
on the variables so that the resulting optimization prob-
lem is equivalent to the original one. Since the trans-
formation is convex, we used the methods described in
[Williams1999], which linearize convex constraints in
continuous variables. |If the variables had been continu-
ous, this would have been an approximation, but be-
cause our decision variables are integers, we can prove
that the result is exact.

5 Experimental results

We conducted a series of experiments to explore the
behavior of our automated dependability design tool:

1. To validate the solver’s recovery time, data loss and
cost calculations, we evaluated these quantities for a
fixed set of designs.

2. To explore the solver’s design choices, we supplied a
set of pendty inputs corresponding to specific
industry segments, and examined the output designs.

3. To explore the sensitivity of the solver's design
choices to its inputs, we varied the penalty rates
across awide range, and examined the outputs.

Although workload parameters do affect the configura-
tion parameters for each solution, our experience has
shown that the penalty rates dominate the design
choices. We use a single workload for al experiments
(cello2002, described in Table 1). All experiments as-
sume a failure rate of one primary site disaster per year.
The effect of changing the failure frequency is equiva
lent to scaling the penalty rate values by an appropriate
multiplier; the experiments explore in detail how the
design choices change as these penalty rates vary.

5.1 Validation of fixed designs

To validate our intuitions about the recovery time, data
loss and cost behaviors of candidate designs, we ran the
solver in evaluation mode. In this mode, the solver’'s
decision variables are fixed to a particular design choice
and configuration parameter values. We present a rep-
resentative sampling of the results here, al of which
were set up to reconstruct the data to a hot spare at the
primary site in the event of a site disaster.

Figure 5 presents a set of results for tape backup. The
graph shows recovery time as a function of the number
of tape drives for two different tape drive technologies
(SDLT and LTO). We considered two backup sched-
ules: one using just full backups with a four-hour
backup interval, and one using weekly full backups plus
daily incremental ones, both with 24-hour intervals.

The graphs for the full-only policy begin at two drives
(for LTO) and seven drives (for SDLT) because that is
the minimum number of tape drives required to back up
the entire data set in the four-hour window. For LTO,
the curves stop at eight drives because the aggregate
tape drive bandwidth beyond this point is larger than the
array reload rate, so additional drives do not help.

As expected, the slower SDLT technology results in
longer recovery times. For both technologies, recovery
is faster with the full-only schedule: it restores only the
last full backup, while the weekly full/daily incremental
schedule must also apply the latest incremental backup.
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Figure 5: tape backup recovery time as a function of
tape drive/cartridge technology and backup policy.

The graph confirms the importance of provisioning to
minimize recovery time in this scenario: for smaller
numbers of tape drives, the outage penalty reduction
from adding a tape drive exceeds the drive’s purchase
price. The LTO drives are particularly cost-effective.

Protection technique Recent data loss

Synchronous mirroring 0
Asynchronous mirroring 2.2 min
Asynchronous batch mirroring 2.0 min
(interval = 1 min)

Asynchronous batch mirroring 2.0 hours
(interval = 1 hour)

Backup (full-only; interval = 4 hours) 12 hours
Backup (weekly full + daily incremental; 360 hours
both intervals = 24 hours)

Table 6: recent data loss for different designs.

Table 6 summarizes the worst-case data loss for severd
design alternatives. Synchronous mirroring experiences
zero dataloss. For non-coal escing asynchronous mirror-
ing, data loss corresponds to the time for the workload
to fill the 100 MB mirroring write cache. Data loss for
the asynchronous batch variants is twice the batch dura-
tion. The worst-case data loss for tape backup and



vaulting is twice the backup cycle, plus the backup in-
terval for the latest full backup. The large values show
the down-side of keeping tapes on-site rather than send-
ing them to the vault in the case of site failure.

Figure 6 shows how outlay and expected penalty costs
combine to yield the total cost of a candidate solution
across a range of configuration parameters. The graph
shows outlay and penalty costs for remote asynchronous
mirroring with recovery by reconstruction at the pri-
mary. This experiment assumes the penalty rate inputs
for both data loss and outages are $20 000 per hour.

Outlay costs increase linearly as the number of config-
ured T3 network links increases. The expected data
loss for each failure is constant with this solution, but
adding more links speeds recovery by increasing the
bandwidth from the mirror to the primary. The graph
shows a “sweet-spot” that minimizes the overall cost at
five T3 links: with fewer links, slower recovery drives
up the outage penalties, while adding more links yields
diminishing benefit and causes link outlays to dominate.
We ran this experiment in evaluation mode for illustra-
tive purposes; in design mode the goal of the solver isto
find such sweet spots automatically.
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Figure 6: outlay and penalty costs for asynchronous
mirroring as a function of link configuration.

5.2 Automated design choices

For the second set of experiments we ran the tool in
design mode to configure a data protection system for
one primary site disaster per year. These experiments
explore the design choices for penaty rates that are
typical of specific industry segments [CNT2003b].
Table 7 summarizes the data loss and outage penalty
inputs for each industry segment, together with the cho-
sen design and its cost. Figure 7 illustrates the cost
breakdown for each solution.

Data loss
penalty

Outage
penalty

Design Overall
chosen cost

Type

Student accounts: Storage of data owned by students is
tolerant of data loss and outages.

$500/hr  $500/hr  backup with $301k
12-hr interval

+ No spares

Company documents: Documents such as papers,
presentations, and design documents are tolerant to small
outages and loss of recent writes.

$500k / hr  $500/ hr  async mirror+ $426k
reconstruction

+ Nno spares

Web server for an online retailer: Outages are expensive,
because if the web server goes down, orders stop. Data loss
is tolerable, because data can be replaced from other sources.

$500/ hr  $500k / hr asyncB mirror $506k

+ failover

Consumer banking: Consumer banking services are tolerant
of modest outages (since account holders are unlikely to
switch banks), but not data loss.

$50M / hr  $50k / hr  sync mirror + $562k

failover

Central bank: Central banks are required by regulations to
have zero data loss and small outage windows.

$50M /hr  $5M/hr  sync mirror + $603k

failover

Table 7: summary of industry segment examples.

Overall costs
$301k $426k $506k $562k $603k
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Industry segment
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OBackup Outlays
O Data Unavailability Penalties

@ Mirroring Outlays
O Spare Resources Outlays
G Data Loss Penalties

Figure 7: solution costs by industry segment.

For lower penalty rates (student accounts and company
documents), the tool chooses designs that employ re-
construction with no spare resources: the outlay costs
for better protection exceed the failure penaties. It
switches to asynchronous mirroring and failover at
moderate penalty rates (web server), because the outlays
for this stronger solution are less than the penalties ex-
pected with a cheaper solution. At the highest penalty
rates (consumer banking and central bank), the tool
selects an aggressive synchronous mirroring + failover




solution to achieve zero data loss and minimal outage
time. Even so, the mission-critical central bank incurs a
non-trivial outage penalty for the 30-second failover
time.

Interestingly, the designer always chooses a solution
whose expected penaties are a modest share of the
overall cost (at most 17%).

5.3 Solver design choice sensitivity

Our final set of experiments maps the solution space for
data protection and recovery across a range of failure
penalty rates. We performed over 500 separate experi-
ments, varying the data loss and data outage penalty
rates independently over a wide range (10":10Y).
Exploring this space by hand using existing tools would
be unthinkable. Our intent is to give insight into the
richness of the design space, to show the feasibility of
navigating this design space automatically, and to pro-
vide further evidence that the design tool is correct and
efficient.
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Figure 8: solution types picked by the solver for the
space of penalty rates. The dotted line separates
failover and reconstruction solutions.

Figure 8 shows the design alternatives selected for each
input scenario. As expected, the tool chooses the
cheapest solution—tape backup—for scenarios tolerant
of outages and data loss (e.g., student accounts), but
incorporates hot spare resources and more aggressive
backup intervals as the penalties for outage and data
loss increase. The tool chooses asynchronous batch
mirroring for the scenarios with more severe outage
penalties when the cost to lose recent writes is accept-
able (e.g., web server). At low data outage penalty
rates, as the penalty rate for data loss continues to in-

crease (e.g., company documents), the solutions switch
to order-preserving asynchronous mirroring to reduce
the data loss beyond what tape backup can offer. Asthe
penalty rates for data loss increase further (e.g., con-
sumer banking and central bank), the solutions shift to
synchronous mirroring.

When outage penalties are low, the mirroring solutions
use reconstruction rather than failover to avoid incur-
ring the additional outlays for standby compute re-
sources. As outage pendlties increase, the solutions
incorporate hot spare standby resources and failover to
minimize downtime.

To clarify the reasoning behind the solver’s decisions,
we now look at its calculations in greater detail. Figure
9 and Figure 10 show the recovery time and recent data
loss, respectively, for the chosen solutions.
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Figure 9: recovery time as a function of penalty
rates. Each tinted band corresponds to a 20—hour
increase in recovery time. The dotted line separates
failover and reconstruction solutions.

For the lowest data loss and outage penalty rates, the
solver chooses tape backup with no spare resources,
full-only backups and twelve-hour intervals, resulting in
a recovery time of 42 hours and data loss of 36 hours.
As the data outage penalty increases, the backup-based
solutions shift to using occupied spare resources and
four-hour backup intervals, decreasing recovery time to
14 hours. The reductions in backup intervals also re-
duce the data loss window to 12 hours. Adding hot
standby resources further reduces recovery time to five
hours. The shift to asynchronous batch mirroring +
failover at high outage penalty rates dramatically re-
duces the recovery time to 30 seconds and the data loss
window to two minutes.
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Figure 10: data loss time as a function of penalty
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asynchronous and synchronous mirroring.
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Figure 11: total (penalty+outlay) costs (k$) for the
space of penalty rates.

For asynchronous mirroring with low outage penalties,
the tool selects reconstruction rather than failover; it
tolerates 100+ hour outage times, rather than incur the
expense of standby compute resources for failover. As
the loss penalty rate increases, the shift to synchronous
mirroring + reconstruction reduces data loss to zero,
with the added benefit of decreasing the recovery time
to about 70 hours. (This reduction comes from the ad-
ditional networking links synchronous mirroring re-

quires to support update bursts) As the outage penalty
rates increase, the synchronous mirroring solutions shift
to failover, resulting in recovery times of 30 seconds.

Figure 11 shows the overall costs associated with the
solver's choices. In al cases the tool balances outlays
with penalties, increasing system cost only as needed to
avoid larger penalties. One notable crossover occurs as
more aggressive spare resource options are purchased
(from none to occupied to hot spare to failover), to re-
duce the outage penalties. Another interesting cross-
over occurs as the choice of protection technique shifts
(from more aggressive backup policies to asynchronous
mirroring to synchronous mirroring) to reduce data loss
penalties.

5.4 Discussion

Asynchronous mirroring performed surprisingly well in
this study. We were initially skeptical, but found that
the additional high costs of high-speed, long distance
links largely relegated synchronous mirroring to situa-
tions where the small data loss that could result with
asynchronous mirroring is incredibly expensive — as it
is, for example, in the central bank case, where a single
transfer can involve millions or even hillions of dollars.

We noted that the solver generally chose to use full-
only backups, rather than interspersing incremental
backups between full ones. Even though the tape costs
for incremental backups are generaly lower, this outlay
savings is outweighed by the increased recovery time
penalties that result from the need to restore both the
latest full and latest incremental backups.

We observed firsthand that even people who should
know better can make mistakes when faced with this
rich design space. For example, we were experimenting
with an early version of the design tool, exploring the
effects of increasing the outage penalty rate for a mir-
roring + reconstruction solution to protect against array
failure, when we noticed that the tool chose to configure
a local tape library at the primary site. Why? Because
we had constrained mirroring in that version to provi-
sion only enough networks links to absorb the update
traffic for asynchronous mirroring. Unfortunately, the
time to reconstruct the primary over these economical,
slow links was so large that it became cost-effective to
restore from a local tape library, rather than trickle the
data back from the remote mirror. The original design
was wrong: the solution should have been designed to
handle the recovery case, not just the mirror update
case. We should not have made this mistake, but we
did. The automated dependability design tool can help
to avoid this type of mistake.



6 Rdated work

We found very few other systems and tools that auto-
mate the design of dependability solutions. Most of the
tools we found tackle only pieces of the problem, and
rely on people to do the rest.

Storage vendors, such as IBM, Sun, HP, Computer As-
sociates and Exabyte, provide web-based and
downloadable tools to help with low-level backup pro-
visioning questions, and to estimate total cost of owner-
ship (TCO) and return on IT investments (ROI). For
example, Sun’s backup calculator [Sun2004] computes
the number of libraries, tape drives and tape cartridges
required to support a backup schedule whose parame-
ters are supplied as inputs. This type of tool provides
no indication of the dependability of the resulting
backup system, nor any indication of the financial rami-
fications of its use.

ROl and TCO calculators (e.g., [EMC2004]) provide
estimates for the total cost of ownership for aternative
storage systems, given inputs for storage capacity, utili-
zation and availability. These tools incorporate outlay
costs for storage and server hardware and administrator
salaries, and penalty costs for outages (but not data
loss). Their overall system costs are based on input
values for system availability, rather than calculated
values for the dependability of a storage system con-
figuration.

These tools provide simplistic evaluations of low-level
configuration parameters or overall system costs, re-
spectively. By changing input parameters, one can per-
form arudimentary sensitivity analysis. Neither class of
tools can propose a storage system configuration to
meet user-specified dependability goals.

Like many other researchers in the dependability
community, we build models of the systems we are try-
ing to design. Our work emphasizes embedding those
models in an automated design system. Most other
work, however, focuses on models and modeling tool-
kits that allow designers to interactively try “what-if”
analyses by hand (eg., [Deavours2002, Haver-
kort2001]).

System designers and analysts make the design choices
we describe here every day, but the focus in their litera-
ture is on operational issues, such as determining
backup policies and setting related configuration pa-
rameters (e.g., [Cougias2003, Marcus2003, Pre-
ston1998, daSilval993)).

The mgjority of “data protection” work is focused on
developing new protection mechanisms. Only rarely do
their designers consider the difficulties of deciding

when to use them, and how they combine with existing
techniques [Wylie2001].

Researchers have developed automated tools to design
systems to meet peformance goas (eg.,
[Anderson2002a,  Anderson2002b,  Alvarez2001,
Borowsky1997]), but they considered only online re-
dundancy techniques (mirroring and RAID 5). Our
dependability design work builds on the experience
gained there.

We also leverage existing work that deals with specify-
ing and evaluating dependability requirements. Exam-
ples include a declarative method of specifying data
performability and reliability reguirements
[Keeton2002, Wilkes2001], and ways to measure the
availability of RAID systems[Brown2000].

Several recent papers from CNT (http://www.cnt.com)
are particularly helpful in providing an overview of the
growing regulatory and legal pressures on disaster tol-
erance in the financia industry. They provide some
information about outage penalties, but little on the cost
of lost data.

7 Conclusions

Data must be dependable: the cost of losing it, or even
of losing access to it, is simply too high. The complex-
ity of the systems to achieve this goal, and the range of
failure cases they must tolerate, is increasing rapidly.
What's more, human designers don’t always make the
right choices, or understand the ramifications of the
choices they do make.

The solution is to automate the design of data depend-
ability solutions. Our design tool provides numerous
benefits over the manua approach employed today. By
treating the question as an optimization problem, it can
search the entire design space and find the best alterna-
tive for a set of business requirement inputs. Since the
process is automated, it is easy (and fast) to evaluate a
broad range of inputs to support “what if” analyses.
Furthermore, the tool doesn't just provide “black box”
answers, but can provide insights into the choices it
makes, so that customers can understand and interpret
its decisions.

Opportunities exist to extend this work in several differ-
ent directions: improving the quality of the data protec-
tion technique models; enhancing the financial exposure
model; extending the scope of the solutions and failures
imposed; making it easier to add new data protection
and recovery techniques to an existing solver; and gen-
erating easy-to-use visual interfaces to the tool itself.
We hope to explore many of these avenues.



More details can be found in an extended version of this
paper [Keeton2004].
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