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Losing information when a storage device or data center fails can bring a company to its knees—or put it out of 
business altogether.  Such catastrophic outcomes can readily be prevented with today’s storage technology, albeit 
with some difficulty: the design space of solutions is surprisingly large, the configuration choices are myriad, and the 
alternatives interact in complicated ways.  Thus, solutions are often over- or under-engineered, and administrators 
may not understand the degree of dependability they provide.   

Our solution is a tool that automates the design of disaster-tolerant solutions.  Driven by financial objectives and 
detailed models of the behaviors and costs of the most common solutions (tape backup, remote mirroring, site 
failover, and site reconstruction), it appropriately selects designs that meet its objectives under specified disaster 
scenarios.  As a result, designing for disasters no longer needs to be a hit-or-miss affair.   

 

1 Motivation 
“The cascading blackout that swept through cities from 
Detroit and Cleveland to Ottawa and New York City 
was a harsh reminder to enterprises—to companies of 
all sizes, in fact—that disaster-prevention and business-
continuity plans should be at the top of the priority 
list.”  – Techweb, August 22, 2003 

Hardware breaks. Software has defects. Viruses propa-
gate. Buildings catch fire.  Power fails.  People make 
mistakes.  Although we prefer that these events never 
occur, it is only prudent to defend against them.  The 
cost of data unavailability can be large: a quarter of the 
respondents to a 2001 survey [EagleRock2001] esti-
mated their outage costs as more than $250 000/hour, 
and 8% estimated them as more than $1M/hour.  The 
price of data loss is even higher.  Recent high-profile 
disasters have raised awareness of the need to plan for 
recovery or continuity: since data is a critical asset, the 
key challenge is to construct dependable storage sys-
tems that protect data and the ability to access it. 

Figure 1 illustrates the most commonly-used alterna-
tives to protect and recover stored data.  In all cases, a 
primary copy of the data is protected by making one or 
more secondary copies, which are isolated from failures 
that may affect the primary copy.  Recovery involves 
either site failover to a secondary mirror, or data recon-
struction at the primary site or a secondary site.   

Each technique provides some of the necessary protec-
tion; combined, they create a large and complex design 
space.  For example, a popular combination combines 
internally-redundant disk arrays (RAID), remote mirror-
ing, snapshot and backup to tape: RAID protects against 
disk failures, mirroring guards against site failures, 
snapshots address user errors, and tape backup protects 
against software errors and provides archival storage.  

These building blocks for data protection are proven 
technologies, and they continue to be improved.  Even 
so, it is difficult to combine and configure them to cre-
ate well-engineered data dependability solutions.  No 
solution can ever provide an absolute guarantee of 
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safety, so designers must trade off the desire for rapid 
recovery and minimum data loss against each solution’s 
price, operational costs, and performance impact across 
a range of configuration choices.  Over-engineered solu-
tions may incur excessive costs to defend against negli-
gible risks. Under-engineered solutions have their own 
costs in a disaster: crippling outages, loss of critical 
data, or unacceptably degraded service.  Faced with 
these choices, designers often resort to ad hoc attempts 
to strike the right balance, guided by rules of thumb and 
their own limited (or even irrelevant) experience. 

The key contribution of this paper is to show how to 
design data dependability solutions automatically, given 
specifications of workload properties, system compo-
nents, data value, and expected rates of primary copy 
failures.  We describe and evaluate a design tool that 
combines quantitative models of the standard protection 
and recovery techniques (depicted in Figure 1) with an 
off-the-shelf optimizing solver.  The output of the tool 
is a cost-effective data dependability design. 

The paper makes three further contributions, each of 
which is essential to automating dependability design: 

1. Dependability metrics.  We describe metrics to spec-
ify data dependability requirements, covering both 
data reliability (i.e., the absence of data loss or cor-
ruption) and data availability (i.e., the ability to ac-
cess data when desired).  These metrics characterize 
the severity of a failure in terms of the financial cost 
of the resulting data loss and service outages.   

2. Models of data protection alternatives.  We develop 
quantitative models of the dependability properties 
and costs of common disaster tolerance solutions.  

3. Optimization framework. We show how to formulate 
data dependability design as an efficient optimization 
problem to balance cost and risk exposure—precisely 
the kind of task that automation can aid.  The optimi-
zation objective is to minimize the sum of outlays 
and the financial penalties for failures.   
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Figure 2: structure of the dependability design tool.  
Section numbers on the graphic indicate the sections 
that discuss each topic in the text.  

2 Overview 
To automate the design process, we must first capture 
the design objectives in a quantitative way.  The formu-
lation must be solution-independent, which means it 
specifies only the goals, and not the solutions. “Backup 
my data once a day” describes an implementation, 
rather than the underlying objective.  A better choice is 
“lose no more than 24 hours’ updates.”  Better still is 
“minimize my total costs if each hour of lost updates 
costs me $500,000.” 

In a business context, most choices come down to 
money.  A key premise of our work is that effective 
dependability design must meet concrete objectives 
specified in financial terms.  This section explains our 
financial framework for specifying dependability goals 
and configuring cost-effective solutions for data protec-
tion and recovery.   

2.1 Failures and recovery 
Data dependability solutions protect against several 
threat categories:  

•  Data loss: threats that cause data to be lost, including 
failures of the storage devices themselves, or an en-
compassing failure, such as a building fire.  Recent 
updates may be more vulnerable to loss because they 
may not have propagated to fully protected storage 
(e.g., they might reside in a volatile OS buffer, or 
might not have propagated to a remote site yet). 

•  Data corruption: threats that change data into a form 
that cannot be used.  Corruption may result from user 
error, defective software or firmware, and attacks. 

•  Data inaccessibility: threats that do not damage data, 
but prevent access to it, such as failure of a network 
link, switch, or disk array controller. 

To limit the scope of this study, we focus on data loss 
events for the primary copy, such as a primary site dis-
aster or failure of a primary disk array.  Data corruption 
and inaccessibility threats can be mapped into loss of 
the primary copy. We leave a treatment of secondary 
failures to future work.   

After a failure, normal operation resumes when either of 
two states is achieved: 

1. Failover: the secondary is usable as the primary. 

2. Reconstruction: the primary is restored and usable 
again, either at its original site or at another site out-
side of the scope of the failure. 

Our tool considers only the minimum repairs needed to 
restore service.  In practice, repair is not fully complete 
until the original level of redundancy is restored, so the 
secondary can tolerate another failure.  In the case of 



 

failover, typically a planned fail-back operation restores 
each site or copy to its pre-failure role.  

2.2 Recovery time and recovery points 
Business continuity practitioners currently use two met-
rics to capture data dependability objectives:  

1. Recovery time. The Recovery Time Objective (RTO) 
specifies the maximum allowable delay until 
application service is restored after a failure event.  
The RTO can range from seconds to days.  

2. Data loss. Recovery may require reverting to some 
consistent point prior to the failure, discarding up-
dates issued after that recovery point. The Recovery 
Point Objective (RPO) gives the maximum allowable 
time window for which recent updates may be lost.  
The RPO can range from zero (no loss is tolerable) to 
days or weeks.   

Discussions with storage designers suggest that the de-
pendability objectives for the repair step are to restore 
the original level of redundancy “soon.” How soon and 
at what expense are less well-defined: best-effort solu-
tions are generally used.   

2.3 Penalty rates  
Choosing the right RTO and RPO requires 
understanding (1) the business costs of service outages 
and data loss and (2) the recovery behavior and cost of 
all available solutions to achieve each RTO and RPO.  
This process is a complex optimization problem in a 
large design space, and is hard to do well by hand. 

Instead of fixed RTO and RPO targets, our approach 
quantifies the financial impacts of outages and data loss 
as penalty rates, expressed as $/hour.  The loss penalty 
rate specifies the cost per hour of lost updates.  The 
outage penalty rate specifies the cost per hour of ser-
vice interruption.  Our design tool uses these rates to 
balance expected failure impacts against outlays to ar-
rive at a cost-effective solution.  The tool identifies the 
RTO and RPO as a side effect of this design process. 

Determining penalty rates is still not easy, but it can be 
done using techniques such as Business Impact Analysis 
(BIA), and tools (e.g., http://www.availability.com) that 
help managers quantify their exposure to outages and 
data loss.  The insurance industry regularly assesses 
threats and exposures in many other domains of equiva-
lent complexity.  Assessing these penalty rates is a 
strictly simpler and less error-prone task than determin-
ing the right RTO and RPO values. 

Even though site and regional failures are extremely 
rare in North America, government regulation or liabil-
ity obligations [CNT2003] may mandate specific 

maximum RPO and RTO values.  More stringent re-
quirements are particularly likely in the financial indus-
try [SEC2002].  Mandated values can be specified as 
bounds for the RPO and RTO results obtained from our 
approach, although the bounds are rarely tight. 

2.4 Putting it all together 
Our design tool works as follows.  First, it uses the 
models described in Section 3 to explore the solution 
space—including the ranges of configuration parameter 
settings for each alternative—and to predict the de-
ployment outlays, worst-case recovery time, and worst-
case data loss for each candidate solution.  The tool 
then selects the best design alternative (e.g., synchro-
nous mirroring), together with the best values for its 
configuration parameters (e.g., two wide area links) and 
the best recovery alternative (e.g., failover to the secon-
dary site).  This optimal configuration balances the sys-
tem cost (outlays) with the worst-case financial costs 
(penalties) for expected primary failure events.    

3 Modeling protection techniques 
This section outlines the models and parameters for the 
data protection and recovery alternatives considered in 
this paper.  Each model defines a set of input parame-
ters (e.g., component outlays and performance attrib-
utes) and their values, a set of configuration parameters 
(e.g., number of tape drives or network links to a remote 
mirror) and their ranges of valid settings, and equations 
relating the parameters to the measures of interest: 
worst-case data loss and recovery time.  It is trivial to 
model different parameter settings for system compo-
nents, and it is straightforward in principle to incorpo-
rate new data protection techniques into the design tool.   

To normalize costs, all capital outlays are depreciated 
linearly over three years, and all recurring costs (e.g., 
leasing and support costs) are given at an annual rate.  

3.1 Workload characteristics 
Data dependability designs are sensitive to characteris-
tics of the storage workload.  Many data protection 
schemes are sensitive to the average update rate: the 
volume of updates over a given interval, divided by the 
interval length.  Techniques that accumulate modifica-
tions over an interval (e.g., incremental tape backup) 
are more sensitive to the workload’s unique update 
rate, the number of unique data items written over an 
interval.  Longer accumulation intervals allow more 
time for overwrites, so they often have lower unique 
update rates.  We model this rate by a series of tuples of 
the form <interval duration, unique update rate>.  Syn-
chronous mirroring solutions are also sensitive to the 



 

short-term peak-to-average burstiness of writes, which 
is typically 3–10× the long-term average update rate. 

These characteristics can be measured from an existing 
system or estimated by a person or a tool from a reper-
toire of well-known workloads.  Table 1 quantifies the 
relevant workload characteristics for the cello2002 
workload [Ji2003], a publicly available trace of a time-
sharing system at HP Labs.  The experiments reported 
in Section 5 use this workload.   
 
Parameter Description Values 

wkldCapacity overall workload 
capacity 

1.36 TB 

avgUpdateRate average update rate; 
no rewrite absorption 

799 KiB/s 

burstMultiplier short-term burst 
update-rate multiplier 

10× 

uniqueUpdate-
Rate(duration) 

unique update rate 
over the given  
interval, after 
absorbing overwrites: 
<interval duration,  
unique update rate> 

<1 min, 727KiB/s> 
<5 min, 689KiB/s> 

<1 hr, 581KiB/s> 
<4 hr, 458KiB/s> 

<12 hr, 350KiB/s> 
<24 hr, 317KiB/s> 
<48 hr, 317KiB/s> 

uniqueCapacity 
(duration) 

total size (capacity) 
of unique updates 
during given duration 

duration × 
uniqueUpdate-
Rate(duration) 

Table 1: workload attributes for cello2002. 

We ignore workload characteristics that do not affect 
the choice of dependability solutions.  Existing tools 
can address these design issues (e.g., [Anderson2002a]). 

3.2 The primary copy 
We assume one or more disk arrays store the primary 
copy of data. We assume that they protect data against 
internal single-component failures, and consider only 
complete failure of the primary array or site.  For sim-
plicity, we consider the case where the entire dataset is 
protected in the same way; in practice, different storage 
volumes may be protected differently. 

Our disk array cost model is based on a diverse set of 
disk arrays from Hewlett-Packard, including the 
HSG80, EVA and XP1024 arrays.  The model captures 
details such as the costs of the array chassis/enclosures, 
redundant front-end controllers (including caches), 
XP1024 back-end controllers, and the disk drives and 
the trays in which they are mounted.  It estimates the 
cost of floor space, power, cooling, and operations by 
using a fixed facilities cost plus a variable cost that 
scales with capacity.  For the experiments reported here 
we used RAID-10 configurations of the EVA model 
summarized in Table 2. 

 
 

Parameter Description Values 

maxDisks upper bound on number 
of disks in each array 

256 

diskCapacity capacity per disk drive 73 GB 

arrayCacheCapacity array cache capacity 32 GiB 

arrayReloadBW maximum disk array 
reload (restore) rate 

512 MB/s 

enclosureCost outlay cost of disk array 
enclosure  

$189 890 / 
enclosure 

diskCost outlay cost of disk  $3549 / disk 

fixedFacilitiesCost fixed outlay cost  $60k / year 

varFacilitiesCost variable outlay cost $1 / GB / year 

depreciationPeriod amortization period for 
capital outlay costs  

3 years 

Table 2:  primary copy model parameters for the HP 
EVA disk array and facility costs.  These EVA costs 
were representative at the end of 2003, and may not be 
actual list prices.  The facility costs are estimates. 

The overall annualized outlay cost for disk array storage 
and facilities for the primary copy is: 

itiesCostfixedFacil

tywkldCapaciiesCostvarFacilit

onPerioddepreciati

diskCostnumDisks

ostenclosureCaysnumDiskArr

tprimaryCos

+
×+





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


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×
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Parameter Description Values 

mirrorCache-
Capacity 

size of buffer 
used to smooth 
update bursts 

100 MiB 

intervalasyncB asyncB batch 
duration for 
coalescing writes 

1 min, 5 min, 
1 hr, 4 hr, 12 hr, 24 hr 

linkBW link bandwidth T3:  6MiB/s 
OC3: 16MiB/s 

linksmax upper bound on 
number of links 

16 

linkCost annual outlay 
cost for link 

T3: $60 000 / year 
OC3: $456 000 / year 

Table 3: parameters for the remote mirroring model.  
Link cost estimates come from [Ji2003].  

3.3 Remote mirroring 
Remote mirroring protects against loss of the primary 
by keeping an isolated copy on one or more disk arrays 
at a secondary site.  Our remote mirroring model in-
cludes a transfer rate (bytes/s) for the network link con-
necting the mirrors, a link cost ($/year), and an upper 
bound on the number of links that may be deployed.  
We currently model T3, OC3, OC48, and local and 
metropolitan-distance (10km) optical FibreChannel 
links.  Adding new link types is as simple as specifying 



 

their parameter values.  Table 3 shows the parameters 
for the T3 and OC3 link types used in the experiments.   

The primary cost factors for remote mirroring systems 
are the costs of (1) the storage for the remote copy and 
(2) the network links required to match the write rate at 
the primary. The costs and penalties depend on the re-
mote mirroring protocol [Ji2003]:  

•  Synchronous mirroring (sync): the secondary re-
ceives and applies each write before the write com-
pletes at the primary.  This scheme requires low la-
tency (e.g., close proximity) between the sites to ob-
tain good performance, but no data is lost if the 
primary fails: dataLoss = 0.  Links are provisioned to 
support the short-term burst write bandwidth:   








 ×=
linkBW

plierburstMultiateavgUpdateR
linksmin  

•  Write-order preserving asynchronous mirroring 
(async): this conservative protocol propagates all 
primary writes (without coalescing rewrites) to the 
secondary as fast as the inter-array interconnect al-
lows.  Updates are applied in the same order at both 
sites, but updates to the secondary may lag. This 
asynchrony can improve the performance of the fore-
ground workload beyond inter-site distances of a few 
tens of km, but updates may be lost if the primary 
fails.  We configure the primary with a write buffer 
that is large enough to smooth the observed worst-
case update bursts for the workload.  As a result, the 
links are provisioned to support the long-term aver-
age (non-unique) update rate: 








=
linkBW

ateavgUpdateR
linksmin  

If the primary fails, then any updates buffered in the 
write buffer are lost.  The worst-case data loss win-
dow is given by the time to fill or drain the buffer: 

( ))  ( , linkBWnumLinksateavgUpdateRmin
aysnumDiskArreCapacitymirrorCach

dataLoss
×

×=  

•  Batched asynchronous mirroring with write absorp-
tion (asyncB): this protocol reduces bandwidth costs 
by coalescing repeated writes to the same data.  Up-
dates accumulate into batches at the primary and pe-
riodically propagate to the secondary mirror, which 
applies each update batch atomically [Patterson2002, 
Ji2003].  We declare batch boundaries at fixed time 
intervals (intervalasyncB) ranging from one minute to 24 
hours. The link bandwidth must support the worst-
case unique update rate over the batch interval: 
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The potential data loss is the size of two delayed 
batches (one accumulating and one in transit to the 
secondary), so we approximate the worst-case loss 
window as twice the batch interval:  

dataLoss = 2 × intervalasyncB 

The overall annualized outlay cost for mirroring is just 
the cost of the secondary copy plus the links:  

mirrorCost = secondaryCost + numLinks × linkCost 

secondaryCost = primaryCost 

Failover to a remote mirror and active standby host re-
sources causes a short, temporary outage (30 seconds in 
our model).  Reconstructing the entire data set on the 
primary from the secondary across the network takes 
longer:   

recoveryTime = wkldCapacity / (linkBW × numLinks) 

The time to restore an array’s worth of data after an 
array failure is calculated in a similar fashion, but scaled 
by numDiskArrays. 

Both failover and reconstruction alternatives may re-
quire spare storage and/or computational resources at 
the secondary site.  These may impose additional costs 
and/or recovery delays (see Section 3.5).    

3.4 Tape backup 
Table 4 summarizes the parameters of the tape backup 
model.  Backups occur at fixed intervals ranging from 4 
to 48 hours. Periodic full backups are optionally inter-
spersed with cumulative incremental backups, which 
copy only the data modified since the last full backup.  
For example, backup intervals of 24 hours with incre-
mental cycle counts of 6, 13 or 27 days correspond 
roughly to weekly, bi-weekly, or monthly full backups 
interspersed with daily incremental backups. 

one backup cycle

one backup

updates continue to original

original copy

snapshot

copy data to tape

resync (resilver)
backup copy

create snapshot
atomically

full backup incremental
backup

 

Figure 3: the backup cycle. 



 

 
Parameter Description Values 

tapeCapacity tape media capacity (B) SDLT:  320 GB  
LTO:  400 GB 

tapeDriveBW tape drive rate (B/sec) SDLT:  16 MB/s 
LTO:  60 MB/s 

tapeDrivesmax upper bound on number 
of drives in library 

16 

tapesmax upper bound on number 
of tapes in library 

600 

intervalfull interval for full backups 4 hr, 12 hr,  
24 hr, 48 hr  

intervalincr interval for  incremental 
backups  

4 hr, 12 hr,  
24 hr, 48 hr 

cycleCount number of incrementals  
between full backups  

0, 6, 13, 27 

intervalcycle interval between  full 
backups  

= intervalfull + 
cycleCount 
× intervalincr 

retrievalTimevault time to retrieve tapes 
from offsite vault  

1 hr 

tapeLibraryCost outlay cost for tape 
library, including chassis 
plus media slots 

$148 342  
per library 

tapeDriveCost outlay cost for tape 
drive 

SDLT, LTO:  
$19 554 / drive 

tapeCost outlay cost for tape 
media cartridge 

SDLT: $125 
LTO:  $150  

fixedVaultCost outlay for tape vault  $25 000 / year 

vaultPer-
ShipmentCost 

outlay cost for a 
shipment to tape vault 

$50 / shipment 

Table 4:  summary of tape backup parameters.   

Figure 3 illustrates the backup process.  It creates a con-
sistent, read-only snapshot of the primary data, and then 
uses the snapshot as the source for the backup to tape 
(be it full or incremental).  Snapshots may be taken us-
ing space-efficient copy-on-write techniques (e.g., [Pat-
terson2002, Lee1996]), or by isolating a local mirror 
and synchronizing it with the primary copy after the 
backup is complete (e.g., [EMC–SRDF, HP–XP–CA]).  
The disk space required for a space-efficient incre-
mental snapshot is determined from the average unique 
update rate and the backup interval. 

Each backup must finish before the next one starts, ef-
fectively defining a backup window equal to the interval 
duration.  The tool provisions sufficient tape drives to 
complete each backup within its window: 

tapeDrivesmin = max(tapeDrivesminFull, tapeDrivesminIncr)  

where the number of drives needed for a full backup is: 










×
=

WtapeDriveBinterval

tywkldCapaci
tapeDrives

full
minFull  

and the number of tape drives required for the largest 
incremental backup is: 
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Tapes are retained for a single full backup cycle, which 
includes the last full backup and all subsequent incre-
mental backups.  Each full backup is written onto a new 
set of tapes rather than the tapes for the previous full 
backup, in case it fails to complete.  When a full backup 
completes, the tapes for the previous full backup are 
sent to the vault, and the tapes at the vault are recycled 
back to the primary site.  The tapes are kept at the pri-
mary until this time in case they are needed quickly to 
respond to operator errors (e.g., rm *).  Thus the total 
number of retained tapes is:   

numTapes = 2 × numTapesfull + numTapesincr  

where the number of tapes required for a full backup is: 

 tytapeCapacitywkldCapacinumTapesfull =  

The number of tapes required for all incremental back-
ups during a cycle is calculated by summing the number 
of tapes used for each one.  We assume that each 
backup starts on a new tape.  Taking into account the 
fact that the full backup interval may be larger than the 
incremental one, we get:  

)(

)()(

)(
1

0

incr

full
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i
incr

intervalcityuniqueCapai

intervalcityuniqueCapaisizeOfIncr

tytapeCapaci
isizeOfIncrnumTapes
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Tape libraries hold both tape drives and tape cartridges.  
We model HP’s series ESL9595 libraries, which can 
handle 2 to 16 drives, up to 600 cartridges, and three 
different tape cartridge/drive technologies (DLT, SDLT 
and LTO).  The number of tape libraries needed to 
house the tapes and tape drives is: 


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We assume that tapes are replaced every year, to guard 
against media failures.  Thus, the minimum annualized 
outlay cost for backup is:   
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To protect against site disasters we add a second tape 
library at the reconstruction site.  Disaster protection 
also incurs an annual cost for tape vaulting: 
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3.4.1 Data loss 

A primary array failure may destroy any backup in pro-
gress at the time of the failure, possibly losing all up-
dates from both the current (accumulating) backup in-
terval and the previous (propagating) backup interval.  
Assuming full intervals are at least as long as incre-
mental intervals,  the worst-case data loss window is the 
sum of the full and incremental backup intervals:   

dataLoss = intervalfull + intervalincr  

In the event of a primary site disaster, the worst-case 
data loss occurs if the site is destroyed just before the 
new full backup completes and the old full backup is 
shipped offsite.  In this case, the data at the vault is out-
of-date by twice the full backup cycle duration, plus the 
interval for the latest full backup:   

dataLoss = 2 × intervalcycle +  intervalfull  

3.4.2 Recovery time 

Recovery from tape is a three-phase process: first, if the 
tapes are stored at an offsite vault, they must be re-
trieved to the reconstruction site; second, the latest full 
backup is restored and third, the latest subsequent in-
cremental backup is restored.   Vaults can be close to or 
far away from the target reconstruction site. The largest 
capacity incremental backup is the last one of the cycle. 
We make the following simplifying assumptions: all the 
tape drives in each library operate in parallel during 
each phase, and data is spread evenly across the tapes 
and drives.  We ignore tape load time because it is typi-
cally less than 5% of the time to read the tape.   

The number of tapes for the last incremental backup is: 
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For a site disaster, the worst-case recovery time is the 
time to retrieve the tapes from the offsite vault, plus the 
time to restore the last full and the last incremental 
backup of a cycle:   
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Recovery after an array failure is analogous; the main 
differences are that the tapes are not yet offsite (e.g., 
zero retrievalTimevault), and the tape counts for the full and 
last incremental backups are scaled by numDiskArrays. 

3.5 Spare resources 
After a failure, recovery can begin immediately if hot 
standby resources are available. Otherwise, resources 
must be found or acquired, drained if they are in use for 
another purpose, and (re)configured or (re)initialized if 
necessary.  Solutions may minimize recovery time by 
keeping spare equipment in various states of readiness. 

Failover or reconstruction at the secondary site requires 
computational resources at the target site.  Since our 
focus is on storage system design, our tool always pro-
visions hot spare server(s) at the target site if it selects 
one of these recovery alternatives.  For simplicity we set 
the cost equal to the outlay cost of the primary disk ar-
rays for the workload, following the rule of thumb that 
storage and servers each account for one third of the 
cost of a typical server site. 

For reconstruction alternatives, we consider only recon-
struction at the secondary site or at the primary over the 
same interconnect provisioned for backup or mirroring.  
Reconstruction at a third site would require additional, 
independently provisioned network links. 

Reconstruction requires one or more disk arrays to 
serve as target for the restoration.   We model a spec-
trum of spare resource options by the outlay cost of 
maintaining them and the time to provision and config-
ure them.  Table 5 gives the model parameters, and Fig-
ure 4 illustrates the alternatives.  In all cases, we assume 
that any spare resources consumed by recovery are 
eventually replaced with new equipment, and factor the 
replacement equipment cost out of the equations.  
 
Parameter Description Values 

spareCost outlay cost of spare disk 
array storage and facilities 

=primaryCost 

spareDiscount discount factor for shared 
resources (fraction in [0,1]) 

0.2 

torder time to order, deliver, and 
set up new resources 

24 hr 

tidentify time to identify that 
resources are available 

60 sec 

tconfigure time to configure resources 10 hr 

tscrub time to scrub resources 5 hr 

tnegotiate time to negotiate the release 
of shared resources 

4 hr 

Table 5:  model parameters for spare resources.  
Spare costs include the cost of the entire target site for 
site disasters; for array failures, costs include only the 
array and related capacity-dependent facilities costs. 
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Figure 4:  spare resource alternatives, and their 
preparation times.  The time to provision spare 
resources is calculated by summing the times along the 
path from the chosen alternative to the active state.   

One way of gaining access to spare resources is to rent 
access to a shared resource pool.  Several companies 
offer such a service, which can be much cheaper than a 
dedicated backup site.  We model the cost of shared 
resources by a fixed discount factor (a fraction in [0, 
1]).  However, the lower cost comes at a risk:  

“During the days following September 11, some 
disaster recovery vendors found they were unable to 
accommodate all of their affected clients, with the 
result that several institutions found themselves without 
the anticipated backup facilities.”  [SEC2002] 

4 Automating dependability design 
Our automated design tool, or solver, uses the data pro-
tection and recovery models described in the previous 
section to determine the most cost-effective solution for 
a given set of workload inputs, component parameters, 
assumed rates of primary array failures and primary site 
disasters, and failure penalty rates.  Outputs from the 
solver include the choice of design alternative, the 
worst-case data loss window and recovery time (RPO 
and RTO), and the outlays and expected penalties.  The 
solution also specifies settings for configuration pa-
rameters such as the number of tape drives, backup in-
tervals, update batch interval, and other model parame-
ters discussed in Section 3.     

4.1 The optimization problem 
We based our solver on mathematical programming 
primarily because of its expressive power and efficiency 
in traversing a large and complex search space.  The 
technique has the added advantage that it arrives at a 
mathematically optimal solution; however, because the 
failure penalty rates are merely estimates, this fact is 
less important.  Because our emphasis is on storage 

system design and not optimization technology, we used 
an off-the-shelf optimization tool, rather than develop 
our own.  We cast the problem as a mixed-integer opti-
mization with constraints.  Our prototype is written in 
the GAMS language for the CPLEX solver 
[GAMS1998, ILOG2002].   

The solver’s objective is to minimize overall business 
cost, defined as outlays plus failure penalties.  Within 
the solver, a set of binary decision variables represents 
the data protection alternatives and their base configura-
tions.  Each binary variable corresponds to a single pro-
tection alternative (e.g., mirroring or backup) and a spe-
cific set of discrete configuration parameters (e.g., 
“batched asynchronous mirroring with a write absorp-
tion interval of one minute”).  A second set of binary 
decision variables represents the alternatives for recov-
ery and spare resources (e.g., “use failover”).  Integer 
decision variables represent the number of bandwidth 
devices (e.g., network links or tape drives) for each 
protection alternative. 

The solver uses the following optimization constraints:  

•  Exactly one protection alternative must be chosen.  

•  Exactly one recovery alternative must be chosen. 

•  The number of bandwidth devices for a data protec-
tion alternative is either zero (if that alternative has 
not been chosen), or it is within the range specified 
by the upper and lower bounds calculated or speci-
fied for the alternative (e.g., [linksmin, linksmax]). 

•  The aggregate device bandwidth may not exceed the 
aggregate reload rate for the primary disk array(s).  

4.2 Optimizing the optimization 
The multitude of parameter combinations leads to a 
complex search space.  We applied several techniques 
to make the solver more efficient. With these improve-
ments, the optimization runs in just a few seconds. 

First, we reduced the search space considerably by 
quantizing the values of certain continuous parameters, 
such as backup intervals and the batch intervals for the 
batched asynchronous remote-mirroring scheme.   

Second, we divided several continuous, non-linear func-
tions to a set of piecewise-linear segments.  When for-
mulated in the straightforward fashion described above, 
the recovery time models have terms that depend in-
versely on the number of links or tape drives y. The 
resulting optimization problem becomes non-linear.  
Although solvers exist for certain classes of non-linear 
optimization problems, they may take an unacceptably 
long time to find a solution, or fail to find one at all.  
Linear solvers exploit well-known theoretical results 
about the search space structure to solve significantly 



 

larger problems in seconds.  To linearize our problem, 
we defined new variables z standing for the inverse of 
the problematic y terms.  We introduced new constraints 
on the variables so that the resulting optimization prob-
lem is equivalent to the original one.  Since the trans-
formation is convex, we used the methods described in 
[Williams1999], which linearize convex constraints in 
continuous variables.  If the variables had been continu-
ous, this would have been an approximation, but be-
cause our decision variables are integers, we can prove 
that the result is exact. 

5 Experimental results 
We conducted a series of experiments to explore the 
behavior of our automated dependability design tool:   

1. To validate the solver’s recovery time, data loss and 
cost calculations, we evaluated these quantities for a 
fixed set of designs.   

2. To explore the solver’s design choices, we supplied a 
set of penalty inputs corresponding to specific 
industry segments, and examined the output designs.   

3. To explore the sensitivity of the solver’s design 
choices to its inputs, we varied the penalty rates 
across a wide range, and examined the outputs. 

Although workload parameters do affect the configura-
tion parameters for each solution, our experience has 
shown that the penalty rates dominate the design 
choices.  We use a single workload for all experiments 
(cello2002, described in Table 1).  All experiments as-
sume a failure rate of one primary site disaster per year.  
The effect of changing the failure frequency is equiva-
lent to scaling the penalty rate values by an appropriate 
multiplier; the experiments explore in detail how the 
design choices change as these penalty rates vary. 

5.1 Validation of fixed designs 
To validate our intuitions about the recovery time, data 
loss and cost behaviors of candidate designs, we ran the 
solver in evaluation mode. In this mode, the solver’s 
decision variables are fixed to a particular design choice 
and configuration parameter values.  We present a rep-
resentative sampling of the results here, all of which 
were set up to reconstruct the data to a hot spare at the 
primary site in the event of a site disaster.   

Figure 5 presents a set of results for tape backup.  The 
graph shows recovery time as a function of the number 
of tape drives for two different tape drive technologies 
(SDLT and LTO).  We considered two backup sched-
ules: one using just full backups with a four-hour 
backup interval, and one using weekly full backups plus 
daily incremental ones, both with 24-hour intervals.  

The graphs for the full-only policy begin at two drives 
(for LTO) and seven drives (for SDLT) because that is 
the minimum number of tape drives required to back up 
the entire data set in the four-hour window.  For LTO, 
the curves stop at eight drives because the aggregate 
tape drive bandwidth beyond this point is larger than the 
array reload rate, so additional drives do not help.   

As expected, the slower SDLT technology results in 
longer recovery times.  For both technologies, recovery 
is faster with the full-only schedule: it restores only the 
last full backup, while the weekly full/daily incremental 
schedule must also apply the latest incremental backup. 
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Figure 5: tape backup recovery time as a function of 
tape drive/cartridge technology and backup policy. 

The graph confirms the importance of provisioning to 
minimize recovery time in this scenario:  for smaller 
numbers of tape drives, the outage penalty reduction 
from adding a tape drive exceeds the drive’s purchase 
price.  The LTO drives are particularly cost-effective.   
 
Protection technique Recent data loss 

Synchronous mirroring 0 

Asynchronous mirroring 2.2 min 

Asynchronous batch mirroring 
(interval = 1 min) 

2.0 min 

Asynchronous batch mirroring 
(interval = 1 hour) 

2.0 hours 

Backup (full-only; interval = 4 hours) 12 hours 

Backup (weekly full + daily incremental; 
both intervals = 24 hours) 

360 hours 

Table 6: recent data loss for different designs. 

Table 6 summarizes the worst-case data loss for several 
design alternatives.  Synchronous mirroring experiences 
zero data loss. For non-coalescing asynchronous mirror-
ing, data loss corresponds to the time for the workload 
to fill the 100 MB mirroring write cache.  Data loss for 
the asynchronous batch variants is twice the batch dura-
tion.  The worst-case data loss for tape backup and 



 

vaulting is twice the backup cycle, plus the backup in-
terval for the latest full backup. The large values show 
the down-side of keeping tapes on-site rather than send-
ing them to the vault in the case of site failure. 

Figure 6 shows how outlay and expected penalty costs 
combine to yield the total cost of a candidate solution 
across a range of configuration parameters.  The graph 
shows outlay and penalty costs for remote asynchronous 
mirroring with recovery by reconstruction at the pri-
mary. This experiment assumes the penalty rate inputs 
for both data loss and outages are $20 000 per hour.  

Outlay costs increase linearly as the number of config-
ured T3 network links increases.  The expected data 
loss for each failure is constant with this solution, but 
adding more links speeds recovery by increasing the 
bandwidth from the mirror to the primary.  The graph 
shows a “sweet-spot” that minimizes the overall cost at 
five T3 links: with fewer links, slower recovery drives 
up the outage penalties, while adding more links yields 
diminishing benefit and causes link outlays to dominate.  
We ran this experiment in evaluation mode for illustra-
tive purposes; in design mode the goal of the solver is to 
find such sweet spots automatically.  
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Figure 6: outlay and penalty costs for asynchronous 
mirroring as a function of link configuration. 

5.2 Automated design choices 
For the second set of experiments we ran the tool in 
design mode to configure a data protection system for 
one primary site disaster per year.  These experiments 
explore the design choices for penalty rates that are 
typical of specific industry segments [CNT2003b].  
Table 7 summarizes the data loss and outage penalty 
inputs for each industry segment, together with the cho-
sen design and its cost.  Figure 7 illustrates the cost 
breakdown for each solution.  
 
 

Type Data loss 
penalty  

Outage 
penalty 

Design  
chosen 

Overall 
cost 

Student accounts: Storage of data owned by students is 
tolerant of data loss and outages. 

 $500 / hr $500 / hr backup with 
12-hr interval 
+ no spares 

$301k 

Company documents: Documents such as papers, 
presentations, and design documents are tolerant to small 
outages and loss of recent writes. 

 $500k / hr $500 / hr async mirror+ 
reconstruction 
+ no spares 

$426k 

Web server for an online retailer:  Outages are expensive, 
because if the web server goes down, orders stop.  Data loss 
is tolerable, because data can be replaced from other sources. 

 $500 / hr $500k / hr asyncB mirror 
+ failover 

$506k 

Consumer banking:  Consumer banking services are tolerant 
of modest outages (since account holders are unlikely to 
switch banks), but not data loss.  

 $50M / hr $50k / hr sync mirror + 
failover 

$562k 

Central bank:  Central banks are required by regulations to 
have zero data loss and small outage windows. 

 $50M / hr $5M / hr sync mirror + 
failover 

$603k 

Table 7:  summary of industry segment examples. 
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Figure 7:  solution costs by industry segment.  

For lower penalty rates (student accounts and company 
documents), the tool chooses designs that employ re-
construction with no spare resources:   the outlay costs 
for better protection exceed the failure penalties.  It 
switches to asynchronous mirroring and failover at 
moderate penalty rates (web server), because the outlays 
for this stronger solution are less than the penalties ex-
pected with a cheaper solution.  At the highest penalty 
rates (consumer banking and central bank), the tool 
selects an aggressive synchronous mirroring + failover 



 

solution to achieve zero data loss and minimal outage 
time.  Even so, the mission-critical central bank incurs a 
non-trivial outage penalty for the 30-second failover 
time.   

Interestingly, the designer always chooses a solution 
whose expected penalties are a modest share of the 
overall cost (at most 17%). 

5.3 Solver design choice sensitivity 
Our final set of experiments maps the solution space for 
data protection and recovery across a range of failure 
penalty rates.  We performed over 500 separate experi-
ments, varying the data loss and data outage penalty 
rates independently over a wide range (107:101).  
Exploring this space by hand using existing tools would 
be unthinkable.  Our intent is to give insight into the 
richness of the design space, to show the feasibility of 
navigating this design space automatically, and to pro-
vide further evidence that the design tool is correct and 
efficient.  
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Figure 8: solution types picked by the solver for the 
space of penalty rates.  The dotted line separates 
failover and reconstruction solutions. 

Figure 8 shows the design alternatives selected for each 
input scenario.  As expected, the tool chooses the 
cheapest solution—tape backup—for scenarios tolerant 
of outages and data loss (e.g., student accounts), but 
incorporates hot spare resources and more aggressive 
backup intervals as the penalties for outage and data 
loss increase.  The tool chooses asynchronous batch 
mirroring for the scenarios with more severe outage 
penalties when the cost to lose recent writes is accept-
able (e.g., web server).  At low data outage penalty 
rates, as the penalty rate for data loss continues to in-

crease (e.g., company documents), the solutions switch 
to order-preserving asynchronous mirroring to reduce 
the data loss beyond what tape backup can offer.  As the 
penalty rates for data loss increase further (e.g., con-
sumer banking and central bank), the solutions shift to 
synchronous mirroring. 

When outage penalties are low, the mirroring solutions 
use reconstruction rather than failover to avoid incur-
ring the additional outlays for standby compute re-
sources.  As outage penalties increase, the solutions 
incorporate hot spare standby resources and failover to 
minimize downtime. 

To clarify the reasoning behind the solver’s decisions, 
we now look at its calculations in greater detail. Figure 
9 and Figure 10 show the recovery time and recent data 
loss, respectively, for the chosen solutions.   
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Figure 9: recovery time as a function of penalty 
rates.  Each tinted band corresponds to a 20–hour 
increase in recovery time.  The dotted line separates 
failover and reconstruction solutions. 

For the lowest data loss and outage penalty rates, the 
solver chooses tape backup with no spare resources, 
full-only backups and twelve-hour intervals, resulting in 
a recovery time of 42 hours and data loss of 36 hours.  
As the data outage penalty increases, the backup-based 
solutions shift to using occupied spare resources and 
four-hour backup intervals, decreasing recovery time to 
14 hours. The reductions in backup intervals also re-
duce the data loss window to 12 hours.  Adding hot 
standby resources further reduces recovery time to five 
hours. The shift to asynchronous batch mirroring + 
failover at high outage penalty rates dramatically re-
duces the recovery time to 30 seconds and the data loss 
window to two minutes.   
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Figure 10: data loss time as a function of penalty 
rates. Each tinted band corresponds to a 10-hour 
increase in data loss time. The dotted line separates 
asynchronous and synchronous mirroring. 
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Figure 11: total (penalty+outlay) costs (k$) for the 
space of penalty rates.   

For asynchronous mirroring with low outage penalties, 
the tool selects reconstruction rather than failover; it 
tolerates 100+ hour outage times, rather than incur the 
expense of standby compute resources for failover.  As 
the loss penalty rate increases, the shift to synchronous 
mirroring + reconstruction reduces data loss to zero, 
with the added benefit of decreasing the recovery time 
to about 70 hours.  (This reduction comes from the ad-
ditional networking links synchronous mirroring re-

quires to support update bursts.)  As the outage penalty 
rates increase, the synchronous mirroring solutions shift 
to failover, resulting in recovery times of 30 seconds. 

Figure 11 shows the overall costs associated with the 
solver’s choices.  In all cases the tool balances outlays 
with penalties, increasing system cost only as needed to 
avoid larger penalties.  One notable crossover occurs as 
more aggressive spare resource options are purchased 
(from none to occupied to hot spare to failover), to re-
duce the outage penalties.  Another interesting cross-
over occurs as the choice of protection technique shifts 
(from more aggressive backup policies to asynchronous 
mirroring to synchronous mirroring) to reduce data loss 
penalties.  

5.4 Discussion 
Asynchronous mirroring performed surprisingly well in 
this study.  We were initially skeptical, but found that 
the additional high costs of high-speed, long distance 
links largely relegated synchronous mirroring to situa-
tions where the small data loss that could result with 
asynchronous mirroring is incredibly expensive – as it 
is, for example, in the central bank case, where a single 
transfer can involve millions or even billions of dollars. 

We noted that the solver generally chose to use full-
only backups, rather than interspersing incremental 
backups between full ones.  Even though the tape costs 
for incremental backups are generally lower, this outlay 
savings is outweighed by the increased recovery time 
penalties that result from the need to restore both the 
latest full and latest incremental backups. 

We observed firsthand that even people who should 
know better can make mistakes when faced with this 
rich design space.  For example, we were experimenting 
with an early version of the design tool, exploring the 
effects of increasing the outage penalty rate for a mir-
roring + reconstruction solution to protect against array 
failure, when we noticed that the tool chose to configure 
a local tape library at the primary site. Why? Because 
we had constrained mirroring in that version to provi-
sion only enough networks links to absorb the update 
traffic for asynchronous mirroring.  Unfortunately, the 
time to reconstruct the primary over these economical, 
slow links was so large that it became cost-effective to 
restore from a local tape library, rather than trickle the 
data back from the remote mirror.  The original design 
was wrong: the solution should have been designed to 
handle the recovery case, not just the mirror update 
case.  We should not have made this mistake, but we 
did.  The automated dependability design tool can help 
to avoid this type of mistake. 



 

6 Related work 
We found very few other systems and tools that auto-
mate the design of dependability solutions.  Most of the 
tools we found tackle only pieces of the problem, and 
rely on people to do the rest. 

Storage vendors, such as IBM, Sun, HP, Computer As-
sociates and Exabyte, provide web-based and 
downloadable tools to help with low-level backup pro-
visioning questions, and to estimate total cost of owner-
ship (TCO) and return on IT investments (ROI).  For 
example, Sun’s backup calculator [Sun2004] computes 
the number of libraries, tape drives and tape cartridges 
required to support a backup schedule whose parame-
ters are supplied as inputs.  This type of tool provides 
no indication of the dependability of the resulting 
backup system, nor any indication of the financial rami-
fications of its use.   

ROI and TCO calculators (e.g., [EMC2004]) provide 
estimates for the total cost of ownership for alternative 
storage systems, given inputs for storage capacity, utili-
zation and availability.  These tools incorporate outlay 
costs for storage and server hardware and administrator 
salaries, and penalty costs for outages (but not data 
loss).  Their overall system costs are based on input 
values for system availability, rather than calculated 
values for the dependability of a storage system con-
figuration. 

These tools provide simplistic evaluations of low-level 
configuration parameters or overall system costs, re-
spectively.  By changing input parameters, one can per-
form a rudimentary sensitivity analysis.  Neither class of 
tools can propose a storage system configuration to 
meet user-specified dependability goals. 

Like many other researchers in the dependability 
community, we build models of the systems we are try-
ing to design.  Our work emphasizes embedding those 
models in an automated design system.  Most other 
work, however, focuses on models and modeling tool-
kits that allow designers to interactively try “what-if” 
analyses by hand (e.g., [Deavours2002, Haver-
kort2001]). 

System designers and analysts make the design choices 
we describe here every day, but the focus in their litera-
ture is on operational issues, such as determining 
backup policies and setting related configuration pa-
rameters (e.g., [Cougias2003, Marcus2003, Pre-
ston1998, daSilva1993]). 

The majority of “data protection” work is focused on 
developing new protection mechanisms. Only rarely do 
their designers consider the difficulties of deciding 

when to use them, and how they combine with existing 
techniques [Wylie2001].  

Researchers have developed automated tools to design 
systems to meet performance goals (e.g., 
[Anderson2002a, Anderson2002b, Alvarez2001, 
Borowsky1997]), but they considered only online re-
dundancy techniques (mirroring and RAID 5).  Our 
dependability design work builds on the experience 
gained there.   

We also leverage existing work that deals with specify-
ing and evaluating dependability requirements.  Exam-
ples include a declarative method of specifying data 
performability and reliability requirements 
[Keeton2002, Wilkes2001], and ways to measure the 
availability of RAID systems [Brown2000].   

Several recent papers from CNT (http://www.cnt.com) 
are particularly helpful in providing an overview of the 
growing regulatory and legal pressures on disaster tol-
erance in the financial industry. They provide some 
information about outage penalties, but little on the cost 
of lost data. 

7 Conclusions 
Data must be dependable: the cost of losing it, or even 
of losing access to it, is simply too high.  The complex-
ity of the systems to achieve this goal, and the range of 
failure cases they must tolerate, is increasing rapidly.  
What’s more, human designers don’t always make the 
right choices, or understand the ramifications of the 
choices they do make.   

The solution is to automate the design of data depend-
ability solutions.  Our design tool provides numerous 
benefits over the manual approach employed today.  By 
treating the question as an optimization problem, it can 
search the entire design space and find the best alterna-
tive for a set of business requirement inputs.  Since the 
process is automated, it is easy (and fast) to evaluate a 
broad range of inputs to support “what if” analyses.  
Furthermore, the tool doesn’t just provide “black box” 
answers, but can provide insights into the choices it 
makes, so that customers can understand and interpret 
its decisions.   

Opportunities exist to extend this work in several differ-
ent directions: improving the quality of the data protec-
tion technique models; enhancing the financial exposure 
model; extending the scope of the solutions and failures 
imposed; making it easier to add new data protection 
and recovery techniques to an existing solver; and gen-
erating easy-to-use visual interfaces to the tool itself.  
We hope to explore many of these avenues.  



 

More details can be found in an extended version of this 
paper [Keeton2004]. 
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