
USENIX Association

Proceedings of the Third USENIX
Conference on File and Storage Technologies

San Francisco, CA, USA
March 31–April 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Circus: Opportunistic Block Reordering for Scalable Content Servers

Stergios V. Anastasiadis Rajiv G. Wickremesinghe Jeffrey S. Chase
Department of Computer Science, Duke University

Durham, NC 27708, USA�
stergios,rajiv,chase � @cs.duke.edu

Abstract
Whole-file transfer is a basic primitive for Internet con-
tent dissemination. Content servers are increasingly lim-
ited by disk arm movement given the rapid growth in disk
density, disk transfer rates, server network bandwidth,
and content size. Individual file transfers are sequential,
but the block access sequence on a content server is ef-
fectively random when many slow clients access large
files concurrently. Although larger blocks can help im-
prove disk throughput, buffering requirements increase
linearly with block size.

This paper explores a novel block reordering tech-
nique that can reduce server disk traffic significantly when
large content files are shared. The idea is to transfer
blocks to each client in any order that is convenient for
the server. The server sends blocks to each client oppor-
tunistically in order to maximize the advantage from the
disk reads it issues to serve other clients accessing the
same file. We first illustrate the motivation and potential
impact of opportunistic block reordering using a simple
analytical model. Then we describe a file transfer system
using a simple block reordering algorithm, called Circus.
Experimental results with the Circus prototype show that
it can improve server throughput by a factor of two or
more in workloads with strong file access locality.

1 Introduction
Many Internet services are based on whole-file transfers
or file downloads. For our purposes, the file download
primitive has three defining characteristics: (i) each client
initiates transfer of an entire file, rather than a block or
fragment, (ii) the client postpones interpretation of the
data until the transfer completes, and (iii) the transfer
may occur as rapidly as permitted by the server, the client,
and the network resources. Whole-file transfer is a build-
ing block of peer-to-peer (P2P) file sharing, the Web, me-
dia services, and data grids [2].

Conventional file download protocols such as FTP or
HTTP transfer each file as an ordered stream of bytes,
and use the underlying transport protocol (e.g., TCP) to
deliver data in sequence. Nevertheless, the semantics of
file download permit the server to deliver data to each
client in any order, as long as the client eventually re-

ceives the entire file. Reordering relies on the client to re-
assemble the content, similar to P2P “content swarming”
systems that disperse file blocks across multiple servers
(such as BitTorrent [14]).

This paper investigates opportunistic block reorder-
ing as a technique to improve the cache effectiveness of
a content server. More effective caching can increase the
server throughput for a given disk subsystem, and de-
crease the disk and memory cost needed to fill the server
network link. Block reordering complements well-known
techniques to improve cache effectiveness with improved
replacement algorithms (e.g., [20]) or integrated caching
and prefetching [10]. Most obviously, it changes the
block access sequence to suit the needs of the storage
system, instead of just managing the storage cache to suit
a specific block access sequence. In essence, block re-
ordering extends the server memory by using the client
memory as a reassembly buffer.

Block reordering is helpful primarily when multiple
clients request large shared files concurrently. Workload
studies have shown this case to be quite common and im-
portant for overall performance. Typically a modest per-
centage of popular files receive most of the requests in a
content server, and larger files account for a dispropor-
tionally large share of the data traffic [3, 5, 7, 11, 27]. A
recent workload characterization of a popular P2P sys-
tem concluded that 42% of the data requested from a
typical academic site involved transfers of a few hun-
dred large objects with an average size of several hun-
dred megabytes each [27]. In that study, large object
caching on its own could yield a byte hit ratio as high as
38%. Block reordering is especially promising in con-
tent networks that employ content-based request routing
to concentrate the requests for each file on a small set
of servers; recent studies show large improvements in
server cache locality from this technique [16, 22, 30].

When files are small it is sufficient to cache them in
their entirety to capture most of the benefit from shar-
ing. But caching of large files is less effective because
they consume more cache space and therefore they are
more vulnerable to eviction before the next request can
generate a cache hit. As file size increases relative to the
server memory, the hit ratios degrade and the disk access
transaction rate limits server throughput [6, 27]. Unfortu-
nately, ongoing advances in disk bandwidth—due to in-

creasing areal density and faster rotation speeds—do not
help appreciably. In fact, seek overheads dominate be-
cause concurrent requests from a large number of clients
tend to destroy the inherent sequentiality of block ac-
cesses to each file, producing a block access sequence
that is effectively random. Since seek times improve
more slowly than disk bandwidth, faster disks actually
make the problem worse because these seek overheads
consume a larger share of the arm time.

Several other techniques are directed at serving large
shared content files, primarily for continuous media. One
solution is to abandon caching and use large disk trans-
fers to reduce seeking, a technique that is well-studied
for streaming video servers (e.g., [4]). But buffer de-
mands increase linearly with transfer size and the number
of clients. A second alternative is to encode the shared
files using forward error correcting codes (FEC) [9, 26],
e.g., the Tornado codes used by Digital Fountain. FEC
yields optimal caching effectiveness, since every receiver
can benefit from each block fetched from the disk. Un-
fortunately, FEC increases the volume of data needed
to store and transmit a stream by as much as an order
of magnitude, depending on the skew of client transfer
rates. Other techniques include stream merging methods
[17, 18]. Section 6 discusses related work in more detail.

The rest of this paper is organized as follows. Sec-
tion 2 uses a simple model to explore the performance
behavior of file download servers and motivate oppor-
tunistic block reordering. Section 3 proposes a simple
parameterized block selection algorithm for reordering.
Section 4 describes its implementation in the Circus con-
tent server, and Section 5 presents experimental results.
Section 6 sets opportunistic block reordering in context
with previous work, and Section 7 summarizes our con-
clusions.

2 Overview and Motivation
We first define the file download problem more formally,
and then outline the goals and motivation for our work.
Consider a content server with a network link of band-
width ��� bytes/s and a population of � clients concur-
rently downloading shared files. We use the term file to
mean a unique ordered set of data blocks; thus it could re-
fer to any segment of a larger data set. Suppose that each
client � can receive data at a sustained rate ���	�
 ��� ,
with an average client rate � 	 bytes/s. The goal is to
schedule block reads from disks and block transfers to
clients in order to maximize
������ , the system through-
put for � concurrent requests, or the number of down-
load requests completed per time unit. Unless it is sat-
urated, the server should be fair and it should complete
each request in the minimum time that the network al-
lows: a request from client � to download a file of length

0.0 0.2 0.4 0.6 0.8 1.0

Cache Size/File Length

0

10

20

30

N
et

w
 B

an
dw

id
th

/D
is

k
B

an
dw

id
th

Figure 1: The maximum ratio of network bandwidth to disk band-
width, as a function of the portion of the data set size that fits in the
cache. The system is heavily disk-limited unless the bulk of the data set
fits in memory.

�
bytes should complete after approximate delay

��� ���	 .
Since this paper focuses on the design of the server

and its storage system, we will claim success when the
server is network-limited, i.e., it consumes all of its avail-
able network bandwidth. Suppose the average file length
is
�

bytes. For low client loads, the server may be lim-
ited by the aggregate network bandwidth to its clients:
������
 � 	 � ��� . If the client population is large, or if
the clients have high-speed links, then the server may be
limited by its own network link:
������
 � � ��� (with
unicast). We assume without loss of generality that the
server’s CPU and memory system are able to sustain the
peak data rate ��� when serving large files.

Our objective, then, is to minimize the memory and
storage resources needed to feed content to the network
at the peak rate ��� for a sufficiently large client popu-
lation: ������� � � 	 . Suppose the content server has a
memory of size � and � disks delivering a peak band-
width of � � byte/s each. Our purpose is to explore how
block reordering can reduce the number of disks � needed
for a given � , and/or reduce the � needed for a given �
and � � . Equivalently, we may view the objective as max-
imizing the network speed � � or client population size� that a given configuration ���"!#�$� can support. The
problem is uninteresting for small �%� , e.g., in serverless
P2P systems that distribute server functions across many
slow clients. The problem is most interesting for servers
in data centers with high-capacity network links, serving
large client populations with slow transfer rates � 	 . �
may be quite large for commercial content servers with a
large bandwidth disparity relative to their clients: IP net-
work bandwidth prices are dropping [13], while broad-
band deployments for the “last mile” to clients continue
to lag behind. Although our approach does not require
multicast support, it is compatible with multicast and �
may be even larger when it exists.

2.1 Caching
The server’s memory of size � consists of a common
pool of shared buffers. A server uses these buffers for
some combination of disk buffering, network buffering,
and data caching. For example, suppose the server fetches
data from storage in blocks of size & bytes. A typical
server would buffer each fetched block until all client
transmits of the block to clients have completed; the sur-
plus memory acts as a cache over blocks recently fetched
for some client � that are deemed likely to be needed soon
for another client ' requesting the same file. Caching is
effective for small files that can reside in the cache in
their entirety until the next request [6]. However, if ' ’s
request arrives (time units after � ’s, then the server has
already fetched up to ()� �	 bytes of the file into memory
and delivered them to � . The memory needed to cache
the segment until ' is ready to receive it grows with the
inter-arrival time (. If �%�	�* �,+	 then the required cache
space continues to grow as the transfers progress—when
the system is constrained to deliver the data in order to
both clients, as for conventional file servers.

Since each file request accesses each block of the file
exactly once, block accesses are uniformly distributed
over the entire file length. As the number of clients in-
creases, and as client rates and arrival times vary, the
block access request stream shows less temporal local-
ity and becomes effectively random. Of course, there
is spatial locality when the server delivers each block in
sequence; the system may exploit this by using a larger
block size & , as discussed below (or, equivalently, by
prefetching more deeply). Suppose without loss of gen-
erality that the content consists of a single file of length� *%* � , or any number of equally popular files with
aggregate size

�
. Then the probability of any block ac-

cess being a cache hit is -/. �1032 � ��� , and -54 �76)6829;: � �<� is the probability that the access requires a disk
fetch. Then the server’s storage system must be capable
of sustaining block fetches at rate ��� � � &=�>� 9%: � �<� � .
Figure 1 shows the role of cache size in determining the
number of disks required to sustain this rate.

2.2 Storage Throughput
The areal density of magnetic storage has been doubling
every year, and disks today spin several times faster than
ten years ago [13]. While these trends increase sequen-
tial disk bandwidth, throughput for random block ac-
cesses (IOPS) has not kept pace. Seek costs tend to dom-
inate random accesses, and these costs are limited by
mechanical movement and are not improving as rapidly.
Unfortunately, the block miss stream for a content server
degrades to random access as the client population � in-
creases, for the same reasons outlined above.

One solution is to increase the block size & . This

reduces the rate of disk operations required to sustain
a given effective bandwidth, which is inversely propor-
tional to & . This technique can significantly reduce the
number of disks required. Suppose each disk has an
average head positioning time per access of ?A@CB 6 sec-
onds (seek plus half-rotation). Every disk access moves a
block of size & bytes, and takes time ?A@>B 6CD & � ��� . Thus,
each disk supports EFCG#HJILK;M5N#O;P random accesses per time
unit, and the aggregate peak disk bandwidth for � disks
becomes
Q� 2

MSRUTF G#HJI K;MVN#O P bytes/s. The server needs

� 2
OXWM5N>Y1FCG#HJI)KZM5N#O P\[disks to fully pipeline the network.

For example, Figure 2 illustrates the disk random access
throughput when ?]@>B 6 2_^a` ^b^bc s, a typical value. With
block size & 2edfcfg KB, and disks of �%� 2ec�^ MB/s, the
disk throughput
Q� becomes roughly 25 MB/s. We need
about � 2hc such disks to feed a server network link of��� 2 9 Gb/s.

However, Figure 3 shows that this approach consumes
large amounts of memory with large client populations.
Depending on the buffering scheme the minimum mem-
ory size � for � active clients is ��& � d
 �
 d �3& .
The 1 Gb/s server can support � 2igfgfj T1 (1.544 Mbps
= 193 KB/s) client connections, consuming a minimum� 2lknm MB just for device buffering with & 2ldfc�g
KB. If we increase the block size to & 2 9 MB then disk
throughput becomes
$� 2ojn^ MB/s, the number of disks
drops to � 2pj , and the minimum memory grows to� 2oqbdbc MB. If instead, we assume slower clients with� 	 2�c�g Kbps, the server needs a minimum � 2rdU` 9 k
GB and � 2skt`um GB for block size & 2vdfc�g KB and& 2 9

MB, respectively. In media servers using large
block sizes it is common to eliminate the cache and parti-
tion memory into separate buffer regions for each client;
each region is sufficient to hold any blocks in transit be-
tween the disk and the network for that client [4].

2.3 Summary
In this section we explained why accesses at the block
level appear increasingly random as the client population� grows. This minimizes the benefit of conventional
caching and weakens the locality of the disk accesses
from the cache miss stream. The combination of these ef-
fects increases server cost, since more disks and/or more
memory are needed to fill any given network link. For
example, the experiments in this paper use disks with av-
erage sequential throughput of � � 2rqbq MByte/s, but a
conventional FTP server under even modest load deliv-
ers a per-disk throughput of roughly 10 MB/s, including
cache hits. Thus we need about a dozen such disks to
feed a network link of 1 Gb/s.

0 512 1024 1536 2048

Block Size (KB)

0

20

40

60

80

100

T
hr

ou
gh

pu
t (

M
B

/s
)

Disk
Rd = 100 MB/s
Rd = 75 MB/s
Rd = 50 MB/s
Rd = 25 MB/s

Figure 2: Disk throughput with random block accesses in a disk with
positioning time w�x#y{z�|�}�~ }�}�� s across different transfer block sizes,
and sequential disk transfer rates ��� . We show that as �Z� increases,
block size must exceed one megabyte to achieve peak disk throughput.

0 512 1024 1536 2048

Block Size (KB)

1

10

100

1000

10000

B
uf

fe
r

Sp
ac

e
(M

B
)

Memory

Rc = 56 Kbps
Rc = 128 Kbps
Rc = 384 Kbps
Rc = 1.54 Mbps
Rc = 10 Mbps

Figure 3: Minimum buffer space required to support clients at differ-
ent rates in a server with a 1 Gbps network link. The minimum buffer
space can reach several gigabytes for large populations of clients with
bandwidth less than 1 Mbps.

3 Opportunistic Block Reordering
To support large client populations inexpensively, we need
to minimize the number of disk fetches and maximize
the number of clients served with each fetch. Ideally,
when multiple clients request the same file, the server re-
trieves each block from disk only once and sends it to
every client. Then, using the notation introduced pre-
viously, serving a file to � clients at network through-
put �3� 	 requires disk throughput � 	 and buffer space& � d
 �
 d & , all of which are independent of � .

A file download server must transfer all the blocks
of a file to satisfy each file request; thus an arriving file
request from client � reveals information about block ac-
cesses on behalf of client � for at least the next

��� ���	 time
units. The system can use these revealed block sequences
to improve performance and/or reduce cost. In particular,
it can improve cache performance by opportunistically
reordering the accesses, e.g., to send each fetched block
opportunistically to all clients known to need the block in
the future, before replacing it from memory. The server
can send blocks out-of-order by attaching an application-
layer header [12] to each transmitted block that specifies
its offset; clients resequence the data according to these
block headers. This section presents the block reordering
algorithm in the Circus content server.

The Circus server maintains a list of files with down-
loads currently in progress (active files), and for each ac-
tive file a list of clients currently downloading that file
(active clients). For each active client the server creates
a FIFO queue of references to the file blocks selected to
send next to that client. The server transmits blocks from
the head of the queue when the client’s network trans-
port send window opens. When a queue drains below a
threshold, the server selects another block to transmit to
that client, schedules a disk fetch if necessary, and adds

the block reference to the queue tail. Circus strives to
guarantee forward progress and fairness by serving all
active clients at their maximum network transfer rates.

The block selection policy is the key to the Circus al-
gorithm. For each active client, Circus also maintains a
set data structure (bitmap) to record the set of blocks al-
ready sent to the client. Thus, for each block of an active
file, it knows the set of active clients that have yet to re-
ceive the block. The selection policy could select blocks
to greedily maximize the number of clients that bene-
fit from each block, or minimize the number of block
fetches needed to fill up all block queues at any given
time. However, these policies are computationally com-
plex, and their cost scales with the file size.

We propose a simple block selection policy that is
fast and has modest memory requirements. Figure 5 out-
lines the algorithm. Its complexity scales linearly with
the number of active clients for each file. To preserve lo-
cality of reference among the active clients, Circus des-
ignates an (active region) for each file as preferred for
block selection and caching. The active region is a mov-
ing contiguous region within a circular block space. The
file cursor specifies the front edge of the active region
of a file. The length of a file’s active region (the active
length, a tunable configuration parameter) controls the
amount of memory devoted to caching the file.

Each active client has its own client cursor that keeps
track of the file offset of the block that was last queued
to send to the client. Based on the client cursor posi-
tions, we call the leading active client for a file (often the
highest-rate client) the frontrunner of the file; the trailing
clients active on the same file are the followers. The fron-
trunner advances the file cursor according to its current
client cursor. This operation refreshes the system cache
with new data blocks that are likely also needed by the
followers. When the cursor of a follower lags behind the

offset
 0
 File Length

frontrunner
followers
independent

clients

active region

Figure 4: We call the active region of a file the part of the
file that is resident in server memory. The client who downloads
the file with highest rate (frontrunner) advances the active region,
while clients with lower rates (followers) are kept within the active
region. Some clients (independent) are allowed to move outside
the active region.

1. proc circus_algorithm
2. while (true) do
3. file := next entry of active_file_circular_list
4. while (true) do
5. client := next entry of file.active_client_list
6. if (client = nil) break
7. if (client.fifo_queue = full) continue
8. if (file.cursor-client.cursor > active_length AND
9. client.sent_blocks_fraction < client.threshold)
10. client.cursor = file.cursor - active_length/2
11. client.cursor := next block not transmitted
12. if (client.cursor = invalid) continue
13. insert client.cursor location to client.fifo_queue
14. if (client.cursor > file.cursor AND
15. client.cursor-file.cursor < leapfront_distance)
16. file.cursor = client.cursor
17. done
18. done

Figure 5: Pseudocode of the Circus block selection algorithm.

frontrunner at a distance that exceeds the active length,
the follower’s cursor advances to the middle of the active
region. Moving the cursor to the middle rather than the
front of the active region prevents the follower from im-
mediately becoming a frontrunner. We can summarize
these operations with the following two rules:

� Advance the file cursor to the current cursor loca-
tion of the fastest client (frontrunner).

� When the cursor of a trailing client (follower) falls
behind the active region, advance the cursor of the
follower to the midpoint of the active region.

To avoid stalling clients that are missing only a small
number of blocks, Circus tracks the fraction of file blocks
each client has already received (the client threshold).
When this fraction exceeds a configured maximum value,
the client becomes independent; the algorithm selects
blocks for independent clients by scanning their block
maps for needed blocks, even if they are outside of the
active region. A client also becomes independent if it is
the frontrunner and its next missing block is more than
a configured leapfront distance ahead of the current file
cursor. This avoids damage to the reference locality of
the other active clients. In our experiments, we found a
leapfront distance equal to the active length of the file to
achieve stable operation in the system. We investigate
the sensitivity of the system to several configuration pa-
rameters in Section 5.5.

4 Evaluating Circus
This section gives an overview of our methodology for
evaluating Circus, including the performance metrics of
our experiments.

4.1 Prototype Implementation
We incorporated the Circus algorithm into a version of
the FTP daemon of FreeBSD Release 4.5 (Figure 6). We
modified both the FTP client and server to support block
reordering using a simple block transfer protocol with
sequencing headers.

The current version of the Circus server is a fully
functional implementation that required no kernel mod-
ifications. For each active file the server constructs a
header structure (file header) containing information about
the file. This includes a linked list of headers (client
headers) for the active clients of each file, and a block
FIFO queue of limited length for each active client. The
block size is a configurable parameter that serves as log-
ical unit of disk and network transfers. When the socket
buffer for a client is ready to send, a server process re-
moves a block descriptor from the queue, and submits a
request to transfer the block to the network socket. We
used the sendfile() system call—available in FreeBSD
and other operating system kernels—for zero-copy trans-
fers from the disk to the network. A background pro-
cess runs the block selection algorithm to refill the FIFO
queues with descriptors of blocks to transmit to each client.
The headers and the queues are maintained in shared
memory accessible by all server processes.

The modified FTP client reassembles downloaded files
and optionally writes them to the local file system on the
client. We disabled the writes in our experiments so that
multiple clients (up to a few hundred) could run on each
test machine.

4.2 Metrics and Workload
We define disk throughput as the total disk bandwidth
(byte/s) used by the server, and network throughput as
the total network bandwidth (byte/s) used to send data
over the network to clients (with unicast). We can ap-
proximate the miss ratio from the ratio of disk throughput

Background

Process

Client Bitmaps

FIFO queues

Shared Memory

Data

Disk

Buffer

Cache
 Network

Interface

Server Process N

Server Process 1

1

N

Figure 6: Simplified diagram outlining the prototype implementation of the
Circus download server. Solid arrows show data transfers, while dotted arrows
illustrate transfer of control.

10Mb/s

workstation

1.5Mb/s per flow

44.7Mb/s per flow

Gb/s switch

workstation

server

dummynet

download

: client instance

per flow

Figure 7: Multiple client instances corresponding to differ-
ent download requests are partitioned across several worksta-
tions according to their network link capacity. The server is
connected to the client workstations through a gigabit Ethernet
switch. Dummynet is used to control the per flow rate from the
server to each client workstation.

to the network throughput, ignoring locality effects. A
low ratio indicates that disk block fetches are contribut-
ing to multiple outstanding transfers for a shared file.
The reduced disk activity can improve download time
and server throughput (the download completion rate).

We assume Poisson arrivals for the download requests
because they closely match real workloads studied in pre-
vious work [3]. For the definition of the system load �
during steady-state operation, we take the delivered net-
work throughput as the aggregate transfer rate requested
by the users; ideally, each download request should be
served at the client’s network link rate. Based on the
analysis of Section 2, we consider the server’s network
bandwidth to be the limiting resource: maximum sys-
tem load � 2 9

occurs when the arrival rate generates
network throughput that saturates the server’s network
link. Depending on the file sizes, this load definition
leads to different request arrival rates and different in-
terarrival gaps. We derive the mean request interarrival
time corresponding to the maximum system load from
the ratio of the average file size over the outgoing server
link capacity. For lower loads, the interarrival gap is the
ratio of the peak load interarrival time to the load level � .
4.3 Measurement Environment
All experiments use Intel PIII-based systems with 256
MB main memory running FreeBSD 4.5 at 733 MHz
or 866 MHz. A group of client workstations run multi-
ple client instances to generate request loads to a server.
On the server node, we use Dummynet [25] to specify
the per flow transfer rate from the server node to each
client (Figure 7). We store the file data in a 18GB Sea-
gate Cheetah 10K RPM disk with sequential transfer rate
26-40MByte/s. The systems are equipped with both 100
Mbit/s and 1 Gbit/s Ethernet interfaces connected via two
separate switches. File network transfers take place over
the gigabit switch using jumbo Ethernet packets (9000

bytes) to reduce network protocol overhead.
We focus on handling download requests of files with

total storage footprint that exceeds the memory of the
server. Most of our experiments use files of size 512MB.
Our results also apply when files fit in server memory
but the aggregate footprint exceeds server memory. Due
to reported correlations between the transferred file size
and the client link capacity [31], and to reduce experi-
mentation time, we conservatively consider clients with
broadband transfer rates. For each different client link
capacity that we support, we dedicate a separate client
node and configure its connection speeds to the server
through Dummynet.

From recent studies in peer-to-peer network systems
it has been found that 20-30% of the users have down-
stream network links less than 1Mbit/s, about 80-90%
have downstream links less than 10Mbit/s, and the re-
maining 10-20% have links that exceed 10Mbit/s [28].
In accordance with the above results and the fact that
broadband user population tends to increase over time,
we specified three groups of clients with 1.544 Mbit/s
(T1), 10 Mbit/s (we call it 10T), and 44.736 Mbit/s (T3).
We experiment with each of these groups separately, and
also with a mixed workload (Mx) where 20% of the users
are of type T1, 60% are of type 10T, and the remaining
20% are type T3. In several cases, we focus on 50%-50%
mixes of two client groups. We allow each experiment
to run for between E� hour and

9 E� hour, depending on
the network link capacity of the clients. Measurements
start after one or more initial download requests com-
plete. Each experiment is repeated until the half-length
of the 95% confidence interval of the measured network
throughput lies within 5% of the estimated mean value
across different trials.

0 20 40 60

Load (%)

0
10
20
30
40
50
60
70
80

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
/s

) T1/512MB
Out of Order
Sequential

(a)

0 20 40 60

Load (%)

0
10
20
30
40
50
60
70
80

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
/s

) 10T/512MB
Out of Order
Sequential

(b)

0 20 40 60

Load (%)

0
10
20
30
40
50
60
70
80

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
/s

) T3/512MB
Out of Order
Sequential

(c)

0 20 40 60

Load (%)

0
10
20
30
40
50
60
70
80

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
/s

) Mx/512MB
Out of Order
Sequential

(d)

Figure 8: We compare the network throughput of the unmodified (sequential) and Circus (out-of-order) download server implementations at
increasing system loads using 512MB file requests. We consider the client link capacity to be equal to (a) 1.5Mbit/s, (b) 10Mbit/s, (c) 44.7Mbit/s,
and (d) a mix of 20% 1.5Mbit/s, 60% 10Mbit/s and 20% 44.7Mbit/s. The out-of-order approach more than doubles the network throughput at higher
loads. The higher the network throughput, the better the system throughput as well.

0 20 40 60

Load (%)

0

5

10

15

D
is

k
T

hr
ou

gh
pu

t (
M

B
/s

)

T1/512MB
Sequential
Out of Order

(a)

0 20 40 60

Load (%)

0

5

10

15

D
is

k
T

hr
ou

gh
pu

t (
M

B
/s

)

10T/512MB
Sequential
Out of Order

(b)

0 20 40 60

Load (%)

0

5

10

15

D
is

k
T

hr
ou

gh
pu

t (
M

B
/s

)

T3/512MB
Sequential
Out of Order

(c)

0 20 40 60

Load (%)

0

5

10

15

D
is

k
T

hr
ou

gh
pu

t (
M

B
/s

)

Mx/512MB
Sequential
Out of Order

(d)

Figure 9: At low and moderate loads, the disk throughput with out-of-order transfers remains roughly equal to the transfer rate of the most
demanding individual client across different client link rates (a-d). With sequential transfers, the disk is highly utilized and becomes a bottleneck as
shown in Figure 8 (lower disk throughput is better for a given network throughput).

5 Experimental Results
We compare the performance of the Circus prototype
with an unmodified FreeBSD 4.5 ftpd implementation.
The experiments investigate alternative client features,
network conditions, file characteristics, and server con-
figuration parameters. We find Circus to improve the
server throughput and file download time when files are
shared by multiple clients.

5.1 Client Link Capacity
A key challenge in the design of a download server is to
adapt automatically to different client rates without man-
ual tuning. The closer the transfer rates of two clients
match, the easier it becomes to exploit the data sharing
among them. As the difference increases, it becomes
more difficult to share cached data effectively.

Figure 8 depicts the network throughput of an un-
modified (sequential) and a Circus (out-of-order) server
as clients with different rates download a single file of
size 512MB. In typical ftpd implementations (including
the one that we use here), each active download request

spawns an extra server process with resident memory
space of about 1MB. Consequently, we show only T1
measurements for up to 30-40% load, roughly correspond-
ing to about 200 concurrent clients. Beyond this point
memory paging interferes with the measurements.

In all the three cases of a single client link rate (a-c),
the out-of-order network throughput increases propor-
tionally with the system load. In particular, at 40% load,
we expect to receive 51.2MByte/s throughput, which is
roughly what we observe in cases (b) and (c). The mea-
sured throughput is somewhat lower (in case d) with clients
of different rates on the same server, but still reaches
50MByte/s at 50% load. Quite remarkably, the sequen-
tial system only matches the out-of-order performance at
10% load in the four cases, and never exceeds 30MByte/s
(on average) as the load increases.

Figure 9 shows disk throughput for the same exper-
iment. With sequential transfers, the disk is highly uti-
lized even at low loads, regardless of the client rates. In
contrast, with out-of-order transfers (a-c) the disk through-
put drops to the transfer rate of a single client. For ex-
ample the disk throughput is about 1MByte/s with 10T
transfers (b), an order of magnitude lower than the se-

0 20 40 60

Load (%)

0

1000

2000

3000

4000
D

ow
nl

oa
d

T
im

e
(s

)

T1/512MB

Sequential
Out of Order

(a)

0 20 40 60

Load (%)

0

1000

2000

3000

4000

D
ow

nl
oa

d
T

im
e

(s
)

10T/512MB
Sequential
Out of Order

(b)

0 20 40 60

Load (%)

0

1000

2000

3000

4000

D
ow

nl
oa

d
T

im
e

(s
)

T3/512MB
Sequential
Out of Order

(c)

0 20 40 60

Load (%)

0

1000

2000

3000

4000

D
ow

nl
oa

d
T

im
e

(s
)

Mx-T1/512MB

Sequential
Out of Order

(d)

0 20 40 60

Load (%)

0

1000

2000

3000

4000

D
ow

nl
oa

d
T

im
e

(s
)

Mx-10T/512MB
Sequential
Out of Order

(e)

0 20 40 60

Load (%)

0

1000

2000

3000

4000

D
ow

nl
oa

d
T

im
e

(s
)

Mx-T3/512MB
Sequential
Out of Order

(f)

Figure 10: With out-of-order transfers, download requests take almost constant time to complete as the load increases. When file data transfers
are served sequentially, however, the download duration increases significantly as a function of the system load. We consider the case where all
clients have the same network link capacity (a-c), and when clients of different link capacities are served by a single server (d-f).

quential case. When we mix clients of different capac-
ities (d), this behavior holds at low loads with the disk
throughput about 5.6 MByte/s. At higher loads, the pro-
portion of non-sharing (independent) clients increases,
raising the disk throughput accordingly. Figure 10 fur-
ther verifies these observations. With out-of-order trans-
fers, the download latencies remain roughly constant at
different system loads, according to the client rates. But
when sequential transfers are used, the download latency
increases rapidly with the system load.

5.2 Transferred File Size
This section investigates how the file size affects the sys-
tem performance. Figure 11(a) shows the server network
throughput in a file size range between 256MB and 1GB.
We observe that, with out-of-order transfers, the network
throughput remains above 50MByte/s, consistent with
the 40% offered load. Sequential transfers cause the net-
work throughput to drop below 20MByte/s, approach-
ing the disk throughput. As a result, download latency
(not shown) increases dramatically for sequential trans-
fers to several tens of minutes. For the out-of-order case
all downloads complete within a few minutes at all the
file sizes that we examined.

5.3 Multiple Files
Even though it is likely that only a few files will be in
heavy demand by the clients, we investigate how the per-
formance of the system is affected when the number of
popular files increases. We consider 1 to 16 different files
of 512 MB each, all stored on a single server disk, and re-
quested with equal probability. The clients receive data
over 10Mbit/s links, and the system is at 40% load. In
Figure 12(a), we illustrate the network throughput of the
server with sequential and out-of-order transfers respec-
tively. In the out-of-order case, the measured throughput
remains roughly 50 MByte/s with up to 8 files, and drops
slightly to 48MB/s with 16 files. From Figure 12(b), the
average disk throughput increases linearly with the num-
ber of files up to eight, and reaches 10MB/s at 16 files.
This behavior is expected because the number of disk ac-
cess streams increases with more active files, and the disk
throughput begins to limit the system as it approaches
10MByte/s. With sequential transfers, the disk through-
put always limits the system and performance only wors-
ens as the number of files increases.

5.4 Round-trip Delay and Packet Loss
Packet loss rate and propagation delay can vary signifi-
cantly in a wide-area network depending on the physical
span and the operating conditions of the network. We in-

0 500 1000

File Size (MB)

0

10

20

30

40

50

60

70

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
/s

)

T3/40% Load
Out of Order
Sequential

(a)

0 500 1000

File Size (MB)

0

5

10

15

D
is

k
T

hr
ou

gh
pu

t (
M

B
/s

)

T3/40% Load
Sequential
Out of Order

(b)

Figure 11: Server network throughput and disk throughput for trans-
fers along T3 links of a file with size between 256MB and 1GB. The
system load is set equal to 40%. With out-of-order transfers the the net-
work throughput is always higher and the disk throughput is constant
regardless of the size of the file.

0 5 10 15

Number of Files

0

10

20

30

40

50

60

70

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
/s

) 10T/40% Load
Out of Order
Sequential

(a)

0 5 10 15

Number of Files

0

5

10

15

D
is

k
T

hr
ou

gh
pu

t (
M

B
/s

)

10T/40% Load
Sequential
Out of Order

(b)

Figure 12: Server network throughput and disk throughput when the
number of concurrently requested files varies from 1 to 16. The system
load is 40% and the file size is always 512MB. All files are requested
with equal probability.

0

1000

2000

3000

4000

A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

(s
)

T1-T3/512MB

10 30
base

10 30
delay

10 30
loss

10 30
delay+loss

Out of Order
Sequential

T3
T1

Load (%)

(a)

0

10

20

30

40

50

60

70

80

90

100

M
is

s R
at

io
 (%

)

T1-T3/512MB

10 30
base

10 30
delay

10 30
loss

10 30
delay+loss

Sequential
Out of Order

Load (%)

(b)

Figure 13: In the base case we assume round-trip delay less than 1ms and packet loss close to 0%. In the delay case we increase the round-trip
delay to 75ms and in the loss case we increase the loss rate to 10%, correspondingly, with respect to the base case. Both the download time and
the miss ratio of sequential and out-of-order transfers can be affected when combining round-trip delay of 75ms with packet loss rate of 10%
(delay+loss). T1 and T3 links are used with equal probability to connect a single server to multiple clients.

vestigated the impact of such factors to file transfers by
experimenting with round-trip times of about

9
and 75

ms, and with packet loss rates about ^�� and 10%, re-
spectively, using Dummynet. In Figure 13, we measure
the download time and server miss ratio when transfer-
ring a 512MB file over T1 and T3 links from the same
server. When packet loss of 10% and delay of 75ms are
combined in out-of-order transfers, download time over
T3 links increases by an order of magnitude approaching
the level of sequential transfers. This ten-fold increase
from the base case can be attributed to the mechanism
used by the congestion avoidance algorithm to recover
the congestion window at the sender.

Longer round-trip delays increase the recovery time
and the wasted network bandwidth. This can be explained
by the TCP operation: packet losses lead to triple du-

plicate acknowledgments (rather than timeouts), and the
congestion window increases by at most one data seg-
ment every round-trip time [21]. Individual sequential
transfers have low throughput due to the disk bottleneck,
and are not affected further at low load. However, rais-
ing the system load from 10% to 30% doubles the time
of T3 sequential transfers, while leaving the out-of-order
transfer time almost unchanged. When combining de-
lay and loss with out-of-order transfers, disk through-
put drops because data retransmissions hit in the buffer
cache. We don’t observe similar effects for sequential
transfers, which provides additional evidence about the
poor disk access locality of this policy.

1 10 100 1000

Block Size (KB)

0

10

20

30

40

50

60

70

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
/s

) 10T-T3/512MB
40%
20%

(a)

1 10 100 1000

Block Size (KB)

0

10

20

30

M
is

s R
at

io
 (%

)

10T-T3/512MB

20%
40%

(b)

Figure 14: We examine the sensitivity of the system to the block
size parameter, when mixing equiprobable requests from clients with
10T and T3 links requesting a file of 512MB at system load 20% and
40%. Both the network throughput and the miss ratio are adversely
affected by block sizes smaller than 64KB, but remain insensitive to
larger values.

1 10 100

Queue Length Limit

0

10

20

30

40

50

60

70

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
/s

) 10T-T3/512MB
40%
20%

(a)

1 10 100

Queue Length Limit

0

10

20

30

M
is

s R
at

io
 (%

)

10T-T3/512MB

20%
40%

(b)

Figure 15: We investigate the effect of the queue length limit, when
mixing equiprobable requests from clients with 10T and T3 links for a
512MB file at different loads. As the queue length limit increases, the
disk throughput also grows leading to higher miss ratio. Eventually, the
disk bandwidth becomes bottleneck which makes the server network
throughput to drop.

40 50 60 70 80 90

Client Threshold (%)

0

200

400

600

800

1000

D
ow

nl
oa

d
T

im
e

(s
)

Mixed-T3/512MB
40%
20%

(a)

40 50 60 70 80 90

Client Threshold (%)

0

10

20

30

40

M
is

s R
at

io
 (%

)

T1-T3/512MB

20%
40%

(b)

Figure 16: We examine the sensitivity of the system performance
to the client threshold when mixing download requests over T1 and T3
network links. We found the client thresholds equal to 75% or higher to
keep both the download time over T3 links and the miss ratio low.

0 5 10 15

Leapfront Factor

0

10

20

30

40

50

60

70

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

B
/s

) 10T-T3/512MB
40%
20%

(a)

0 5 10 15

Leapfront Factor

0

10

20

30

M
is

s R
at

io
 (%

)

10T-T3/512MB

20%
40%

(b)

Figure 17: We show the effect of the leapfront factor using equiprob-
able download requests over 10T and T3 lines at different system loads.
As the leapfront factor increases, network throughput drops and miss
ratio surges, especially at high system load.

5.5 Sensitivity to System Parameters
This section examines how sensitive the system behav-
ior is to important configuration parameters. We did ex-
tensive experimentats to ensure that the system remains
robust across a wide range of workloads, but we include
only a few representative measurements here. Overall,
the system behavior is affected by the configuration pa-
rameters below, but remains stable when the parameters
remain within the ranges that we suggest.

Block Size. The block size is a configurable parameter
that specifies the unit of disk access and network trans-
fer requests in the server. Its value affects the utilization
of the devices, the overhead involved in the operation of
the system, and the overall server throughput. In Fig-
ure 14, we illustrate the network throughput and miss ra-
tio across different system loads for block sizes ranging
between 4KB and 1MB. We observe that both the mea-
sured metrics remain constant with block size larger than
16KB and 64KB at low and high load, respectively. Low

loads show higher miss ratios because there is less shar-
ing. Smaller block sizes increase the disk access over-
head and block selection overhead. In general, we found
the block size equal to 64KB to perform well, and we
used it in all the other experiments.

Queue Length Bound. Figure 15 shows the effect of
varying the bounds on the block queue FIFOs for ac-
tive clients. Shorter queues make the system more adap-
tive to the variability of the client behavior, because the
blocks sent to each client are chosen based on recent sys-
tem conditions. On the other hand, large queue lengths
can increase the throughput of the system by keeping
each client’s network path fully pipelined. We exam-
ine the impact of the queue length limit on the perfor-
mance of the system using 512MB download requests
over equiprobable 10T and T3 links. With longer queues
the miss ratio increases, the disk bandwidth becomes a
bottleneck, and the server network throughput drops. This
is expected because longer queue lengths can lead to stale
requests for blocks that have been evicted from the cache

and incur extra disk activity. In all the other experiments,
the queue length limit is set equal to 5.

Client Threshold. The client threshold controls the cre-
ation of independent clients according to the percentage
of file blocks the client has received. From our experi-
ments we found the system to perform well with client
threshold around 0.75. Lower client thresholds reduce
data sharing, increase disk access activity and lead to
longer download duration (Figure 16), while higher client
thresholds make the system operation less stable espe-
cially with large number of clients.

Leapfront Distance. The leapfront distance determines
when a client is allowed to play the role of a frontrun-
ner depending on how far ahead from the file cursor the
client cursor has moved. For convenience, we introduce
the leapfront factor as the ratio of the leapfront distance
over the active length. In Figure 17, we notice that as the
leapfront factor grows larger than 1, the network through-
put drops and the miss ratio increases. Setting the leapfront
distance equal to the active length gives good perfor-
mance by allowing the active region to move smoothly
forward; larger leapfront distances tend to reduce spa-
tial locality among different clients and lead to lower
throughput. The active length was set equal to 16MB
throughout our study.

6 Related Work
File Transfer and File Sharing. FTP and HTTP trans-
fer objects sequentially, relying on the TCP transport to
preserve byte ordering. With marker blocks [23] it is pos-
sible to restart a transmission after a failure. Raman et
al. improve the interactive transfer of images over the
Internet by delivering data to the client as they arrive,
weakening the in-order abstraction of TCP [24]. Diot
and Gagnon examine benefits of out-of-sequence packet
processing [15], but do not consider large file delivery or
interactions with storage devices.

Many wide-area storage systems allow a client to down-
load different parts of a file from multiple servers (e.g.,
BitTorrent [14]); these clients resequence the data to tol-
erate out-of-order delivery. Acharya et al. propose a
server architecture for repetitive transmission of data over
a broadcast channel [1]. The frequency of transmitted
data is determined by data popularity across the served
client population.

Forward Error Correction. Digital Fountain [9] en-
codes content with forward error correcting (FEC) codes
(e.g., Tornado codes) for distribution over a multicast
network. FEC allows a client to reconstruct a file once
it has received a minimum number of distinct blocks.
This approach eliminates the need for acknowledgments

in a multicast setting. The system can be extended to
transport large files to a client from multiple collaborat-
ing sources in overlay networks [8].

In a unicast network, FEC encoding can be applied to
improve caching efficiency at the server [26]. Since the
client can reconstruct the data from any sufficiently large
subset of the encoded blocks, a block fetched from disk
may be useful to multiple clients with different request
arrival times and different rates. If a block is lost, an-
other may be sent in its place, avoiding the need for the
server to buffer data for retransmission. However, dupli-
cate blocks waste client bandwidth; in a typical heteroge-
neous environment, where client receiving rates can dif-
fer by several orders of magnitude, the encoded version
of the transmitted file is much larger than the original
to limit the probability that any arbitrary block is a du-
plicate for some active client [9, 26]. Recent theoretical
work begins to address this problem [19]; if a satisfactory
solution is found, then FEC could meet our objectives
for downloading large files with a high degree of shar-
ing with low network impact, e.g., when multicasting is
available.

Circus demonstrates a technique with similar goals
for content distribution: to maximize the advantage of
data sharing across concurrent requests, while allowing
clients at different rates to reassemble the requested file
quickly and efficiently. However, Circus does not use
FEC codes, and it is effective for unicast, although it
could also benefit from multicast.

Stream Merging Methods. A class of merging meth-
ods for multicast delivery of streaming media allows a
client to receive data transmitted concurrently to other
clients [17, 18]. These file segmentation schemes bal-
ance the server network throughput, the client network
throughput, and the playback initiation latency. Those
schemes are significantly different from Circus because
they have been specifically designed to support real-time
delivery guarantees over reliable multicast-enabled net-
works assuming a fixed receiving rate for each client. In
contrast, Circus supports efficient file (or file segment)
download transfers over unicast networks for clients with
different rates, and exploits the complementary technique
of block reordering.

The insights underlying our approach are related to
Steere’s work with asynchronous set iterators [29], al-
though our approach does not affect the order in which
data is delivered to a client application.

7 Conclusions
This paper explores opportunistic block reordering to ex-
ploit the data sharing among concurrent file transfers. We
introduce the Circus algorithm for scheduling disk access

and reordered network transfers, and evaluate an imple-
mentation in a modified FTP file server and client under
synthetic file access workloads. We conclude that block
reordering can significantly improve server cache perfor-
mance for large, shared files. The average file down-
load time with Circus remains close to minimum across
the workloads, and is significantly lower than with con-
ventional sequential file download. Additionally, Circus
more than doubles the server network throughput when
there is significant sharing, and reduces the required disk
bandwidth by an order of magnitude in some cases.

8 Acknowledgments
We thank Balachander Krishnamurthy for an early dis-
cussion, and Amin Vahdat for helpful comments on a
draft. Darrell Anderson, Wei Jin, and Ken Yocum also
provided useful feedback. Miriam O’ Mahony and David
Becker offered valuable technical support.

References
[1] Acharya, S., Franklin, M., and Zdonik, S. Balancing Push and

Pull for Data Broadcast. In ACM SIGMOD (Tuscon, AZ, May
1997), pp. 183–194.

[2] Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., Fos-
ter, I., Kesselman, C., Meder, S., Nefedova, V., Quesnal, D., and
Tuecke, S. Data Management and Transfer in High Performance
Computational Grid Environments. Parallel Computing Journal
28, 5 (May 2002), 749–771.

[3] Almeida, J. M., Krueger, J., Eager, D. L., and Vernon, M. K.
Analysis of Educational Media Server Workloads. In Intl Work-
shop on Network and Operating System Support for Digital Audio
and Video (Port Jefferson, NY, June 2001), pp. 21–30.

[4] Anastasiadis, S. V., Sevcik, K. C., and Stumm, M. Modular and
Efficient Resource Management in the Exedra Media Server. In
USENIX Symposium on Internet Technologies and Systems (San
Francisco, CA, Mar. 2001), pp. 25–36.

[5] Arlitt, M. F., and Williamson, C. L. Web server workload char-
acterization: the search for invariants. In ACM SIGMETRICS
(Philadelphia, PA, May 1996), pp. 126–137.

[6] Baker, M. G., Hartman, J. H., Kupfer, M. D., Shirriff, K. W., and
Ousterhout, J. K. Measurements of a distributed file system. In
ACM Symposium on Operating Systems Principles (Oct. 1991),
pp. 198–212.

[7] Barford, P., and Crovella, M. Generating Representative Web
Workloads for Network and Server Performance Evaluation. In
ACM SIGMETRICS (Madison, WI, July 1998), pp. 151–160.

[8] Byers, J., Considine, J., Mitzenmacher, M., and Rost, S. Informed
Content Delivery Across Adaptive Overlay Networks. In ACM
SIGCOMM (Pittsburgh, PA, Aug. 2002), pp. 47–60.

[9] Byers, J. W., Luby, M., Mitzenmacher, M., and Rege, A. A Dig-
ital Fountain Approach to Reliable Distribution of Bulk Data. In
ACM SIGCOMM (Vancouver, BC, Sept. 1998), pp. 57–67.

[10] Cao, P., Felten, E. W., Karlin, A., and Li, K. A Study of
Integrated Prefetching and Caching Strategies. In SIGMET-
RICS/Peformance ’95 (May 1995).

[11] Chesire, M., Wolman, A., Voelker, G. M., and Levy, H. M.
Measurement and Analysis of a Streaming-Media Workload. In
USENIX Symposium on Internet Technologies and Systems (San
Francisco, CA, Mar. 2001), pp. 1–12.

[12] Clark, D. D., and Tennenhouse, D. L. Architectural Consider-
ations for a New Generation of Protocols. In ACM SIGCOMM
(Philadelphia, PA, Sept. 1990), pp. 200–208.

[13] Coffman, K., and Odlyzko, A. M. Internet growth: Is there a
”Moore’s Law” for data traffic? In Handbook of Massive Data
Sets. Kluwer Academic, 2002, pp. 47–93.

[14] Cohen, B. Incentives Build Robustness in Bittorrent, May 2003.
bitconjurer.org.

[15] Diot, C., and Gagnon, F. Impact of out-of-sequence processing
on the performance of data transmission. Computer Networks,
31 (1999), 475–492.

[16] Doyle, R. P., Chase, J. S., Gadde, S., and Vahdat, A. M. The
Trickle-Down Effect: Web Caching and Server Request Distribut
ion. In Intl Workshop on Web Caching and Content Delivery
(June 2001).

[17] Eager, D., Vernon, M., and Zahorjan, J. Minimizing Bandwidth
Requirements for On-Demand Data Delivery. IEEE Transactions
on Knowledge and Data Engineering 13, 5 (September/October
2001), 742–757.

[18] Jin, S., and Bestavros, A. Scalability of Multicast Delivery for
Non-sequential Streaming Access. In ACM SIGMETRICS (Ma-
rina Del Rey, CA, June 2002), pp. 97–107.

[19] Luby, M. LT Codes. In IEEE Symposium on Foundations of
Computer Science (Vancouver, BC, Nov. 2002), pp. 271–282.

[20] Megiddo, N., and Modha, D. S. ARC: A Self-tuning, Low Over-
head Replacement Cache. In Proc. of the 2nd USENIX Confer-
ence on File and Storage Technologies (FAST 03) (March 2003).

[21] Padhye, J., Firoiu, V., Towsley, D. F., and Kurose, J. F. Modeling
TCP Reno Performance: A Simple Model and Its Empirical Vali-
dation. IEEE/ACM Transactions on Networking 8, 2 (Apr. 2000),
133–145.

[22] Pai, V. S., Aron, M., Banga, G., Svendsen, M., Druschel, P.,
Zwaenepoel, W., and Nahum, E. Locality-aware Request Distri-
bution in Cluster-based Network Servers. In ACM ASPLOS (San
Jose, CA, Oct. 1998), pp. 205–216.

[23] Postel, J., and Reynolds, J. File Transfer Protocol (FTP), Oct.
1985. USC/ISI, Network Working Group RFC 959.

[24] Raman, S., Balakrishnan, H., and Srinivasan, M. An Image
Transport Protocol for the Internet. In Intl Conf. on Network Pro-
tocols (Osaka, Japan, Nov. 2000), pp. 209–219.

[25] Rizzo, L. Dummynet: A simple approach to the evaluation of net-
work protocol. ACM Communication Review 47, 1 (Jan. 1997),
31–41.

[26] Rost, S., Byers, J., and Bestavros, A. The Cyclone Server Archi-
tecture: Streamlining Delivery of Popular Content. In Intl Work-
shop on Web Caching and Content Distribution (Boston, MA,
June 2001).

[27] Saroiu, S., Gummadi, P. K., Dunn, R. J., Gribble, S. D., and Levy,
H. M. An Analysis of Internet Content Delivery Systems. In
USENIX Symposium on Operating Systems Design and Imple-
mentation (Boston, MA, Dec. 2002), pp. 315–328.

[28] Saroiu, S., Gummadi, P. K., and Gribble, S. D. A measurement
study of peer-to-peer file sharing systems. In SPIE/ACM Multi-
media Computing and Networking Conference (Jan. 2002).

[29] Steere, D. C. Exploiting the Non-Determinism and Asynchrony
of Set Iterators to Reduce Aggregate File I/O Latency. In
ACM Symposium on Operating Systems Principles (Oct. 1997),
pp. 252–263.

[30] Wang, L., Pai, V. S., and Peterson, L. L. The Effectiveness of Re-
quest Redirection on CDN Robustness. In USENIX Symposium
on Operating Systems Design and Implementation (Boston, MA,
Dec. 2002), pp. 345–360.

[31] Zhang, Y., Breslau, L., Paxson, V., and Shenker, S. On the Char-
acteristics and Origins of Internet Flow Rates. In ACM SIG-
COMM (Pittsburgh, PA, Aug. 2002).

