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Abstract

Row-Diagonal Parity (RDP) is a new algo-
rithm for protecting against double disk fail-
ures. It stores all data unencoded, and uses
only exclusive-or operations to compute par-
ity. RDP is provably optimal in computa-
tional complexity, both during construction
and reconstruction. Like other algorithms,
it is optimal in the amount of redundant in-
formation stored and accessed. RDP works
within a single stripe of blocks of sizes nor-
mally used by file systems, databases and disk
arrays. It can be utilized in a fixed (RAID-4)
or rotated (RAID-5) parity placement style.
It is possible to extend the algorithm to en-
compass multiple RAID-4 or RAID-5 disk ar-
rays in a single RDP disk array. It is possi-
ble to add disks to an existing RDP array
without recalculating parity or moving data.
Implementation results show that RDP per-
formance can be made nearly equal to single
parity RAID-4 and RAID-5 performance.

1 Introduction

Disk striping techniques [1, 2] have been
used for more than two decades to reduce
data loss due to disk failure, while improv-
ing performance. The commonly used RAID
techniques, RAID-4 and RAID-5, protect
against only a single disk failure. Among
the standard RAID techniques, only mirrored
stripes (RAID-10, RAID-01) provide protec-
tion against multiple failures. However, they
do not protect against double disk failures
of opposing disks in the mirror. Mirrored
RAID-4 and RAID-5 protect against higher
order failures [4]. However, the efficiency of
the array as measured by its data capacity

divided by its total disk space is reduced. In-
creasing the redundancy by small increments
per stripe is more cost effective than adding
redundancy by replicating the entire array [3].

The dramatic increase in disk sizes, the rel-
atively slower growth in disk bandwidth, the
construction of disk arrays containing larger
numbers of disks, and the use of less reliable
and less performant varieties of disk such as
ATA combines to increase the rate of double
disk failures, as will be discussed in Section 3.
This requires the use of algorithms that can
protect against double disk failures to en-
sure adequate data integrity. Algorithms that
meet information theory’s Singleton bound
[6] protect against two disk failures by adding
only two disks of redundancy to the num-
ber of disks required to store the unprotected
data. Good algorithms meet this bound, and
also store the data unencoded, so that it can
be read directly off disk.

A multiple orders of magnitude improve-
ment in the reliability of the storage system
can simplify the design of other parts of the
system for robustness, while improving over-
all system reliability. This motivates the use
of a data protection algorithm that protects
against double disk failures. At the same
time, it is desirable to maintain the simplic-
ity and performance of RAID-4 and RAID-5
single parity protection.

This paper describes a new algorithm,
called Row-Diagonal Parity, or RDP, for pro-
tection against double failures. RDP applies
to any multiple device storage system, or even
to communication systems. In this paper, we
focus on the application of RDP to disk array
storage systems (RAID).

RDP is optimal both in computation and
in I/O. It stores user data in the clear, and



requires exactly two parity disks. It uti-
lizes only exclusive-or operations during par-
ity construction as well as during reconstruc-
tion after one or two failures. Therefore, it
can be implemented easily either in dedicated
hardware, or on standard microprocessors. It
is also simple to implement compared to pre-
vious algorithms. While it is difficult to mea-
sure the benefit of this, we were able to im-
plement the algorithm and integrate it into
an existing RAID framework within a short
product development cycle.

In this paper, we make the case that the
need for double disk failure protection is in-
creasing. We then describe the RDP algo-
rithm, proving its correctness and analysing
its performance. We present some simple ex-
tensions to the algorithm, showing how to
add disks to an existing array, and how to
protect multiple RAID-4 or RAID-5 arrays
against double failures with a single extra
parity disk. Finally, we present some observa-
tions from our experience implementing RDP,
and give some performance results for that
implementation.

2 Related Work

There are several known algorithms that
protect data against two or more disk fail-
ures in an array of disks. Among these are
EVENODD [5], Reed Solomon (P+Q) era-
sure codes [6], DATUM [7] and RM2 [8].
RDP is most similar to EVENODD. RM2 dis-
tributes parity among the disks in a single
stripe, or equivalently, adds stripes of parity
data that are interspersed among the data
stripes. EVENODD, DATUM, and Reed-
Solomon P+Q all share the property that the
redundant information can be stored sepa-
rately from the data in each stripe. This al-
lows implementations that have dedicated re-
dundant disks, leaving the other disks to hold
only data. This is analogous to RAID-4, al-
though we have two parity disks, not one. We
will call this RAID-4 style parity placement.
Alternatively, the placement of the redun-
dant information can be rotated from stripe
to stripe, improving both read and write per-
formance. We will call this RAID-5 style par-

ity placement.

Both EVENODD and Reed-Solomon P+Q
encoding compute normal row parity for one
parity disk. However, they employ different
techniques for encoding the second disk of re-
dundant data. Both use exclusive-or oper-
ations, but Reed-Solomon encoding is much
more computationally intensive than EVEN-
ODD [5]. DATUM uses encodings that gen-
erate any number of redundant information
blocks. It allows higher order failure toler-
ance, and is similar to Reed-Solomon P+Q
encoding in the case of protection against two
disk failures.

RDP shares many of the properties of
EVENODD, DATUM, and Reed-Solomon en-
coding, in that it stores its redundant data
(parity) separately on just two disks, and
that data is stored in the clear on the other
disks. Among the previously reported algo-
rithms, EVENODD has the lowest compu-
tational cost for protection against two disk
failures. RDP improves upon EVENODD
by further reducing the computational com-
plexity. The complexity of RDP is prov-
ably optimal, both during construction and
reconstruction. Optimality of construction
is important as it is the normal, failure free
operational mode. However, the optimality
of reconstruction is just as important, as it
maximizes the array’s performance under de-
graded failure conditions [9].

3 Double Disk Failure Modes
and Analysis

Double disk failures result from any com-
bination of two different types of single disk
failure. Individual disks can fail by whole-
disk failure, whereby all the data on the disk
becomes temporarily or permanently inacces-
sible, or by media failure, whereby a small
portion of the data on a disk becomes tem-
porarily or permanently inaccessible. Whole-
disk failures may result from a problem in
the disk itself, or in the channel or network
connecting the disk to its containing system.
While the mode and duration of the failures
may vary, the class of failures that make the



data on a disk unaccessible can be catego-
rized as one failure type for the purposes of re-
covery. Whole-disk failures require the com-
plete reconstruction of a lost disk, or at least
those portions of it that contain wanted data.
This stresses the I/O system of the controller,
while adding to its CPU load. (We will refer
to the unit that performs construction of par-
ity and reconstruction of data and parity as
the controller.)

To maintain uninterrupted service, the con-
troller has to serve requests to the lost disk
by reconstructing the requested data on de-
mand. At the same time, it will reconstruct
the other lost data. It is desirable during
reconstruction to have a low response time
for the on-demand reconstruction of individ-
ual blocks that are required to service reads,
while at the same time exhibiting a high
throughput on the total disk reconstruction.

Whole-disk failure rates are measured as an
arrival rate, regardless of the usage pattern of
the disk. The assumption is that the disk can
go bad at any time, and that once it does,
the failure will be noticed. Whole disk fail-
ure rates are the reciprocal of the Mean Time
To Failure numbers quoted by the manufac-
turers. These are typically in the range of
500,000 hours.

Media failures are qualitatively and quan-
titatively different from whole-disk failures.
Media failures are encountered during disk
reads and writes. Media failures on write are
handled immediately, either by the disk or by
the controller, by relocating the bad block to
a good area on disk. Media failures on read
can result in data loss. While a media failure
only affects a small amount of data, the loss of
a single sector of critical data can compromise
an entire system. Handling media failures on
read requires a short duration recovery of a
small amount of missing data. The emphasis
in the recovery phase is on response time, but
reconstruction throughput is generally not an
issue.

Disks protect against media errors by relo-
cating bad blocks, and by undergoing elabo-
rate retry sequences to try to extract data
from a sector that is difficult to read [10].
Despite these precautions, the typical media

error rate in disks is specified by the man-
ufacturers as one bit error per 104 to 10°
bits read, which corresponds approximately
to one uncorrectable error per 10TBytes to
100TBytes transferred. The actual rate de-
pends on the disk construction. There is both
a static and a dynamic aspect to this rate.
It represents the rate at which unreadable
sectors might be encountered during normal
read activity. Sectors degrade over time, from
a writable and readable state to an unread-
able state.

A second failure can occur during recon-
struction from a single whole-disk failure. At
this point, the array is in a degraded mode,
where reads of blocks on the failed disk must
be satisfied by reconstructing data from the
surviving disks, and commonly, where the
contents of the failed disk are being recon-
structed to spare space on one or more other
disks. If we only protect against one disk fail-
ure, a second complete disk failure will make
reconstruction of a portion of both lost disks
impossible, corresponding to the portion of
the first failed disk that has not yet been re-
constructed. A media failure during recon-
struction will make reconstruction of the two
missing sectors or blocks in that stripe im-
possible. Unfortunately, the process of recon-
struction requires that all surviving disks are
read in their entirety. This stresses the array
by exposing all latent media failures in the
surviving disks.

The three double disk failure combina-
tions are:  whole-disk/whole-disk, whole-
disk/media, and media/media. A properly
implemented double failure protection algo-
rithm protects against all three categories of
double failures. In our analysis of failure
rates, we discount media/media failures as
being rare relative to the other two double
failure modes. Whole-disk/whole-disk and
whole-disk/media failures will normally be
encountered during reconstruction from an
already identified whole-disk failure.

RAID systems can protect against dou-
ble failures due to media failures by period-
ically “scrubbing” their disks, trying to read
each sector, and reconstructing and relocat-
ing data on any sector that is unreadable. Do-
ing this before a single whole-disk failure oc-



curs can preempt potential whole-disk/media
failures by cleansing the disks of accumulated
media errors before a whole-disk failure oc-
curs. Such preventive techniques are a nec-
essary precaution in arrays of current large
capacity disks.

The media and whole-disk failure rates as-
sume uniform failure arrivals over the lifetime
of the disk, and uniform failure arrival rates
over the population of similar disks. Actual
whole-disk failure rates conform to a bathtub
curve as a function of the disk’s service time:
A higher failure rate is encountered during
the beginning-of-life burn-in and end-of-life
wear-out periods. Both of these higher rate
periods affect the double disk failure rate, as
the disks in an array will typically be the
same age, and will be subject to the same us-
age pattern. This tends to increase the corre-
lation of whole-disk failures among the disks
in an array.

Disks in the array may be from the same
manufacturing batch, and therefore may be
subject to the same variations in manufac-
turing that can increase the likelihood of an
individual disk failing. Disks in an array are
all subject to the same temperature, humidity
and mechanical vibration conditions. They
may all have been subjected to the same me-
chanical shocks during transport. This can
result in a clustering of failures that increases
the double failure rate beyond what would be
expected if individual disk failures were un-
correlated.

Once a single disk fails, the period of vul-
nerability to a second whole-disk failure is de-
termined by the reconstruction time. In con-
trast, vulnerability to a media failure is fixed
once the first disk fails. Reconstruction will
require a complete read of all the surviving
disks, and the probability of encountering a
media failure in those scans is largely inde-
pendent of the time taken by reconstruction.

If the failures are independent, and wide
sense stationary [12], then it is possible to
derive the rate of occurance of two whole-disk
failures as [2]:

where ¢, is the reconstruction time of a failed
disk, n is the total number of disks in the ar-
ray, A; is the whole-disk failure rate of one
disk, and c¢ is a term reflecting the correla-
tion of the disk failures. If whole-disk fail-
ures are correlated, then the correction factor
c > 1. We know from experience that whole-
disk failures are not stationary, i.e., they de-
pend on the service time of the disk, and also
that they are positively correlated. These fac-
tors will increase the rate As.

The other consideration is that the recon-
struction time ¢, is a function of the total
data that must be processed during recon-
struction. ¢, is linearly related to the disk
size, but also can be related to the number
of disks, since the total data to be processed
is the product dn, where d is the size of the
disks. For small n, the I/O bandwidths of the
individual disks will dominate reconstruction
time. However, for large enough n, the ag-
gregate bandwidth of the disks becomes great
enough to saturate either the I/O or process-
ing capacity of the controller performing re-
construction. Therefore, we assert that:

. [
ro dn/bs
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where b, is the maximum rate of reconstruc-
tion of a failed disk, governed by the disk’s
write bandwidth and by is the maximum rate
of reconstruction per disk array.

ifn<m
n>m

(2)

The result for disk arrays larger than m is:
\dc
2bs

The whole-disk/whole-disk failure rate has a
cubic dependency on the number of disks in
the array, and a linear dependency on the size
of the disks. The double failure rate is re-
lated to the square of the whole-disk failure
rate. If we employ disks that have higher fail-
ure rates, such as ATA drives, we can expect
that the double failure rate will increase pro-
portionally to the square of the increase in
single disk failure rate.

No ~ 02 1) (3)

As an example, if the primary failure rate
is one in 500,000 hours, the correlation fac-
tor is 1, the reconstruction rate is 100M B/ s,



in a ten disk array of 240 GByte disks, the
whole-disk/whole-disk failure rate will be ap-
proximately 1.2 x 10~? failures per hour.

Both the size of disks and their I/O band-
width have been increasing, but the trend
over many years has been that disk size is
increasing much faster than the disk media
rate. The time it takes to read or write an
entire disk is the lower bound on disk recov-
ery. As a result, the recovery time per disk
has been increasing, further aggravating the
double disk failure rate.

The rate of whole-disk/media failures is
also related to disk size and to the number of
disks in the array. Essentially, it is the rate
of single whole-disk failures, multiplied by the
probability that any of those failures will re-
sult in a double failure due to the inability to
read all sectors from all surviving disks. The
single whole-disk failure rate is proportional
to the number of disks in the array. The me-
dia failure rate is roughly proportional to the
total number of bits in the surviving disks of
the array. The probability of all bits being
readable is (1 —p)® where p is the probability
of an individual bit being unreadable, and s
is the number of bits being read. This gives
the a priori rate of whole-disk/media double
failures:

fo=Ain(1 = (1—p)"= k) (4)

where b is the size of each disk measured in
bits.

For our example of a primary failure rate
of 1 in 500,000 hours, a 10 disk array, 240
GB disks, and a bit error rate of 1 per 10'*
gives a whole-disk/media double failure rate
of 3.2 x 1076 failures per hour.

In our example, using typical numbers, the
rate of whole-disk/media failures dominates
the rate of whole-disk/whole-disk failures.
The incidence of media failures per whole-
disk failure is uncomfortably high. Scrubbing
the disks can help reduce this rate, but it re-
mains a significant source of double disk fail-
ures.

The combination of the two double fail-
ure rates gives a Mean Time To Data Loss
(MTTDL) of 3.1 x 10 hours. For our exam-

ple, this converts to an annual rate of 0.028
data loss events per disk array per year due
to double failures of any type.

To compare, the dominant triple failure
mode will be media failures discovered dur-
ing recovery from double whole-disk failures.
This rate can be approximated by the analog
to Equation 4:

fa=a(1= (1 =p) 2" (5)
Substituting Ay from Equation 1 gives:

A2dc
2b,

fs= n’(n—1)(1—(1-p) ") (6)
For our example, the dominant component
of the tertiary failure rate will be approxi-
mately 1.7 x 1070 failures per hour, which is
a reduction of over four orders of magnitude
compared to the overall double failure rate.

The use of less expensive disks, such as
ATA disks, in arrays where high data in-
tegrity is required has been increasing. The
disks are known to be less performant and less
reliable than SCSI and FCP disks [10]. This
increases the reconstruction time and the in-
dividual disk failure rates, in turn increasing
the double failure rate for arrays of the same
size.

4 Row-Diagonal
rithm

Parity Algo-

The RDP algorithm is based on a simple
parity encoding scheme using only exclusive-
or operations. Each data block belongs to
one row parity set and to one diagonal par-
ity set. In the normal configuration, there is
one row parity block and one diagonal parity
block per stripe. It is possible to build either
RAID-4 or RAID-5 style arrays using RDP,
by either locating all the parity blocks on two
disks, or by rotating parity from disk to disk
in different stripes.

An RDP array is defined by a controlling
parameter p, which must be a prime number
greater than 2. In the simplest construction
of an RDP array, there are p + 1 disks. We



Data | Data | Data | Data | Row Diag.
Disk | Disk | Disk | Disk | Parity | Parity
1 2 3
0 1 2 3 4 0
1 2 3 4 0 1
2 3 4 0 1 2
3 4 0 1 2 3

Figure 1: Diagonal Parity Set Assignments in
a 6 Disk RDP Array, p=>5

define stripes across the array to consist of
one block from each disk. In each stripe, one
block holds diagonal parity, one block holds
row parity, and p — 1 blocks hold data.

The bulk of the remainder of this paper
describes one grouping of p — 1 stripes that
includes a complete set of row and diagonal
parity sets. Multiple of these stripe groupings
can be concatenated to form either a RAID-4
style or RAID-5 style array. An extension to
multiple row parity sets is discussed in Sec-
tion 7.

Figure 1 shows the four stripes in a 6 disk
RDP array (p = 5). The number in each
block indicates the diagonal parity set the
block belongs to. Each row parity block con-
tains the even parity of the data blocks in that
row, not including the diagonal parity block.
Each diagonal parity block contains the even
parity of the data and row parity blocks in
the same diagonal. Note that there are p =5
diagonals, but that we only store the parity
of p — 1 = 4 of the diagonals. The selection
of which diagonals to store parity for is com-
pletely arbitrary. We refer to the diagonal for
which we do not store parity as the “missing”
diagonal. In this paper, we always select di-
agonal p — 1 as the missing diagonal. Since
we do not store the parity of the missing di-
agonal, we do not compute it either.

The operation of the algorithm can be seen
by example. Assume that data disks 1 and 3
have failed in the array of Figure 1. It is nec-
essary to reconstruct from the remaining data
and parity disks. Clearly, row parity is use-
less in the first step, since we have lost two
members of each row parity set. However,
since each diagonal misses one disk, and all
diagonals miss a different disk, then there are

two diagonal parity sets that are only missing
one block. At least one of these two diago-
nal parity sets has a stored parity block. In
our example, we are missing only one block
from each of the diagonal parity sets 0 and
2. This allows us to reconstruct those two
missing blocks.

Having reconstructed those blocks, we can
now use row parity to reconstruct two more
missing blocks in the two rows where we
reconstructed the two diagonal blocks: the
block in diagonal 4 in data disk 3 and the
block in diagonal 3 in data disk 1. Those
blocks in turn are on two other diagonals: di-
agonals 4 and 3. We cannot use diagonal 4
for reconstruction, since we did not compute
or store parity for diagonal 4. However, us-
ing diagonal 3, we can reconstruct the block
in diagonal 3 in data disk 3. The next step
is to reconstruct the block in diagonal 1 in
data disk 1 using row parity, then the block
in diagonal 1 in data disk 3, then finally the
block in diagonal 4 in data disk 1, using row
parity.

The important observation is that even
though we did not compute parity for diago-
nal 4, we did not require the parity of diag-
onal 4 to complete the reconstruction of all
the missing blocks. This turns out to be true
for all pairs of failed disks: we never need
to use the parity of the missing diagonal to
complete reconstruction. Therefore, we can
safely ignore one diagonal during parity con-
struction.

5 Proof of Correctness

Let us formalize the construction of the ar-
ray. We construct an array of p + 1 disks
divided into blocks, where p is a prime num-
ber greater than 2. We group the blocks at
the same position in each device into a stripe.
We then take groups of p — 1 stripes and,
within that group of stripes, assign the blocks
to diagonal parity sets such that with disks
numbered ¢ = 0...p and blocks numbered
k=0...p— 2 on each disk, disk block (¢, k)
belongs to diagonal parity set (i + k) mod p.



Disk p is a special diagonal parity disk. We
construct row parity sets across disks 0 to
p — 1 without involving disk p, so that any
one lost block of the first p disks can be re-
constructed from row parity. The normal way
to ensure this is to store a single row par-
ity block in one of the blocks in each stripe.
Without loss of generality, let disk p— 1 store
row parity.

The key observation is that the diagonal
parity disk can store diagonal parity for all
but one of the p diagonals. Since the array
only has p— 1 rows, we can only store p—1 of
the p possible diagonal parity blocks in each
group of p — 1 stripes. We could select any of
the diagonal parity blocks to leave out, but
without loss of generality, we choose to not
store parity for diagonal parity set p — 1, to
conform to our numbering scheme.

The roles of all the disks other than the di-
agonal parity disk are mathematically iden-
tical, since they all contribute symmetrically
to the diagonal parity disk, and they all con-
tribute to make the row parity sums zero. So,
in any stripe any one or more of the non-
diagonal parity disks could contain row par-
ity. We only require that we be able to re-
construct any one lost block in a stripe other
than the diagonal parity block from row par-
ity without reference to the diagonal parity
block.

We start the proof of the correctness of the
RDP algorithm with a necessary Lemma.

Lemma 1 In the sequence of numbers {(p —
1+ kj) mod p,k =0...p}, with p prime and
0 < j < p, the endpoints are both equal to
p—1, and all numbers 0...p—2 occur exactly
once in the sequence.

Proof: The first number in the sequence
is p — 1 by definition. The last number in the
sequence is p — 1, since (p — 1+ pj) mod p =
p— 1+ (pj mod p) = p— 1. Thus the lemma
is true for the two endpoints. Now consider
the subsequence of p — 1 numbers that be-
gins with p— 1. All these numbers must have
values 0 < z < p — 1 after the modulus oper-
ation. If there were a repeating number z in
the sequence, then it would have to be true

that (x + kj) modp = z for some k < p.
Therefore, kj mod p = 0 which means that
kj is divisible by p. But since p is prime, no
multiple of k or j or any of their factors can
equal p. Therefore, the first p — 1 numbers in
the sequence beginning with p— 1 are unique,
and all numbers from 0...p — 1 are repre-
sented exactly once. The next number in the
sequence is p — 1. ¢

We now complete the proof of the correct-
ness of RDP.

Theorem 1 An array constructed according
to the formal description of RDP can be re-
constructed after the loss of any two of its

disks.

Proof: There are two classes of double fail-
ures, those that include the diagonal parity
disk, and those that do not.

Those failures that include the diagonal
parity disk have only one disk that has failed
in the row parity section of the array. This
disk can be reconstructed from row parity,
since the row parity sets do not involve the
diagonal parity disk. Upon completion of the
reconstruction of one of the failed disks from
row parity, the diagonal parity disk can be re-
constructed according to the definition of the
diagonal parity sets.

This leaves all failures of any two disks that
are not the diagonal parity disk.

From the construction of the array, each
disk d intersects all diagonals except diagonal
(d+p—1) mod p = (d—1) mod p. Therefore,
each disk misses a different diagonal.

For any combination of two failed disks
di,dy with do = di + j, the two diagonals
that are not intersected by both disks are
(di +p—1) modp
(di+j7+p—1)modp

g =

g2 =
Substituting g gives

92 = (g1 +j) mod p

Since each of these diagonals is only missing
one member, if we have stored diagonal par-
ity for the diagonal we can reconstruct the



missing element along that diagonal. Since at
most one of the diagonals is diagonal p — 1,
then we can reconstruct at least one block on
one of the missing disks from diagonal parity
as the first step of reconstruction.

For the failed disks dq, do, if we can recon-
struct a block from diagonal parity in diago-
nal parity set z on disk d;, then we can recon-
struct a block on disk ds in diagonal parity
set (z + j) mod p, using row parity. Simi-
larly, if we can reconstruct a block x from
diagonal parity on disk ds, then we can recon-
struct a block on disk d; in diagonal parity
set (z — j) mod p using row parity.

Consider the pair of diagonals g7, go that
are potentially reconstructable after the fail-
ure of disks dy,ds. If g1 is reconstructable,
then we can reconstruct all blocks on each di-
agonal (g1 —j) mod p, (91 —2j) mod p, ... ,p—
1 using alternating row parity and diagonal
parity reconstructions. Similarly, if go is re-
constructable, then we can reconstruct all
blocks on each diagonal (g2 + 7) mod p, (g2 +
2j)mod p,...,p — 1 using alternating row
parity and diagonal parity reconstructions.
Since g; and g, are adjacent points on the
sequence for j generated by Lemma 1, then
we reach all diagonals 0. ..p—1 during recon-
struction.

If either gy = p—1 or go = p — 1, then
we are only missing one block from the di-
agonal parity set p — 1, and that block is re-
constructed from row parity at the end of the
reconstruction chain beginning with g, or ¢y
respectively. If both g1 # p—1 and g3 # p—1,
then the reconstruction proceeds from both
g1 and g2, reaching the two missing blocks on
diagonal p—1 at the end of each chain. These
two blocks are each reconstructed from row
parity.

Therefore, all diagonals are reached during
reconstruction, and all missing blocks on each
diagonal are reconstructed. ¢

We do not need to store or generate the
parity of diagonal p — 1 to complete recon-
struction.

6 Performance Analysis

Performance of disk arrays is a function of
disk I/O as well as the CPU and memory
bandwidth required to construct parity dur-
ing normal operation and to reconstruct lost
data and parity after failures. In this section,
we analyse RDP in terms of both its I/O ef-
ficiency and its compute efficiency.

Since RDP stores data in the clear, read
performance is unaffected by the algorithm,
except to the extent that the disk reads and
writes associated with data writes interfere
with data read traffic. We consider write I/Os
for the case where p — 1 RDP stripes are con-
tained within a single stripe of disk blocks, as
described in Section 7. This implementation
optimizes write I/O, and preserves the prop-
erty that any stripe of disk blocks can be writ-
ten independently of all other stripes. Data
writes require writing two parity blocks per
stripe. Full stripe writes therefore cost one
additional disk I/O compared to full stripe
writes in single disk parity arrays. Partial
stripe writes can be computed by addition,
i.e. recomputing parity on the entire stripe,
or subtraction, i.e. computing the delta to
the parity blocks from the change in each of
the data blocks written to, depending on the
number of blocks to be written in the stripe.
Writes using the subtraction method are com-
monly referred to as “small writes”. Writing
d disk blocks by the subtraction method re-
quires d + 2 reads and d + 2 writes. The ad-
dition method requires n — d — 2 reads, and
d + 2 writes to write d disk blocks. If reads
and writes are the same cost, then the addi-
tion method requires n I/Os, where n is the
number of disks in the array, and the subtrac-
tion method requires 2d+4 1/Os. The break-
point between the addition and subtraction
method is at d = (n — 4)/2. The number
of disk I/Os for RDP is minimal for a dou-
ble failure protection algorithm; writing any
one data block requires updating both parity
blocks, since each data block must contribute
to both parity blocks.

We next determine the computational cost
of RDP as the total number of exclusive or
(xor) operations needed to construct parity.
Each data block contributes to one row par-



ity block. In an array of size p—1 rows x p+1
disks, there are p—1 data blocks per row, and
p — 2 xor operations are required to reduce
those blocks to one parity block. Row parity
thus requires (p—1)(p—2) = p* —3p+2 xors.
We also compute p—1 diagonal parity blocks.
Each diagonal contains a total of p — 1 data
or row parity blocks, requiring p — 2 xors to
reduce to one diagonal parity block. There-
fore diagonal parity construction requires the
same number of xors as row parity construc-
tion, (p — 1)(p — 2) = p*> — 3p + 2. The total
number of xors required for construction is
2p% — 6p + 4.

Theorem 2 For an array of n data disks, a
ratio of 2—2/n xors per block is the minimum
number of xors to provide protection against
two failures.

Proof: Assume that we construct parity in
the n 4 2 disk array within groups of r rows.
We have a minimum of two parity blocks
per row of n data blocks, from the Single-
ton bound. Each data block must contribute
to at least two different parity blocks, one on
each parity disk, to ensure that we can re-
cover if the data block and one parity block
is lost. Any pair of data blocks that con-
tributes to two different parity blocks pro-
vides no additional information since losing
both data blocks will make all the parity sets
they contribute to ambiguous. Therefore, we
need to construct 2r parity blocks from equa-
tions that in the minimal formulation contain
no common pairs of data blocks. Since this al-
lows no common subterms between any equa-
tions in the minimal formulation, the mini-
mum number of separately xored input terms
required to construct the 2r parity blocks is
2nr. A set of 2r equations that reduces 2nr
terms to 2r results using xors requires 2nr—2r
xors. Therefore, the minimum number of xors
per data block to achieve double parity pro-
tection is:

2nr — 2r 2
n

=2 (7)

nr

RDP protects (p — 1)? data blocks using
2p% — 6p + 4 xors. Setting n = p — 1, we get
2n2 —2n xors to protect n? data blocks, which
meets the optimal ratio of 2 — 2/n.

Data | RDP | EVENODD | Difference
disks

4 6 6.67 11.1%

6 10 10.8 8.0%

8 14 14.86 6.1%

12 22 22.91 4.1%

16 30 30.93 3.1%

Table 1: Per Row XOR Counts for Parity
Construction

We can compare RDP to the most com-
putationally efficient previously known algo-
rithm, EVENODD. For an array with n data
disks, each with n — 1 data blocks, EVEN-
ODD requires (n —1)(n — 1) xors to compute
row parity, and (n — 2)n xors to compute the
parity of the n diagonals. ' EVENODD then
requires a further n — 1 xors to add the par-
ity of one distinguished diagonal to the parity
of each of the other n — 1 diagonals to com-
plete the calculation of stored diagonal parity.
This results in a total of 2n? — 3n xors to con-
struct parity in EVENODD for an n(n — 1)
block array. Therefore, EVENODD requires
(2n? —3n)/(n?> —n) =2 —1/(n — 1) xors per
block.

The two algorithms both have an asymp-
totic cost of two xors per block. However, the
difference in computational cost is significant
for the small values of n typical in disk arrays,
as shown in Table 1, ignoring the fact that the
two algorithms do not function correctly for
the same array sizes.

RDP’s computational cost of reconstruc-
tion after a failure is also optimal. Recon-
struction from any single disk failure requires
exactly (p—1)(p—2) = p* —3p+2 xors, since
each of the p — 1 lost row parity sets or di-
agonal parity sets are of the same size p, and
we must reconstruct the lost block in each
by xoring the surviving p — 1 blocks, using
p— 2 xor operations. Again settingn =p—1,
we are recovering n blocks with n? — n xors,
which is n — 1 xors per parity block. Since
we have already shown that we have the min-
imum number of xors for construction of an
array that double protects parity, and since

1This is fewer operations than the result given
in the EVENODD paper [5], which we believe over-
counts the number of xors required to compute parity
along a diagonal.



Data | RDP | EVENODD | Difference
disks

4 6 9.67 61.2%

6 10 13.80 83.0%

8 14 17.86 27.6%

12 22 25.91 17.8%

16 30 33.93 13.1%

Table 2: Per Row XOR Counts for Data Re-
construction

all parity sets are the same size, then the cost
to repair any one lost disk is the same and
is also a minimum. We can’t make the in-
dividual parity sets any smaller and still pro-
tect against double failures, and we are recon-
structing each block from exactly one parity
set. This is true for any disk we might lose.

Reconstructing from any double failure
that includes the diagonal parity disk is ex-
actly the same cost as parity construction,
since we first reconstruct the lost data or row
parity disk from row parity, then reconstruct
the diagonal parity disk. Reconstructing any
of the data disks from row parity has the same
cost as contructing row parity.

The cost of reconstructing any combination
of two data or row parity disks can also be
determined. We have to reconstruct exactly
2(p—1) blocks. Each parity set is of size p—1,
so the cost to reconstruct each block is again
p — 2 xors. This gives us exactly the same
computational cost as construction, and as
the other reconstruction cases: 2p? —6p+4 =
2n? — 2n xors. Again, this is optimal.

Comparing again to EVENODD, using the
data reconstruction algorithm described in
the EVENODD paper, we see an advantage
for RDP, as shown in Table 2.

For the numbers of disks that are typical in
disk arrays, the performance of the RDP and
EVENODD in construction and reconstruc-
tion is significantly different. Both are much
lower in compute cost than Reed-Solomon
coding [5]. RDP is optimal both in compute
efficiency and I/O efficiency, during construc-
tion in normal operation and reconstruction
after a failure.

7 Algorithm Extensions

Single Stripe Implementation: Select-
ing p to be one of the primes that meets the
condition p = 2™ + 1 for some n (e.g. 5, 17,
257), allows us to define diagonal parity sets
within a group of 2" stripes. This allows us
to define the block size for RDP purposes to
be the usual system block size divided by 2.
Since the disk block sizes are usually powers
of two, we can define a self-contained RDP
parity set within a single stripe of blocks.
For example, if the system’s disk block size
is 4kB, we can select p = 17, giving us 16
RDP blocks per stripe, with each RDP block
containing 256 bytes. This allows us to con-
struct an array using all the existing software
and techniques for reading and writing a sin-
gle stripe, adding one disk to contain diagonal
parity.

Multiple Row Parity Groups: RDP re-
quires that we be able to recover a single lost
block in a stripe using row parity in any case
where that block is not on the diagonal parity
disk. In both the RAID-4 and RAID-5 style
configurations, it is possible to have more
than one row parity set per stripe, each with
its own row parity block. This means that the
portion of the array that does not include the
diagonal disk can use any single disk recon-
struction technique, including concatenation
of more than one RAID-4 or RAID-5 array, or
declustered parity techniques [11]. We define
diagonal parity sets across all of these disks,
and construct diagonal parity from these sets,
regardless of whether the individual blocks
stored are parity or data blocks. This allows
a cost-performance tradeoff between minimiz-
ing the number of parity disks, and mak-
ing reconstruction from single failures faster
while still protecting against double failures
in the wider array. In such an array, double
failures that affect disks in two different row
parity sets can be repaired directly from row
parity.

There is one other technique for expand-
ing diagonal parity to cover more than one
row parity group. Imagine that we have sev-
eral RDP arrays, all with the same file system
block size, although not necessarily with the
same value of p. If we xor all of their diagonal



parity blocks together, we will get a single di-
agonal parity block. We could store a single
diagonal parity disk, which is the combina-
tion of the diagonal parity disks of each of
the constituent arrays. Storing this is suffi-
cient to allow reconstruction from any dou-
ble disk loss in the array. Any two failures
that occur in two different subarrays can be
recovered by local row parity. Any two fail-
ures that occur in the same subarray must be
recovered by diagonal parity. The diagonal
parity block for any subarray can be recon-
structed by constructing the diagonal parity
for each of the intact subarrays, and subtract-
ing it from the stored merged diagonal parity
disk. Once we have reconstructed the needed
diagonal parity contents, we use normal RDP
reconstruction to rebuild the lost blocks of the
subarray that we are reconstructing.

Expandable Arrays: The discussion so
far has implied that the number of disks in
an array is fixed at p + 1 for any selection
of p. This is not actually the case. We can
underpopulate an RDP array, putting fewer
data disks than the maximum allowed in the
array for a given value of p. p+ 1 simply sets
the maximum array size for a given value of
p. When we underpopulate an array, we are
taking advantage of the fact that given fewer
than p — 1 data disks, we could fill the re-
mainder of the array with unused disks that
contain only zeros. Since the zero-filled disks
contribute to parity blocks, but do not change
the contents of any parity block, we can re-
move them from the array while still imputing
their zero-filled contents in our parity calcu-
lations. This allows us to expand the array
later by adding a zero-filled disk, and adjust-
ing parity as we later write data to that disk.

By the same reasoning, it is allowable to
have disks of different sizes in the array. The
diagonal parity disk must be one of the largest
disks in the array, and all rows must have at
least one row parity block. The contributions
of the smaller disks to stripes that do not con-
tain blocks from those disks are counted as
Zeros.

By selecting p = 257, we allow the RDP
array to grow to up to 255 data disks. This
is a sufficiently large number to accomodate
any expected disk array size.

8 Implementation Experience

RDP has been implemented as a new fea-
ture of Network Appliance’s data storage sys-
tem software (Data ONTAP) version 6.5.
Data ONTAP is a complete software system,
including an operating system kernel, net-
working, storage, file system, file system pro-
tocols, and RAID code. The RAID layer
manages the final layout of data and parity
within RAID groups. A volume consists of
one or more RAID groups, and each RAID
group is independently recoverable. This sec-
tion contains some observations we made that
improved the implementation of the algo-
rithm.

During parity construction, most of the
subblocks of each data disk contribute to both
a row parity subblock and a diagonal parity
subblock. We also note that the contribu-
tions of the subblocks of any data disk to the
diagonal parity disk are ordered in sequence.
This allows us to perform parity construction
in a memory efficient manner on modern mi-
croprocessors. We process each data block in
one pass, xoring its contents into both the
row parity and diagonal parity destination
blocks. By properly tuning the code to the
microprocessor, it is possible to work on all
three blocks in the top level of CPU cache.
We work on one data block at a time, incre-
mentally constructing the two target parity
blocks, which remain in cache. The latency
of memory operations gives us a budget for
completing two xor operations per 128 bit
field on the Pentium 4. We further optimize
by ensuring that the data bytes are xored
into both destinations once loaded into pro-
cessor registers. In our implementation, we
had enough instructions available per cache
line load to complete both xors and a data
integrity checksum calculation on the data in
each cache line, without a significant loss of
performance. This overlap of cpu execution
and memory operations greatly reduced the
effective cost of computing the second redun-
dant parity block in RDP.

Another observation is that, having pro-
tected the array against double failures, our
remaining vulnerability is to triple and higher
order failures. Whole-disk/media failures are



corrected as they are encountered, by resort-
ing to using RDP for reconstruction only in
those stripes that are missing two blocks. The
remainder of the missing disk can be recon-
structed using row parity, unless it is the di-
agonal parity disk.

In the case of whole-disk/whole-disk fail-
ures, reconstruction of the first disk to fail
typically is already underway when the sec-
ond disk fails. In our implementation, recon-
struction from a single disk failure starts from
block number 0 and proceeds sequentially to
the last disk block. When the second failure
occurs, the first stripes of the array are miss-
ing only one block, since we have completed
reconstruction of the single failure in some
stripes. So, we only need to run RDP re-
construction on the remaining stripes of the
array. Stripes with two missing blocks are
always reconstructed before those with one
missing block, reducing the window of vul-
nerability to a third disk failure. All combi-
nations of disk failures are handled, including
those involving reconstructing disks.

Existing RAID-4 and RAID-5 arrays can
be easily upgraded to RDP by constructing
the diagonal parity disk, using the same code
as is used for reconstructing from single diag-
onal disk failures. Downgrading from RDP to
a single parity protection scheme is as simple
as removing the diagonal disk.

9 Measured Performance

Data ONTAP version 6.5 runs on a variety
of hardware platforms. The current highest
performing platform is the FAS980, which in-
cludes two 2.8GHz Intel Pentium 4 CPUs per
file server (filer). At any time, up to one full
CPU can be running RAID code, including
xor calculations for RDP. We ran several per-
formance benchmarks using the implementa-
tion of RDP in Data ONTAP 6.5.

The first set of experiments is zortest,
which is our own synthetic benchmark for
testing RAID xor and checksum code. The
checksum is a modified Adler checksum that
is 64 bits wide, computed on each input block.

The input is a stripe that is one block deep
by n blocks wide. Blocks are 4kB. The RDP
prime is 257, and we divide each 4kB block
into 256 sixteen byte subblocks for RDP cal-
culations. The zortest experiment is run with
cold caches, using random data generated in
memory. There is no disk access in the test;
it is simply a test of memory and CPU pro-
cessing speed.

We ran two sets of tests. In the first, we
computed parity from the input blocks, and
also computed the checksum of each input
block and the output parity blocks. In the
second, we computed no checksums, only par-
ity. In each set of tests, we computed single
parity (RAID-4), double parity (RDP), and
also performed RDP reconstruction on two
randomly selected missing data blocks. We
repeated each experiment five times and took
the best results, to eliminate the effects of
other activity in the operating system. Gen-
erally, the best results are repeatable, with
a few bad outliers that represent experiments
that were interfered with by other activity af-
fecting the processor and cache.

Figures 2 and 3 present the results of the
experiments. Note that all the graphs are
very linear, with a small offset due to fixed
overhead in the algorithm. In each case, the
single parity calculation of RAID-4 is fastest.
Table 3 shows the measured calculation rates
for the various operations. Note that the
RDP reconstruction rate is very close to the
RDP construction rate. The difference in
timings between the two is due primarily to
the completion step in reconstruction, which
requires a series of operations on the 16 byte
RDP blocks. This step is required regardless
of the number of blocks in the stripe. Other-
wise, the per block computations during RDP
construction and reconstruction are basically
the same in our implementation. The recon-
struction completion step is accounted for in
the overhead per operation, determined as
the time taken by a hypothetical calculation
on a stripe of zero data blocks. The overhead
for RDP reconstruction is significantly higher
due to the completion step in both cases (Ta-
ble 3).

The construction and reconstruction rates
are close to those obtained for RAID-4 con-
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Figure 2: Xortest RAID-4 and RDP Perfor-
mance with Checksum Computations (One
4k block per disk)

struction. (RAID-4 construction and recon-
struction are identical computations.) The
difference in the rates reflects our inability to
completely overlap computation with cache
loads and stores to main memory. The the-
oretical memory bandwidth of the processor
is 3.2 GB/s. We are achieving from 43 to 59
percent of this rate, which indicates that we
are stalling on cache line loads or are satu-
rating the processor. A calculation of the in-
struction counts per cache line indicates that
we are consuming all of the processing bud-
get available per cache line in the checksum
cases.

Aggwrite is a test of the filer’'s aggregate

write performance. The workload is sup-
plied by an array of NFS clients, perform-
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Figure 3: Xortest RAID-4 and RDP Per-
formance without Checksum Computations
(One 4k block per disk)

Rate Over-
head
(GB/s) | (us)
With RAID-4 1.82 4.7
Checksum | RDP cons. 1.39 8.3
RDP recons. | 1.37 23.0
Without RAID-4 1.90 2.6
Checksum | RDP cons. 1.55 4.6
RDP recons. | 1.60 19.8

Table 3: Xortest Derived Results

Algorithm | Config. Rate
gx(d+p) | (MB/s)
RAID-4 6x (7T+1) 158.3
RDP 6 x (74 2) 149.1
RDP 4% (1042) | 155.1
RDP 3% (1442) | 157.2

Table 4: Aggwrite Results

ing 32kB write operations. Again, these tests
are performed using an FAS980 with dual
2.8GHz Intel Pentium 4 processors. The
filer runs the entire data path, from network,
NFS protocol, file system, RAID and storage.
We compared RAID-4 with various configu-
rations of RDP, using 40 or 42 data disks in
each case, and measured the achievable write
bandwidth. Table 4 gives the aggwrite re-
sults.

The configuration column of Table 4
presents g x (d + p), where g is the num-
ber of separate RAID groups connected to
the filer, d is the number of data disks per
RAID group, and p is the number of par-
ity disks per RAID group. The WAFL file
system uniformly distributes writes across all
the data disks. Table 4 indicates that in all
cases, RDP performance is within 6 percent
of RAID-4. With RDP, we can increase the
size of the RAID groups, still realizing an
increase in data protection, while achieving
comparable write performance. Using RDP
RAID groups of 16 disks (14 data and 2 par-
ity) we achieve performance almost equiva-
lent to RAID-4, with the same total number
of data and parity disks, and with much im-
proved data protection.



10 Conclusions

RDP is an optimally efficient double disk
failure protection algorithm. The combina-
tion of a single whole-disk failure with one or
more media failures is becoming particularly
troublesome as disks get large relative to the
expected bit error rate. Utilizing RDP, we
can significantly reduce data loss due to all
types of double failures. The fact that RDP
is optimal in I/O and in computational com-
plexity proved valuable in achieving perfor-
mance that is very close to our single parity
RAID-4 implementation. The simplicity and
flexibility of RDP allowed us to implement
it within our existing RAID framework. An
interesting open problem is whether the algo-
rithm can be extended to cover three or more
concurrent failures.
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