
USENIX Association

Proceedings of
FAST ’03:

2nd USENIX Conference on
File and Storage Technologies

San Francisco, CA, USA
March 31–April 2, 2003

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 43

Metadata Efficiency in Versioning File Systems
Craig A.N. Soules, Garth R. Goodson, John D. Strunk, Gregory R. Ganger

Carnegie Mellon University

Abstract

Versioning file systems retain earlier versions of modi-
fied files, allowing recovery from user mistakes or sys-
tem corruption. Unfortunately, conventional versioning
systems do not efficiently record large numbers of ver-
sions. In particular, versioned metadata can consume
as much space as versioned data. This paper examines
two space-efficient metadata structures for versioning
file systems and describes their integration into the Com-
prehensive Versioning File System (CVFS), which keeps
all versions of all files. Journal-based metadata encodes
each metadata version into a single journal entry; CVFS
uses this structure for inodes and indirect blocks, reduc-
ing the associated space requirements by 80%. Multiver-
sion b-trees extend each entry’s key with a timestamp and
keep current and historical entries in a single tree; CVFS
uses this structure for directories, reducing the associ-
ated space requirements by 99%. Similar space reduc-
tions are predicted via trace analysis for other versioning
strategies (e.g., on-close versioning). Experiments with
CVFS verify that its current-version performance is sim-
ilar to that of non-versioning file systems while reducing
overall space needed for history data by a factor of two.
Although access to historical versions is slower than con-
ventional versioning systems, checkpointing is shown to
mitigate and bound this effect.

1 Introduction

Self-securing storage [41] is a new use for versioning
in which storage servers internally retain file versions
to provide detailed information for post-intrusion diag-
nosis and recovery of compromised client systems [40].
We envision self-securing storage servers that retain ev-
ery version of every file, where every modification (e.g.,
a WRITE operation or an attribute change) creates a
new version. Such comprehensive versioning maximizes
the information available for post-intrusion diagnosis.
Specifically, it avoids pruning away file versions, since
this might obscure intruder actions. For self-securing
storage, pruning techniques are particularly dangerous
when they rely on client-provided information, such as
CLOSE operations — the versioning is being done specif-
ically to protect stored data from malicious clients.

Obviously, finite storage capacities will limit the duration

of time over which comprehensive versioning is possi-
ble. To be effective for intrusion diagnosis and recovery,
this duration must be greater than the intrusion detection
latency (i.e., the time from an intrusion to when it is de-
tected). We refer to the desired duration as the detection
window. In practice, the duration is limited by the rate
of data change and the space efficiency of the version-
ing system. The rate of data change is an inherent aspect
of a given environment, and an analysis of several real
environments suggests that detection windows of several
weeks or more can be achieved with only a 20% cost in
storage capacity [41].

In a previous paper [41], we described a prototype self-
securing storage system. By using standard copy-on-
write and a log-structured data organization, the proto-
type provided comprehensive versioning with minimal
performance overhead (� 10%) and reasonable space ef-
ficiency. In that work, we discovered that a key de-
sign requirement is efficient encoding of metadata ver-
sions (the additional information required to track the
data versions). While copy-on-write reduces data ver-
sioning costs, conventional versioning implementations
still involve one or more new metadata blocks per ver-
sion. On average, the metadata versions require as much
space as the versioned data, halving the achievable detec-
tion window. Even with less comprehensive versioning,
such as Elephant [37] or VMS [29], the metadata history
can become almost (� 80%) as large as the data history.

This paper describes and evaluates two methods of stor-
ing metadata versions more compactly: journal-based
metadata and multiversion b-trees. Journal-based meta-
data encodes each version of a file’s metadata in a jour-
nal entry. Each entry describes the difference between
two versions, allowing the system to roll-back to the ear-
lier version of the metadata. Multiversion b-trees retain
all versions of a metadata structure within a single tree.
Each entry in the tree is marked with a timestamp indi-
cating the time over which the entry is valid.

The two mechanisms have different strengths and weak-
nesses. We discuss these and describe how both tech-
niques are integrated into a comprehensive versioning
file system called CVFS. CVFS uses journal-based meta-
data for inodes and indirect blocks to encode changes
to attributes and file data pointers; doing so reduces the
space used for their histories by 80%. CVFS implements

2nd USENIX Conference on File and Storage Technologies USENIX Association44

directories as multiversion b-trees to encode additions
and removals of directory entries; doing so reduces the
space used for their histories by 99%. Combined, these
mechanisms nearly double the potential detection win-
dow over conventional versioning mechanisms, without
increasing the access time to current versions of the data.

Journal-based metadata and multiversion b-trees are also
valuable for conventional versioning systems. Using
these mechanisms with on-close versioning and snap-
shots would provide similar reductions in versioned
metadata. For on-close versioning, this reduces the to-
tal space required by nearly 35%, thereby reducing the
pressure to prune version histories. Identifying solid
heuristics for such pruning remains an open area of re-
search [37], and less pruning means fewer opportunities
to mistakenly prune important versions.

The rest of this paper is divided as follows. Section 2 dis-
cusses conventional versioning and motivates this work.
Section 3 discusses the two space-efficient metadata ver-
sioning mechanisms and their tradeoffs. Section 4 de-
scribes the CVFS versioning file system. Section 5 ana-
lyzes the efficiency of CVFS in terms of space efficiency
and performance. Section 6 describes how our version-
ing techniques could be applied to other systems. Sec-
tion 7 discusses additional related work. Section 8 sum-
marizes the paper’s contributions.

2 Versioning and Space Efficiency

Every modification to a file inherently results in a new
version of the file. Instead of replacing the previous ver-
sion with the new one, a versioning file system retains
both. Users of such a system can then access any histori-
cal versions that the system keeps as well as the most re-
cent one. This section discusses uses of versioning, tech-
niques for managing the associated capacity costs, and
our goal of minimizing the metadata required to track
file versions.

2.1 Uses of Versioning

File versioning offers several benefits to both users and
system administrators. These benefits can be grouped
into three categories: recovery from user mistakes, re-
covery from system corruption, and analysis of historical
changes. Each category stresses different features of the
versioning system beneath it.

Recovery from user mistakes: Human users make mis-
takes, such as deleting or erroneously modifying files.
Versioning can help [17, 29, 37]. Recovery from such
mistakes usually starts with some a priori knowledge
about the nature of the mistake. Often, the exact file that

should be recovered is known. Additionally, there are
only certain versions that are of any value to the user; in-
termediate versions that contain incomplete data are use-
less. Therefore, versioning aimed at recovery from user
mistakes should focus on retaining key versions of im-
portant files.

Recovery from system corruption: When a system
becomes corrupted, administrators generally have no
knowledge about the scope of the damage. Because of
this, they restore the entire state of the file system from
some well-known “good” time. A common versioning
technique to help with this is the online snapshot. Like
a backup, a snapshot contains a version of every file in
the system at a particular time. Thus, snapshot systems
present sets of known-valid system images at a set of
well-known times.

Analysis of historical changes: A history of versions
can help answer questions about how a file reached a
certain state. For example, version control systems (e.g.,
RCS [43], CVS [16]) keep a complete record of com-
mitted changes to specific files. In addition to selec-
tive recovery, this record allows developers to figure out
who made specific changes and when those changes were
made. Similarly, self-securing storage seeks to enable
post-intrusion diagnosis by providing a record of what
happened to stored files before, during, and after an in-
trusion. We believe that every version of every file should
be kept. Otherwise, intruders who learn the pruning
heuristic will leverage this information to prune any file
versions that might disclose their activities. For exam-
ple, intruders may make changes and then quickly re-
vert them once damage is caused in order to hide their
tracks. With a complete history, administrators can de-
termine which files were changed and estimate damage.
Further, they can answer (or at least construct informed
hypotheses for) questions such as “When and how did
the intruder get in?” and “What was their goal?” [40].

2.2 Pruning Heuristics

A true comprehensive versioning system keeps all ver-
sions of all files for all time. Such a system could sup-
port all three goals described above. Unfortunately, stor-
ing this much information is not practical. As a result, all
versioning systems use pruning heuristics. These prun-
ing heuristics determine when versions should be created
and when they should be removed. In other words, prun-
ing heuristics determine which versions to keep from the
total set of versions that would be available in a compre-
hensive versioning system.

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 45

2.2.1 Common heuristics

A common pruning technique in versioning file systems
is on-close versioning. This technique keeps only the last
version of a file from each session; that is, each CLOSE

of a file creates a distinct version. For example, the VMS
file system [29] retains a fixed number of versions for
each file. VMS’s pruning heuristic creates a version after
each CLOSE of a file and, if the file already has the max-
imum number of versions, removes the oldest remain-
ing version of the file. The more recent Elephant file
system [37] also creates new versions after each CLOSE;
however, it makes additional pruning decisions based on
a set of rules derived from observed user behavior.

Version control systems prune in two ways. First, they
retain only those versions explicitly committed by a
user. Second, they retain versions for only an explicitly-
chosen subset of the files on a system.

By design, snapshot systems like WAFL [19] and
Venti/Plan9 [34] prune all of the versions of files that are
made between snapshots. Generally, these systems only
create and delete snapshots on request, meaning that the
system’s administrator decides most aspects of the prun-
ing heuristic.

2.2.2 Information Loss

Pruning heuristics act as a form of lossy compression.
Rather than storing every version of a file, these heuris-
tics throw some data away to save space. The result is
that, just as a JPEG file loses some of its visual clar-
ity with lossy compression, pruning heuristics reduce the
clarity of the actions that were performed on the file.

Although this loss of information could result in an-
noyances for users and administrators attempting to re-
cover data, the real problem arises when versioning is
used to analyze historical changes. When versioning for
intrusion survival, as in the case of self-securing stor-
age, pruning heuristics create holes in the administrator’s
view of the system. Even creating a version on every
CLOSE is not enough, as malicious users can leverage
this heuristic to hide their actions (e.g., storing exploit
tools in an open file and then truncating the file to zero
before closing it).

To avoid traditional pruning heuristics, self-securing
storage employs comprehensive versioning over a fixed
window of time, expiring versions once they become
older than the given window. This detection window can
be thought of as the amount of time that an administra-
tor has to detect, diagnose, and recover from an intrusion.
As long as an intrusion is detected within the window, the
administrator has access to the entire sequence of modi-
fications since the intrusion.

2.3 Lossless Version Compression

For a system to avoid pruning heuristics, even over a
fixed window of time, it needs some form of lossless ver-
sion compression. Lossless version compression can also
be combined with pruning heuristics to provide further
space reductions in conventional systems. To maximize
the benefits, a system must attempt to compress both ver-
sioned data and versioned metadata.

Data: Data block sharing is a common form of loss-
less compression in versioning systems. Unchanged data
blocks are shared between versions by having their indi-
vidual metadata point to the same physical block. Copy-
on-write is used to avoid corrupting old versions if the
block is modified.

An improvement on block sharing is byte-range differ-
encing between versions. Rather than keeping the data
blocks that have changed, the system keeps the bytes that
have changed [27]. This is especially useful in situations
where a small change is made to the file. For example,
if a single byte is inserted at the beginning of a file, a
block sharing system keeps two full copies of the entire
file (since the data of every block in the file is shifted for-
ward by one byte); for the same scenario, a differencing
system only stores the single byte that was added and a
small description of the change.

Another recent improvement in data compression is
hash-based data storage [31, 34]. These methods rec-
ognize identical blocks or ranges of data across the sys-
tem and store only one copy of the data. This method
is quite effective for snapshot versioning systems, and
could likely be applied to other versioning systems with
similar results.

Metadata: Conventional versioning file systems keep a
full copy of the file metadata with each version. While it
simplifies version access, this method quickly exhausts
capacity, since even small changes to file data or at-
tributes result in a new copy of the metadata.

Figure 1 shows an example of how the space overhead of
versioned metadata can become a problem in a conven-
tional versioning system. In this example, a program is
writing small log entries to the end of a large file. Since
several log entries fit within a single data block, append-
ing entries to the end of the file produces several different
versions of the same block. Because each versioned data
block has a different location on disk, the system must
create a new version of the indirect block to track its lo-
cation. In addition, the system must write a new version
of the inode to track the location of the versioned indirect
block. Since any data or metadata change will always re-
sult in a new version of the inode, each version is tracked
using a pointer to that version’s inode. Thus, writing a

2nd USENIX Conference on File and Storage Technologies USENIX Association46

List

T
im

e

Inodes Data BlocksIndirect Blocks
VersionedVersionedVersion

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � �� � �� � �
� � �� � �� � �

Versioned

Version
2

Version
N

1
Version

"log.txt"

� � � �� � � �	 	 	 		 	 	 	

� � � � � �� � �

� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �

...

� � � �� � � �� � � �� � � �

...

Figure 1: Conventional versioning system. In this example, a sin-
gle logical block of file “log.txt” is overwritten several times. With
each new version of the data block, new versions of the indirect block
and inode that reference it are created. Notice that although only a sin-
gle pointer has changed in both the indirect block and the inode, they
must be rewritten entirely, since they require new versions. The system
tracks each version with a pointer to that version’s inode.

single data block results in a new indirect block, a new
inode, and an entry in the version list, resulting in more
metadata being written than data.

Access patterns that create such metadata versioning
problems are common. Many applications create or
modify files piece by piece. In addition, distributed file
systems such as NFS create this behavior by breaking
large updates of a file into separate, block-sized updates.
Since there is no way for the server to determine if these
block-sized writes are one large update or several small
ones, each must be treated as a separate update, resulting
in several new versions of the file.

Again, the solution to this problem is some form of dif-
ferencing between the versions. Mechanisms for creating
and storing differences of metadata versions are the main
focus of this work.

2.4 Objective

In a perfect world we could keep all versions of all files
for an infinite amount of time with no impact on per-
formance. This is obviously not possible. The objec-
tive of this work is to minimize the space overhead of
versioned metadata. For self-securing storage, doing so
will increase the detection window. For other version-
ing purposes, doing so will reduce the pressure to prune.
Because this space reduction will require compressing
metadata versions, it is also important that the perfor-
mance overhead of both version creation and version ac-
cess be minimized.

T
im

e� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

...
Journal

Versioned
Data Blocks

Current
Inode

Current
Indirect
Block

� � �� � � � � � �� � � �� � � �� � � �

...

"log.txt"

 !
!

" "" "" "" "" "
$$$$

$%%%%

Figure 2: Journal-based metadata system. Just as in Figure 1, this
figure shows a single logical block of file “log.txt” being overwritten
several times. Journal-based metadata retains all versions of the data
block by recording each in a journal entry. Each entry points to both
the new block and the block that was overwritten. Only the current
version of the inode and indirect block are kept, significantly reducing
the amount of space required for metadata.

3 Efficient Metadata Versioning

One characteristic of versioned metadata is that the ac-
tual changes to the metadata between versions are gen-
erally quite small. In Figure 1, although an inode and
an indirect block are written with each new version of
the file, the only change to the metadata is an update to a
single block pointer. The system can leverage these small
changes to provide much more space-efficient metadata
versioning. This section describes two methods that
leverage small metadata modifications, and Section 4 de-
scribes an implementation of these solutions.

3.1 Journal-based Metadata

Journal-based metadata maintains a full copy of the cur-
rent version’s metadata and a journal of each previous
metadata change. To recreate old versions of the meta-
data, each change is undone backward through the jour-
nal until the desired version is recreated. This process of
undoing metadata changes is referred to as journal roll-
back.

Figure 2 illustrates how journal-based metadata works in
the example of writing log entries. Just as in Figure 1, the
system writes a new data block for each version; how-
ever, in journal-based metadata, these blocks are tracked
using small journal entries that track the locations of the
new and old blocks. By keeping the current version of
the metadata up-to-date, the journal entries can be rolled-
back to any previous version of the file.

In addition to storing version information, the journal can

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 47

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �
� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �

� � � �� � � �� � � �
� � �� � �� � �

L
3-?

Q
4-?

E
6-?

G
6-?

C
2-4

C
4-7

A
1-?

B
1-?

G
6-?

Q
4-?

B
1-?

D
2-?

G
6-?

Root

Entry
Blocks

Blocks
Index

D
2-?

(a) Initial tree structure.

	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	

� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �

� � �� � �� � �
� � �� � �� � �

L
3-?

Q
4-?

E
6-8

G
6-9

G
9-?

C
2-4

C
4-7

A
1-?

B
1-?

G
9-?

Q
4-?

B
1-?

D
2-?

G
9-?

Root

Entry
Blocks

Blocks
Index

D
2-?

(b) After removal of E and update of G.

Figure 3: Multiversion b-tree. This figure shows the layout of a multiversion b-tree. Each entry of the tree is designated by a � user-key,
timestamp � tuple which acts as a key for the entry. A question mark (?) in the timestamp indicates that the entry is valid through the current time.
Different versions of an entry are separate entries using the same user-key with different timestamps. Entries are packed into entry blocks, which
are tracked using index blocks. Each index pointer holds the key of the last entry along the subtree that it points to.

be used as a write-ahead log for metadata consistency,
just as in a conventional journaling file system. To do
so, the new block pointer must be recorded in addition
to the old. Using this, a journal-based metadata imple-
mentation can safely maintain the current version of the
metadata in memory, flushing it to disk only when it is
forced from the cache.

3.1.1 Space vs. Performance

Journal-based metadata is more space efficient than con-
ventional versioning. However, it must pay a perfor-
mance penalty for recreating old versions of the meta-
data. Since each entry written between the current ver-
sion and the requested version must be read and rolled-
back, there is a linear relation between the number of
changes to a file and the performance penalty for recre-
ating old versions.

One way the system can reduce this overhead is to check-
point a full copy of a file’s metadata to the disk occasion-
ally. By storing checkpoints and remembering their loca-
tions, a system can start journal roll-back from the closest
checkpoint in time rather than always starting with the
current version. The frequency with which these check-
points are written dictates the space/performance trade-
off. If the system keeps a checkpoint with each modi-
fication, journal-based metadata performs like a conven-
tional versioning scheme (using the most space, but of-
fering the best back-in-time performance). However, if
no checkpoints are written, the only full instance of the
metadata is the current version, resulting in the lowest
space utilization but reduced back-in-time performance.

3.2 Multiversion B-trees

A multiversion b-tree is a variation on standard b-trees
that keeps old versions of entries in the tree [2]. As in a
standard b-tree, an entry in a multiversion b-tree contains
a key/data pair; however, the key consists of both a user-
defined key and the time at which the entry was written.
With the addition of this time-stamp, the key for each
version of an entry becomes unique. Having unique keys
means that entries within the tree are never overwritten;
therefore, multiversion b-trees can have the same basic
structure and operations as a standard b-tree. To facil-
itate current version lookups, entries are sorted first by
the user-defined key and then by the timestamp.

Figure 3a shows an example of a multiversion b-tree.
Each entry contains both the user-defined key and the
time over which the entry is valid. The entries are packed
into entry blocks, which act as the leaf nodes of the tree.
The entry blocks are tracked using index blocks, just as
in standard b+trees. In this example, each pointer in the
index block references the last entry of the subtree be-
neath it. So in the case of the root block, the � subtree
holds all entries with values less than or equal to � , with� � � � � � � as its last entry. The � subtree holds all entries
with values between � and � , with

� � � � � � as its last
entry.

Figure 3b shows the tree after a remove of entry " and
an update to entry � . When entry " is removed at time#

, the only change is an update to the entry’s timestamp.
This indicates that " is only valid from time � through
time

#
. When entry � is updated at time $, a new entry

is created and associated with the new data. Also, the
old entry for � must be updated to indicate its bounded
window of validity. In this case, the index blocks must

2nd USENIX Conference on File and Storage Technologies USENIX Association48

also be updated to reflect the new state of the subtree,
since the last entry of the subtree has changed.

Since both current and history entries are stored in the
same tree, accesses to old and current versions have the
same performance. For this reason, large numbers of his-
tory entries can decrease the performance of accessing
current entries.

3.3 Solution Comparison

Both journal-based metadata and multiversion b-trees re-
duce the space utilization of versioning but incur some
performance penalty. Journal-based metadata pays with
reduced back-in-time performance. Multiversion b-trees
pay with reduced current version performance.

Because the two mechanisms have different drawbacks,
they each perform certain operations more efficiently. As
mentioned above, the number of history entries in a mul-
tiversion b-tree can adversely affect the performance of
accessing the current version. This emerges in two situ-
ations: linear scan operations and files with a large num-
ber of versions. The penalty on lookup operations is re-
duced by the logarithmic nature of the tree structure, but
large numbers of history entries can increase tree depth.
Linear scanning of all current entries requires accessing
every entry in the tree, which becomes expensive if the
number of history entries is high. In both of these cases,
it is better to use journal-based metadata.

When lookup of a single entry is common or history ac-
cess time is important, it is preferable to use multiversion
b-trees. Using a multiversion b-tree, all versions of the
entry are located together in the tree and have logarithmic
lookup time (for both current and history entries), giving
a performance benefit over the linear roll-back operation
required by journal-based metadata.

4 Implementation

We have integrated journal-based metadata and multiver-
sion b-trees into a comprehensive versioning file system,
called CVFS. CVFS provides comprehensive versioning
within our self-securing NFS server prototype. Because
of this, some of our design decisions (such as the im-
plementation of a strict detection window) are specific to
self-securing storage. Regardless, these structures would
be effective in most versioning systems.

4.1 Overview

Since current versions of file data must not be overwrit-
ten in a comprehensive versioning system, CVFS uses a
log-structured data layout similar to LFS [36]. Not only

does this eliminate overwriting of old versions on disk,
but it also improves update performance by combining
data and metadata updates into a single disk write.

CVFS uses both mechanisms described in Section 3. It
uses journal-based metadata to version file data pointers
and file attributes, and multiversion b-trees to version di-
rectory entries. We chose this division of methods based
on the expected usage patterns of each. Assuming many
versions of file attributes and a need to access them in
their entirety most of the time, we decided that journal-
based metadata would be more efficient. Directories, on
the other hand, are updated less frequently than file meta-
data and a large fraction of operations are entry lookup
rather than full listing. Thus, the cost of having history
entries within the tree is expected to be lower.

Since the only pruning heuristic in CVFS is expiration,
it requires a cleaner to find and remove expired ver-
sions. Although CVFS’s background cleaner is not de-
scribed in detail here, its implementation closely resem-
bles the cleaner in LFS. The only added complication
is that, when moving a data block in a versioning sys-
tem, the cleaner must update all of the metadata versions
that point to the block. Locating and modifying all of
this metadata can be expensive. To address this problem,
each data block on the disk is assigned a virtual block
number. This allows us to move the physical location of
the data and only have to update a single pointer within a
virtual indirection table, rather than all of the associated
metadata.

4.2 Layout and Allocation

Because of CVFS’s log-structured format, disk space is
managed in contiguous sets of disk blocks called seg-
ments. At any particular time, there is a single write seg-
ment. All data block allocations are done within this seg-
ment. Once the segment is completely allocated, a new
write segment is chosen. Free segments on the disk are
tracked using a bitmap.

As CVFS performs allocations from the write segment,
the allocated blocks are marked as either journal blocks
or data blocks. Journal blocks hold journal entries, and
they contain pointers that string all of the journal blocks
together into a single contiguous journal. Data blocks
contain file data or metadata checkpoints.

CVFS uses inodes to store a file’s metadata, including
file size, access permissions, creation time, modification
time, and the time of the oldest version still stored on
the disk. The inode also holds direct and indirect data
pointers for the associated file or directory. CVFS tracks
inodes with a unique inode number. This inode number
indexes into a table of inode pointers that are kept at a

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 49

Entry Type Description Cause
Attribute Holds new inode attribute information Inode change
Delete Holds inode number and delete time Inode change
Truncate Holds the new size of the file File data change
Write Points to the new file data File data change
Checkpoint Points to checkpointed metadata Metadata checkpoint / Inode change

Table 1: Journal entry types. This table lists the five types of journal entry. Journal entries are written when inodes are modified, file data is
modified, or file metadata is flushed from the cache.

fixed location on the disk. Each pointer holds the block
number of the most current metadata checkpoint for that
file, which is guaranteed to hold the most current version
of the file’s inode. The in-memory copy of an inode is
always kept up-to-date with the current version, allow-
ing quick access for standard operations. To ensure that
the current version can always be accessed directly off
the disk, CVFS checkpoints the inode to disk on a cache
flush.

4.3 The Journal

The string of journal blocks that runs through the seg-
ments of the disk is called the journal. Each journal
block holds several time-ordered, variably-sized journal
entries. CVFS uses the journal to implement both con-
ventional file system journaling (a.k.a. write-ahead log-
ging) and journal-based metadata.

Each journal entry contains information specific to a sin-
gle change to a particular file. This information must
be enough to do both roll-forward and roll-back of the
metadata. Roll-forward is needed for update consistency
in the face of failures. Roll-back is needed to reconstruct
old versions. Each entry also contains the time at which
the entry was written and a pointer to the location of the
previous entry that applies to this particular file. This
pointer allows us to trace the changes of a single file
through time.

Table 1 lists the five different types of journal entries.
CVFS writes entries in three different cases: inode mod-
ifications (creation, deletion, and attribute updates), data
modifications (writing or truncating file data), and meta-
data checkpoints (due to a cache flush or history opti-
mization).

4.4 Metadata

There are three types of file metadata that can be altered
individually: inode attributes, file data pointers, and di-
rectory entries. Each has characteristics that match it to
a particular method of metadata versioning.

4.4.1 Inode Attributes

There are four operations that act upon inode at-
tributes: creation, deletion, attribute updates, and at-
tribute lookups.

CVFS creates inodes by building an initial copy of the
new inode and checkpointing it to the disk. Once this
checkpoint completes and the inode pointer is updated,
the file is accessible. The initial checkpoint entry is
required because the inode cannot be read through the
inode pointer table until a checkpoint occurs. CVFS’s
default checkpointing policy bounds the back-in-time
access performance to approximately 150ms as is de-
scribed in Section 5.3.2.

To delete an inode, CVFS writes a “delete” journal entry,
which notes the inode number of the file being deleted. A
flag is also set in the current version of the inode, spec-
ifying that the file was deleted, since the deleted inode
cannot actually be removed from the disk until it expires.

CVFS stores attribute modifications entirely within a
journal entry. This journal entry contains the value of the
changed inode attributes both before and after the mod-
ification. Therefore, an attribute update involves writing
a single journal entry, and updating the current version
of the inode in memory.

CVFS accesses the current version of the attributes by
reading in the current inode, since all of the attributes are
stored within it. To access old versions of the attributes,
CVFS traverses the journal entries searching for modifi-
cations that affect the attributes of that particular inode.
Once roll-back is complete, the system is left with a copy
of the attributes at the requested point in time.

4.4.2 File Data Pointers

CVFS tracks file data locations using direct and indi-
rect pointers [30]. Each file’s inode contains thirty direct
pointers, as well as one single, one double and one triple
indirect pointer.

When CVFS writes to a file, it allocates space for the
new data within the current write segment and creates a
“write” journal entry. The journal entry contains point-

2nd USENIX Conference on File and Storage Technologies USENIX Association50

ers to the data blocks within the segment, the range of
logical block numbers that the data covers, the old size
of the file, and pointers to the old data blocks that were
overwritten (if there were any). Once the journal entry is
allocated, CVFS updates the current version of the meta-
data to point at the new data.

If a write is larger than the amount of data that will fit
within the current write segment, CVFS breaks the write
into several data/journal entry pairs across different seg-
ments. This compartmentalization simplifies cleaning.

To truncate a file, CVFS first checkpoints the file to the
log. This is necessary because CVFS must be able to
locate truncated indirect blocks when reading back-in-
time. If they are not checkpointed, then the information
in them will be lost during the truncate; although earlier
journal entries could be used to recreate this information,
such entries could expire and leave the detection win-
dow, resulting in lost information. Once the checkpoint
is complete, a “truncate” journal entry is created contain-
ing both a pointer to the checkpointed metadata and the
new size of the file.

To access current file data, CVFS finds the most current
inode and reads the data pointers directly, since they are
guaranteed to be up-to-date. To access historical data
versions, CVFS uses a combination of checkpoint track-
ing and journal roll-back to recreate the desired version
of the requested data pointers. CVFS’s checkpoint track-
ing and journal roll-back work together in the following
way. Assume a user wishes to read data from a file at
time � . First, CVFS locates the oldest checkpoint it is
tracking with time � � such that � � � � . Next, it searches
backward from that checkpoint through the journal look-
ing for changes to the block numbers being read. If it
finds an older version of a block that applies, it will use
that. Otherwise, it reads the block from the checkpointed
metadata.

To illustrate this journal rollback, Figure 4 shows a se-
quence of updates to block 3 of inode 4 interspersed with
checkpoints of inode 4. Each block update and inode
checkpoint is labeled with the time � that it was written.
To read block 3 at time � �
 � , CVFS first reads the
checkpoint at time �
 � #

, then reads journal entries to
see if a different data block should be used. In this case,
it finds that the block was overwritten at time �
 � � , and
so returns the older block written at time �
 � � . In the
case of time � �
 � , CVFS starts with the checkpoint at
time �
 � , and then reads the journal entry, and realizes
that no such block existed at time �
 � .

4.4.3 Directory Entries

Each directory in CVFS is implemented as a multiver-
sion b-tree. Each entry in the tree represents a direc-

Time

ID 4

1T =12T =52

� �� �� �� �� �

��
��
�

��
��
�

��
��
�

... ...� �� �� �� �� �

� �� �� �� �� �
ID 4
t=18

Blk 3
t=15t=3

Blk 3
t=6 t=7

ID 4 Blk 3
t=10

Figure 4: Back-in-time access. This diagram shows a series of
checkpoints of inode 4 (highlighted with a dark border) and updates
to block 3 of inode 4. Each checkpoint and update is marked with a
time � at which the event occured. Each checkpoint holds a pointer
to the block that is valid at the time of the checkpoint. Each update
is accompanied by a journal entry (marked by thin, grey boxes) which
holds a pointer to the new block (solid arrow) and the old block that it
overwrote (dashed arrow, if one exists).

tory entry; therefore, each b-tree entry must contain the
entry’s name, the inode number of the associated file,
and the time over which the entry is valid. Each entry
also contains a fixed-size hash of the name. Although
the actual name must be used as the key while searching
through the entry blocks, this fixed-size hash allows the
index blocks to use space-efficient fixed-size keys.

CVFS uses a full data block for each entry block of the
tree, and sorts the entries within it first by hash and then
by time. Index nodes of the tree are also full data blocks
consisting of a set of index pointers also sorted by hash
and then by time. Each index pointer is a

�
subtree, hash,

time-range � tuple, where subtree is a pointer to the ap-
propriate child block, hash is the name hash of the last
entry along the subtree, and time-range is the time over
which that same entry is valid.

With this structure, lookup and listing operations on the
directory are the same as with a standard b-tree, except
that the requested time of the operation becomes part of
the key. For example, in Figure 3a, a lookup of

� � � � �
searches through the tree for entries with name C, and
then checks the time-ranges of each to determine the cor-
rect entry to return (in this case

� � � � � �). A listing of
the directory at time � would do an in-order tree traver-
sal (just as in a standard b-tree), but would exclude any
entries that are not valid at time � .

Insert, remove, and update are also very similar. Insert is
identical, with the time-range of the new entry starting at
the current time. Remove is an update of the time-range
for the requested name. For example, in Figure 3b, entry

" is removed at time
#
. Update is an atomic remove and

insert of the same entry name. For example, in Figure 3b,
entry � is updated at time $. This involves atomically
removing the old entry � at time $ (updating the time-
range), and inserting entry � at time $ (the new entry� � � $ � � �).

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 51

Labyrinth Traces
Versioned Versioned Metadata Total

Data Metadata Savings Savings
Files: Conventional versioning 123.4 GB 142.4 GB

Journal-based metadata 123.4 GB 4.2 GB 97.1% 52.0%
Directories: Conventional versioning — 9.7 GB

Multiversion b-trees — 0.044 GB 99.6% 99.6%
Total: Conventional versioning 123.4 GB 152.1 GB

CVFS 123.4 GB 4.244 GB 97.2% 53.7%

Lair Traces
Versioned Versioned Metadata Total

Data Metadata Savings Savings
Files: Conventional versioning 74.5 GB 34.8 GB

Journal-based metadata 74.5 GB 1.1 GB 96.8% 30.8%
Directories: Conventional versioning — 1.8 GB

Multiversion b-trees — 0.0064 GB 99.7% 99.7%
Total: Conventional versioning 74.5 GB 152.1 GB

CVFS 74.5 GB 1.1064 GB 97.0% 32.0%

Table 2: Space utilization. This table compares the space utilization of conventional versioning with CVFS, which uses journal-based metadata
and multiversion b-trees. The space utilization for versioned data is identical for conventional versioning and journal-based metadata because
neither address data beyond block sharing. Directories contain no versioned data because they are entirely a metadata construct.

5 Evaluation

The objective of this work is to reduce the space over-
heads of versioning without reducing the performance
of current version access. Therefore, our evaluation of
CVFS is done in two parts. First, we analyze the space
utilization of CVFS. We find that using journal-based
metadata and multiversion b-trees reduces space over-
head for versioned metadata by over 80%. Second, we
analyze the performance characteristics of CVFS. We
find that it performs similarly to non-versioning systems
for current version access, and that back-in-time perfor-
mance can be bounded to acceptable levels.

5.1 Experimental Setup

For the evaluation, we used CVFS as the underlying file
system for S4, our self-securing NFS server. S4 is a user-
level NFS server written for Linux that uses the SCSI-
generic interface to directly access the disk. S4 exports
an NFSv2 interface and treats it as a security perimeter
between the storage system and the client operating sys-
tem. Although the NFSv2 specification requires that all
changes be synchronous, S4 also has an asynchronous
mode of operation, allowing us to more thoroughly ana-
lyze the performance overheads of our metadata version-
ing techniques.

In all experiments, the client system has a 550 MHz Pen-
tium III, 128 MB RAM, and a 3Com 3C905B 100 Mb
network adapter. The servers have two 700 MHz Pen-
tium IIIs, 512 MB RAM, a 9 GB 10,000 RPM Quantum
Atlas 10K II drive, an Adaptec AIC-7896/7 Ultra2 SCSI
controller, and an Intel EtherExpress Pro100 100 Mb net-

work adapter. The client and server are on the same
100 Mb network switch.

5.2 Space Utilization

We used two traces, labelled Labyrinth and Lair, to eval-
uate the space utilization of our system. The Labyrinth
trace is from an NFS server at Carnegie Mellon hold-
ing the home directories and CVS repository that support
the activities of approximately 30 graduate students and
faculty; it records approximately 164 GB of data traffic
to the NFS server over a one-month period. The Lair
trace [13] is from a similar environment at Harvard; it
records approximately 103 GB of data traffic over a one-
week period. Both were captured via passive network
monitoring.

We replayed each trace onto both a standard configura-
tion of CVFS and a modified version of CVFS. The mod-
ified version simulates a conventional versioning system
by checkpointing the metadata with each modification.
It also performs copy-on-write of directory blocks, over-
writing the entries in the new blocks (that is, it uses nor-
mal b-trees). By observing the amount of allocated data
for each request, we calculated the exact overheads of
our two metadata versioning schemes as compared to a
conventional system.

Table 2 compares the space utilization of versioned files
for the two traces using conventional versioning and
journal-based metadata. There are two space overheads
for file versioning: versioned data and versioned meta-
data. The overhead of versioned data is the overwrit-
ten or deleted data blocks that are retained. In both

2nd USENIX Conference on File and Storage Technologies USENIX Association52

Labyrinth Traces
Versioned Versioned Versioned Version Metadata Total

Data File Metadata Directories Ratio Savings Savings
Comprehensive: Conventional 123.4 GB 142.4 GB 9.7 GB

CVFS 123.4 GB 4.2 GB 0.044 GB 1:1 97% 54%
On close(): Conventional 55.3 GB 30.6 GB 2.4 GB

CVFS 55.3 GB 2.1 GB 0.012 GB 1:2.8 94% 35%
6 minute Conventional 53.2 GB 11.0 GB 2.4 GB
Snapshots: CVFS 53.2 GB 1.3 GB 0.012 GB 1:11.7 90% 18%
1 hour Conventional 49.7 GB 5.1 GB 2.4 GB
Snapshots: CVFS 49.7 GB 0.74 GB 0.012 GB 1:20.8 90% 12%

Lair Traces
Versioned Versioned Versioned Version Metadata Total

Data File Metadata Directories Ratio Savings Savings
Comprehensive: Conventional 74.5 GB 34.8 GB 1.79 GB

CVFS 74.5 GB 1.1 GB 0.0064 GB 1:1 97% 32%
On close(): Conventional 40.3 GB 6.1 GB 0.75 GB

CVFS 40.3 GB 0.57 GB 0.0032 GB 1:2.9 91% 13%
6 minute Conventional 38.2 GB 3.0 GB 0.75 GB
Snapshots: CVFS 38.2 GB 0.36 GB 0.0032 GB 1:11.2 88% 8%
1 hour Conventional 36.2 GB 2.0 GB 0.75 GB
Snapshots: CVFS 36.2 GB 0.26 GB 0.0032 GB 1:15.6 87% 6%

Table 3: Benefits for different versioning schemes. This table shows the benefits of journal-based metadata for three versioning schemes
that use pruning heuristics. For each scheme it compares conventional versioning with CVFS’s journal-based metadata and multiversion b-trees,
showing the versioned metadata sizes, the corresponding metadata savings, and the total space savings. It also displays the ratio of versions to file
modifications; more modifications per version generally reduces both the importance and the compressibility of versioned metadata.

conventional versioning and journal-based metadata, the
versioned data consumes the same amount of space,
since both schemes use block sharing for versioned data.
The overhead of versioned metadata is the information
needed to track the versioned data. For Labyrinth, the
versioned metadata consumes as much space as the ver-
sioned data. For Lair, it consumes only half as much
space as the versioned data, because Lair uses a larger
block size; on average, twice as much data is overwritten
with each WRITE.

Journal-based metadata: Journal-based metadata re-
duces the space required for versioned file metadata sub-
stantially. For the conventional system, versioned meta-
data consists of copied inodes and sometimes indirect
blocks. For journal-based metadata, it is the log en-
tries that allow recreation of old versions plus any check-
points used to improve back-in-time performance (see
Section 5.3.2). For both traces, this results in 97% re-
duction of space required for versioned metadata.

Multiversion b-trees: Using multiversion b-trees for di-
rectories provides even larger space utilization reduc-
tions. Because directories are a metadata construct, there
is no versioned data. The overhead of versioned meta-
data in directories is the space used to store the over-
written and deleted directory entries. In a conventional
versioning system, each entry creation, modification, or
removal results in a new block being written that con-
tains the change. Since the entire block must be kept

over the detection window, it results in approximately
9.7 GB of space for versioned entries in the Labyrinth
trace and 1.8 GB in the Lair trace. With multiversion b-
trees, the only overhead is keeping the extra entries in the
tree, which results in approximately 45 MB and 7 MB of
space for versioned entries in the respective traces.

5.2.1 Other Versioning Schemes

We also use the Labyrinth and Lair traces to compute
the space that would be required to track versions in
three other versioning schemes: versioning on every file
CLOSE, taking systems snapshots every 6 minutes, and
taking system snapshots every hour. In order to simulate
open-close semantics with our NFS server, we insert a
CLOSE call after sequences of operations on a given file
that are followed by 500ms of inactivity to that file.

Table 3 shows the benefits of CVFS’s mechanisms for
the three versioning schemes mentioned above. For each
scheme, the table also shows the ratio of file versions-to-
modifications (e.g., in comprehensive versioning, each
modification results in a new version, so the ratio is 1:1).
For on-close versioning in the Labyrinth trace, conven-
tional versioning requires 55% as much space for ver-
sioned metadata as versioned data, meaning that reduc-
tion can still provide large benefits. As the versioned
metadata to versioned data ratio decreases and as the
version ratio increases, the overall benefits of versioned
metadata compression drop.

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 53

Table 3 identifies the benefits of both journal-based meta-
data (for “Versioned File Metadata”) and multiversion b-
trees (for “Versioned Directories”). For both, the meta-
data compression ratios are similar to those for com-
prehensive versioning. The journal-based metadata ra-
tio drops slightly as the version ratio increases, because
capturing more changes to the file metadata moves the
journal entry size closer to the actual metadata size. The
multiversion b-tree ratio is lower because a most of the
directory updates fall into one of two categories: entries
that are permanently added or temporary entries that are
created and then rapidly renamed or deleted. For this rea-
son, the number of versioned entries is lower for other
versioning schemes; although multiversion b-trees use
less space, the effect on overall savings is reduced.

5.3 Performance Overheads

The performance evaluation is done in three parts. First,
we compare the S4 prototype to non-versioning systems
using several macro benchmarks. Second, we measure
the back-in-time performance characteristics of journal-
based metadata. Third, we measure the general perfor-
mance characteristics of multiversion b-trees.

5.3.1 General Comparison

The purpose of the general comparison is to verify that
the S4 prototype performs comparably to non-versioning
systems. Since part of our objective is to avoid undue
performance overheads for versioning, it is important
that we confirm that the prototype performs reasonably
relative to similar systems. To evaluate the performance
relationship between S4 and non-versioning systems, we
ran two macro benchmarks designed to simulate realistic
workloads.

For both, we compare S4 in both synchronous and asyn-
chronous modes against three other systems: a NetBSD
NFS server running FFS, a NetBSD NFS server running
LFS, and a Linux NFS server running EXT2. We chose
to compare against BSD’s LFS because it uses a log-
structured layout similar to S4’s. BSD’s FFS and Linux’s
EXT2 use similar, more “traditional” file layout tech-
niques that differ from S4’s log-structured layout. It is
not our intent to compare a LFS layout against other lay-
outs, but rather to confirm that our implementation does
not have any significant performance anomalies. To en-
sure this, a small discussion of the performance differ-
ences between the systems is given for each benchmark.

Each of these systems was measured using an NFS client
running on Linux. Our S4 measurements use the S4
server and a Linux client. For “Linux,” we run RedHat
6.1 with a 2.2.17 kernel. For “NetBSD,” we run a stock
NetBSD 1.5 installation.

Unpack Configure Build
0

50

100

150

T
im

e
(s

ec
on

ds
)

s4−sync
lfs
ffs

s4−async
ext2

Figure 5: SSH comparison. This figure shows the performance of
five systems on the unpack, configure, and build phases of the SSH-
build benchmark. Performance is measured in the elapsed time of the
phase. Each result is the average of 15 runs, and all variances are un-
der .5s with the exception of the build phases of ffs and lfs which had
variances of 37.6s and 65.8s respectively.

To focus comparisons, the five setups should be viewed
in two groups. BSD LFS, BSD FFS, and S4-sync all
push updates to disk synchronously, as required by the
NFSv2 specification. Linux EXT2 and S4-async do not;
instead, updates are made in memory and propagated to
disk in the background.

SSH-build [39] was constructed as a replacement for
the Andrew file system benchmark [20]. It consists of
3 phases: The unpack phase, which unpacks the com-
pressed tar archive of SSH v1.2.27 (approximately 1 MB
in size before decompression), stresses metadata oper-
ations on files of varying sizes. The configure phase
consists of the automatic generation of header files and
Makefiles, which involves building various small pro-
grams that check the existing system configuration. The
build phase compiles, links, and removes temporary files.
This last phase is the most CPU intensive, but it also
generates a large number of object files and a few exe-
cutables. Both the server and client caches are flushed
between phases.

Figure 5 shows the SSH-build results for each of the five
different systems. As we hoped, our S4 prototype per-
forms similarly to the other systems measured.

LFS does significantly worse on unpack and configure
because it has poor small write performance. This is
due to the fact that NetBSD’s LFS implementation uses a
1 MB segment size, and NetBSD’s NFS server requires
a full sync of this segment with each modification; S4
uses a 64kB segment size, and supports partial segments.
Adding these features to NetBSD’s LFS implementation

2nd USENIX Conference on File and Storage Technologies USENIX Association54

would result in performance similar to S41. FFS per-
forms worse than S4 because FFS must update both a
data block and inode with each file modification, which
are in separate locations on the disk. EXT2 performs
more closely to S4 in asynchronous mode because it fails
to satisfy NFS’s requirement of synchronous modifica-
tions. It does slightly better in the unpack and config-
ure stages because it maintains no consistency guaran-
tees, however it does worse in the build phase due to S4’s
segment-sized reads.

Postmark was designed to measure the performance of
a file system used for electronic mail, netnews, and web
based services [22]. It creates a large number of small
randomly-sized files (between 512 B and 9 KB) and per-
forms a specified number of transactions on them. Each
transaction consists of two sub-transactions, with one be-
ing a create or delete and the other being a read or ap-
pend. The default configuration used for the experiments
consists of 20,000 transactions on 5,000 files, and the bi-
ases for transaction types are equal.

Figure 6 shows the Postmark results for the five server
configurations. These show similar results to the SSH-
build benchmark. Again, S4 performs comparably. In
particular, LFS continues to perform poorly due to its
small write performance penalty caused by its interac-
tion with NFS. FFS still pays its performance penalty due
to multiple updates per file create or delete. EXT2 per-
forms even better in this benchmark because the random,
small file accesses done in Postmark are not assisted by
aggressive prefetching, unlike the sequential, larger ac-
cesses done during a compilation; however, S4 contin-
ues to pay the cost of doing larger accesses, while EXT2
does not.

5.3.2 Journal-based Metadata

Because the metadata structure of a file’s current version
is the same in both journal-based metadata and conven-
tional versioning systems, their current version access
times are identical. Given this, our performance mea-
surements focus on the performance of back-in-time op-
erations with journal-based metadata.

There are two main factors that affect the performance
of back-in-time operations: checkpointing and cluster-
ing. Checkpointing refers to the frequency of metadata
checkpoints. Since journal roll-back can begin with any
checkpoint, CVFS keeps a list of metadata checkpoints
for each file, allowing it to start roll-back from the closest
checkpoint. The more frequently CVFS creates check-
points, the better the back-in-time performance.

Clustering refers to the physical distance between rele-
1We tried changing the NetBSD LFS segment size, but it was not

stable enough to complete any benchmark runs.

Total Transactions
0

200

400

600

800

1000

1200

T
im

e
(s

ec
on

ds
)

s4−sync
lfs
ffs

s4−async
ext2

Figure 6: Postmark comparison. This figure shows the the elapsed
time for both the entire run of postmark and the transactions phase of
postmark for the five test systems. Each result is the average of 15 runs,
and all variances are under 1.5s

vant journal entries. With CVFS’s log-structured layout,
if several changes are made to a file in a short span of
time, then the journal entries for these changes are likely
to be clustered together in a single segment. If several
journal entries are clustered in a single segment together,
then they are all read together, speeding up journal roll-
back. The “higher” the clustering, the better the perfor-
mance is expected to be.

Figure 7 shows the back-in-time performance character-
istics of journal-based metadata. This graph shows the
access time in milliseconds for a particular version num-
ber of a file back-in-time. For example, in the worst-
case, accessing the 60th version back-in-time would take
350ms. The graph examines four different scenarios:
best-case behavior, worst-case behavior, and two poten-
tial cases (one involving low clustering and one involving
high clustering).

The best-case back-in-time performance is the situation
where a checkpoint is kept for each version of the file,
and so any version can be immediately accessed with no
journal roll-back. This is the performance of a conven-
tional versioning system. The worst-case performance is
the situation where no checkpoints are kept, and every
version must be created through journal roll-back. In ad-
dition there is no clustering, since each journal entry is
in a separate segment on the disk. This results in a sepa-
rate disk access to read each entry. In the high clustering
case, changes are made in bursts, causing journal entries
to be clustered together into segments. This reduces the
slope of the back-in-time performance curve. In the low
clustering case, journal entries are spread more evenly
across the segments, giving a higher slope. In both the
low and high clustering cases, the points where the per-
formance drops back to the best-case are the locations of

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 55

0 50 100 150 200
0

100

200

300

400

500

600
A

cc
es

s
T

im
e

(m
s)

Number of versions before the current version

Best−case
Worst−case
High cluster
Low cluster

Figure 7: Journal-based metadata back-in-time performance.
This figure shows several potential curves for back-in-time perfor-
mance of accessing a single 1KB file. The worst-case is when journal
roll-back is used exclusively, and each journal entry is in a separate
segment on the disk. The best-case is if a checkpoint is available for
each version, as in a conventional versioning system. The high and low
clustering cases are examples of how checkpointing and access patterns
can affect back-in-time performance. Both of these cases use random
checkpointing. In the “high cluster” case, there are an average of 5 ver-
sions in a segment. In the “low cluster” case, there are an average of 2
versions in a segment. The cliffs in these curves indicate the locations
of checkpoints, since the access time for a checkpointed version drops
to the best-case performance. As the level of clustering increases, the
slope of the curve decreases, since multiple journal entries are read to-
gether in a single segment. Each curve is the average of 5 runs, and all
variances are under 1ms.

checkpoints.

Using this knowledge of back-in-time performance, a
system can perform a few optimizations. By tracking
checkpoint frequency and journal entry clustering, CVFS
can predict the back-in-time performance of a file while
it is being written. With this information, CVFS bounds
the performance of the back-in-time operations for a par-
ticular file by forcing a checkpoint whenever back-in-
time performance is expected to be poor. For example,
in Figure 7, the high-clustering case keeps checkpoints
in such a way as to bound back-in-time performance to
around 100ms at worst. In our S4 prototype, we bound
the back-in-time performance to approximately 150ms.
Another possibility is to keep checkpoints at the point
at which one believes the user would wish to access the
file. Using a heuristic such as in the Elephant FS [37]
to decide when to create file checkpoints might closely
simulate the back-in-time performance of conventional
versioning.

5.3.3 Multiversion B-trees

Figure 8 shows the average access time of a single entry
from a directory given some fixed number of entries cur-
rently stored within the directory (notice the log scale of

0

5

10

15

20

25

30

35

1 4 16 64 256 1024 4096 16384 65536

A
cc

es
s

tim
e

(m
s)

Directory entries

Entry lookup

Figure 8: Directory entry performance. This figure shows the av-
erage time to access a single entry out of the directory given the total
number of entries within the directory. History entries affect perfor-
mance by increasing the effective number of entries within the direc-
tory. The larger the ratio of history entries to current entries, the more
current version performance will suffer. This curve is the average of 15
runs and the variance for each point is under .2ms.

the x-axis). To see how a multiversion b-tree performs as
compared to a standard b-tree, we must compare two dif-
ferent points on the graph. The point on the graph corre-
sponding to the number of current entries in the directory
represents the access time of a standard b-tree. The point
on the graph corresponding to the combined number of
current and history entries represents the access time of
a multiversion b-tree. The difference between these val-
ues is the lookup performance lost by keeping the extra
versions.

Using the traces gathered from our NFS server, we found
that the average number of current entries in a directory
is approximately 16. Given a detection window of one
month, the number of history entries is less than 100 over
99% of the time, and between zero and five over 95% of
the time. Since approximately 200 entries can fit into a
block, there is generally no performance lost by keeping
the history. This block-based performance explains the
stepped nature of Figure 8.

5.4 Summary

Our results show that CVFS reduces the space utilization
of versioned metadata by more than 80% without caus-
ing noticeable performance degradation to current ver-
sion access. In addition, through intelligent checkpoint-
ing, it is possible to bound back-in-time performance to
within a constant factor of conventional versioning sys-
tems.

2nd USENIX Conference on File and Storage Technologies USENIX Association56

6 Metadata Versioning in
Non-Log-Structured Systems

Most file systems today use a layout scheme similar to
that of BSD FFS rather than a log-structured layout.
Such systems can be extended to support versioning rel-
atively easily; Santry et al. [37] describe how this was
done for Elephant, including tracking of versions and
block sharing among versions. For non-trivial pruning
policies, such as those used in Elephant and CVFS, a
cleaner is required to expire old file versions. In an FFS-
like system, unlike in LFS, the cleaner does not neces-
sarily have the additional task of coalescing free space.

Both journal-based metadata and multiversion b-trees
can be used in a versioning FFS-like file system in much
the same way as in CVFS. Replacing conventional di-
rectories with multiversion b-trees is a self-contained
change, and the characteristics should be as described in
the paper. Replacing replicated metadata versions with
journal-based metadata requires effort similar to adding
write-ahead logging support. Experience with adding
such support [17, 39] suggests that relatively little effort
is involved, little change to the on-disk structures is in-
volved, and substantial benefits accrue. If such logging
is already present, journal-based metadata can piggyback
on it.

Given write-ahead logging support, journal-based meta-
data requires three things. First, updates to the write-
ahead log, which are the journal entries, must contain
enough information to roll-back as well as roll-forward.
Second, the journal entries must be kept until the cleaner
removes them; they cannot be removed via standard log
checkpointing. This will increase the amount of space
required for the log, but by much less than the space
required to instead retain metadata replicas. Third, the
metadata replica support must be retained for use in
tracking metadata version checkpoints.

With a clean slate, we think an LFS-based design is su-
perior if many versions are to be retained. Each version
committed to disk requires multiple updates, and LFS
coalesces those updates into a single disk write. LFS
does come with cleaning and fragmentation issues, but
researchers have developed sufficiently reasonable solu-
tions to them to make the benefits outweigh the costs
in many environments. FFS-type systems that employ
copy-on-write versioning have similar fragmentation is-
sues.

7 Related Work

Much work has been done in the areas of versioning
and versioned data structures, log-structured file systems,

and journaling.

Several file systems have used versioning to provide re-
covery from both user errors and system failure. Both
Cedar [17] and VMS [29] use file systems that offer sim-
ple versioning heuristics to help users recover from their
mistakes. The more recent Elephant file system provides
a more complete range of versioning options for recov-
ery from user error [37]. Its heuristics attempt to keep
only those versions of a file that are most important to
users.

Many modern systems support snapshots to assist recov-
ery from system failure [11, 19, 20, 25, 34]. Most closely
related to CVFS are Spiralog [15, 21] and Plan9 [33],
which use a log-structured file system to do online
backup by recording the entire log to tertiary storage.
Chervenak, et al., performed an evaluation of several
snapshot systems [10].

Version control systems are user programs that imple-
ment a versioning system on top of a traditional file sys-
tem [16, 27, 43]. These systems store the current version
of the file, along with differences that can be applied to
retrieve old versions. These systems usually have no con-
cept of checkpointing, and so recreating old versions is
expensive.

Write-once storage media keeps a copy of any data writ-
ten to it. The Plan 9 system [33] utilized this media
to permanently retain all filesystem snapshots using a
log-structured technique. A recent improvement to this
method is the Venti archival storage system. Venti cre-
ates a hash of each block written and uses that as a unique
identifier to map identical data blocks onto the same
physical location [34]. This removes the need to rewrite
identical blocks, reducing the space required by individ-
ual data versions and files that contain similar data. It is
interesting to consider combining Venti’s data versioning
with CVFS’s metadata structures to provide extremely
space efficient comprehensive versioning.

In addition to the significant file system work in ver-
sioning, there has been quite a bit of work done in the
database community for keeping versions of data through
time. Most of this work has been done in the form of
“temporal” data structures [2, 23, 24, 44, 45]. Our direc-
tory structure borrows from these techniques.

The log-structured data layout was developed for write-
once media [33], and later extended to provide write per-
formance benefits for read-write disk technology [36].
Since its inception, LFS has been evaluated [3, 28, 35,
38] and used [1, 7, 12, 18] by many different groups.
Much of the work done to improve both LFS and LFS
cleaners is directly applicable to CVFS.

While journal-based metadata is a new concept, journal-

2nd USENIX Conference on File and Storage TechnologiesUSENIX Association 57

ing has been used in several different file systems to pro-
vide metadata consistency guarantees efficiently [8, 9,
11, 39, 42]. Similarly to journal-based metadata, LFS’s
segment summary block contains all of the metadata for
the data in a segment, but is stored in an uncompressed
format. Zebra’s deltas improved upon this by storing
only the changes to the metadata, but were designed ex-
clusively for roll-forward (a write-ahead log). Database
systems also use the roll-back and roll-forward concepts
to ensure consistency during transactions with commit
and abort [14].

Several systems have used copy-on-write and differenc-
ing techniques that are common to versioning systems to
decrease the bandwidth required during system backup
or distributed version updates [4, 6, 26, 31, 32]. Some
of these data differencing techniques [5, 26, 31] could be
applied to CVFS to reduce the space utilization of ver-
sioned data.

8 Conclusion

This paper shows that journal-based metadata and mul-
tiversion b-trees address the space-inefficiency of con-
ventional versioning. Integrating them into the CVFS
file system has nearly doubled the detection window that
can be provided with a given storage capacity. Further,
current version performance is affected minimally, and
back-in-time performance can be bounded reasonably
with checkpointing.

Acknowledgments

We would like to thank our shepard Mike Franklin and
the anonymous reviewers for their comments and help-
ful suggestions. Also, Dan Ellard and others at Har-
vard for providing the Lair trace used in this work. We
thank the members and companies of the PDL Consor-
tium (including EMC, Hewlett-Packard, Hitachi, IBM,
Intel, Network Appliance, Panasas, Seagate, Sun, and
Veritas) for their interest, insights, feedback, and support.
We thank IBM and Intel for hardware grants supporting
our research efforts. Garth Goodson has been supported
by an IBM Fellowship. Craig Soules has been supported
by a Usenix Association Scholarship. This material is
based in part on research sponsored by the Air Force Re-
search Laboratory, under agreement number F49620-01-
1-0433, and by the DARPA/ITO OASIS program (Air
Force contract number F30602-99-2-0539-AFRL.2

2The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright no-
tation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing

References
[1] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patter-

son, D. S. Roselli, and R. Y. Wang. Serverless network file
systems. ACM Symposium on Operating System Princi-
ples. Published as Operating Systems Review, 29(5):109–
126, 1995.

[2] B. Becker, S. Gschwind, T. Ohler, P. Widmayer, and
B. Seeger. An asymptotically optimal multiversion b-tree.
Very large data bases journal, 5(4):264–275, 1996.

[3] T. Blackwell, J. Harris, and M. Seltzer. Heuristic clean-
ing algorithms in log-structured file systems. USENIX
Annual Technical Conference, pages 277–288. USENIX
Association, 1995.

[4] R. C. Burns. Version management and recoverability for
large object data. International Workshop on Multime-
dia Database Management, pages 12–19. IEEE Computer
Society, 1998.

[5] R. C. Burns. Differential compression: a generalized so-
lution for binary files. Masters thesis. University of Cali-
fornia at Santa Cruz, December 1996.

[6] R. C. Burns and D. D. E. Long. Efficient distributed
backup with delta compression. Workshop on In-
put/Output in Parallel and Distributed Systems, pages 26–
36. ACM Press, December 1997.

[7] M. Burrows, C. Jerian, B. Lampson, and T. Mann. On-
line data compression in a log-structured file system. 85.
Digital Equipment Corporation Systems Research Center,
Palo Alto, CA, April 1992.

[8] L. F. Cabrera, B. Andrew, K. Peltonen, and N. Kusters.
Advances in Windows NT storage management. Com-
puter, 31(10):48–54, October 1998.

[9] A. Chang, M. F. Mergen, R. K. Rader, J. A. Roberts, and
S. L. Porter. Evolution of storage facilities in AIX Version
3 for RISC System/6000 processors. IBM Journal of Re-
search and Development, 34(1):105–110, January 1990.

[10] A. L. Chervenak, V. Vellanki, and Z. Kurmas. Protecting
file systems: a survey of backup techniques. Joint NASA
and IEEE Mass Storage Conference, 1998.

[11] S. Chutani, O. T. Anderson, M. L. Kazar, B. W. Leverett,
W. A. Mason, and R. N. Sidebotham. The Episode file
system. USENIX Annual Technical Conference, pages
43–60, 1992.

[12] W. de Jonge, M. F. Kaashoek, and W. C. Hsieh. The Logi-
cal Disk: a new approach to improving file systems. ACM
Symposium on Operating System Principles, pages 15–
28, 1993.

[13] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive
NFS Tracing of an Email and Research Workload. Con-
ference on File and Storage Technologies. USENIX As-
sociation, 2003.

[14] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie,
T. Price, F. Potzulo, and I. Traiger. The recovery man-
ager of the System R database manager. ACM Computing

the official policies or endorsements, either expressed or implied, of the
Air Force Research Laboratory or the U.S. Government.

2nd USENIX Conference on File and Storage Technologies USENIX Association58

Surveys, 13(2):223–242, June 1981.

[15] R. J. Green, A. C. Baird, and J. Christopher. Designing
a fast, on-line backup system for a log-structured file sys-
tem. Digital Technical Journal, 8(2):32–45, 1996.

[16] D. Grune, B. Berliner, and J. Polk. Concurrent Versioning
System, http://www.cvshome.org/.

[17] R. Hagmann. Reimplementing the Cedar file system us-
ing logging and group commit. ACM Symposium on Op-
erating System Principles. Published as Operating Sys-
tems Review, 21(5):155–162, 1987.

[18] J. H. Hartman and J. K. Ousterhout. The Zebra striped
network file system. ACM Transactions on Computer Sys-
tems, 13(3):274–310. ACM Press, August 1995.

[19] D. Hitz, J. Lau, and M. Malcolm. File system design for
an NFS file server appliance. Winter USENIX Technical
Conference, pages 235–246. USENIX Association, 1994.

[20] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West.
Scale and performance in a distributed file system. ACM
Transactions on Computer Systems, 6(1):51–81, February
1988.

[21] J. E. Johnson and W. A. Laing. Overview of the Spiralog
file system. Digital Technical Journal, 8(2):5–14, 1996.

[22] J. Katcher. PostMark: a new file system benchmark. Tech-
nical report TR3022. Network Appliance, October 1997.

[23] A. Kumar, V. J. Tsotras, and C. Faloutsos. Designing
access methods for bitemporal databases. IEEE Transac-
tions on Knowledge and Data Engineering, 10(1), Febru-
ary 1998.

[24] S. Lanka and E. Mays. Fully Persistent B+-trees. ACM
SIGMOD International Conference on Management of
Data, pages 426–435. ACM, 1991.

[25] E. K. Lee and C. A. Thekkath. Petal: distributed virtual
disks. Architectural Support for Programming Languages
and Operating Systems. Published as SIGPLAN Notices,
31(9):84–92, 1996.

[26] J. MacDonald. File system support for delta compression.
Masters thesis. Department of Electrical Engineering and
Computer Science, University of California at Berkeley,
2000.

[27] J. MacDonald, P. N. Hilfinger, and L. Semenzato. PRCS:
The project revision control system. European Confer-
ence on Object-Oriented Programming. Published as
Proceedings of ECOOP, pages 33–45. Springer-Verlag,
1998.

[28] J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang,
and T. E. Anderson. Improving the performance of log-
structured file systems with adaptive methods. ACM
Symposium on Operating System Principles. Published
as Operating Systems Review, 31(5):238–252. ACM,
1997.

[29] K. McCoy. VMS file system internals. Digital Press, 1990.

[30] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry.
A fast file system for UNIX. ACM Transactions on Com-
puter Systems, 2(3):181–197, August 1984.

[31] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-

bandwidth network file system. ACM Symposium on Op-
erating System Principles. Published as Operating System
Review, 35(5):174–187. ACM, 2001.

[32] H. Patterson, S. Manley, M. Federwisch, D. Hitz,
S. Kleiman, and S. Owara. SnapMirror: file system based
asynchronous mirroring for disaster recovery. Confer-
ence on File and Storage Technologies, pages 117–129.
USENIX Association, 2002.

[33] S. Quinlan. A cached WORM file system. Software—
Practice and Experience, 21(12):1289–1299, December
1991.

[34] S. Quinlan and S. Dorward. Venti: a new approach to
archival storage. Conference on File and Storage Tech-
nologies, pages 89–101. USENIX Association, 2002.

[35] J. T. Robinson. Analysis of steady-state segment stor-
age utilizations in a log-structured file system with least-
utilized segment cleaning. Operating Systems Review,
30(4):29–32, October 1996.

[36] M. Rosenblum and J. K. Ousterhout. The design and im-
plementation of a log-structured file system. ACM Sym-
posium on Operating System Principles. Published as Op-
erating Systems Review, 25(5):1–15, 1991.

[37] D. S. Santry, M. J. Feeley, N. C. Hutchinson, R. W. Car-
ton, J. Ofir, and A. C. Veitch. Deciding when to forget
in the Elephant file system. ACM Symposium on Oper-
ating System Principles. Published as Operating Systems
Review, 33(5):110–123. ACM, 1999.

[38] M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang,
S. McMains, and V. Padmanabhan. File system logging
versus clustering: a performance comparison. USENIX
Annual Technical Conference, pages 249–264. Usenix
Association, 1995.

[39] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A.
Smith, C. A. N. Soules, and C. A. Stein. Journaling versus
Soft Updates: Asynchronous Meta-data Protection in File
Systems. USENIX Annual Technical Conference, 2000.

[40] J. D. Strunk, G. R. Goodson, A. G. Pennington, C. A. N.
Soules, and G. R. Ganger. Intrusion detection, diagnosis,
and recovery with self-securing storage. Technical report
CMU–CS–02–140. Carnegie Mellon University, 2002.

[41] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N.
Soules, and G. R. Ganger. Self-securing storage: protect-
ing data in compromised systems. Symposium on Operat-
ing Systems Design and Implementation, pages 165–180.
USENIX Association, 2000.

[42] A. Sweeney. Scalability in the XFS file system. USENIX
Annual Technical Conference, pages 1–14, 1996.

[43] W. F. Tichy. Software development control based on sys-
tem structure description. PhD thesis. Carnegie-Mellon
University, Pittsburgh, PA, January 1980.

[44] V. J. Tsotras and N. Kangelaris. The snapshot index - an
I/O-optimal access method for timeslice queries. Infor-
mation Systems, 20(3):237–260, May 1995.

[45] P. J. Varman and R. M. Verma. An efficient multiversion
access structure. IEEE Transactions on Knowledge and
Data Engineering, 9(3). IEEE, May 1997.

