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Abstract

In this paper, we analyse information leakage in Ryan’s
Prêt à Voter with Paillier encryption scheme (PAV-
Paillier). Our analysis shows that although PAV-Paillier
seems to achieve a high level of voter privacy at first
glance, it might still leak voter’s choice information in
some circumstances. Some threats are trivial and have
appeared in the literature, but others are more compli-
cated because colluding adversaries may apply combined
attacks. Several strategies have been suggested to mit-
igate these threats, but we have not resolved all the
threats. We leave those unsolved threats as open ques-
tions. In order to describe our analysis in a logical man-
ner, we will introduce an information leakage model to
aid our analysis. We suggest that this model can be ap-
plied to analyse information leakage in other complex
mixnet based e-voting schemes as well.

Furthermore, we introduce a simplification of PAV-
Paillier. In our proposal, without degrading security
properties such as voter privacy, verifiability and reliabil-
ity, we no longer need to apply the homomorphic prop-
erty to absorb the voter’s choice index into the onion,
thus we step back to employ the ElGamal encryption.
This results in a simpler and more straightforward thresh-
old cryptosystem. Some other attractive properties of
our proposal scheme are: unlike traditional Prêt à Voter
schemes, the candidate list in our scheme can be in al-
phabetical order. Our scheme not only handles approval
elections, but also it handles ranked elections (e.g. Single
Transferable Voting). Furthermore, our scheme mitigates
the randomisation attack.

1 Introduction

Over the past two decades, a number of cryptographic
e-voting schemes have been introduced. Compared to
traditional election methods, these schemes are not only
more secure but also more transparent. Generally speak-

ing, based on the assumption that all parties are limited
to polynomial-bounded computational resources, major-
ity cryptographic e-voting schemes are aiming to achieve
a number of properties which can be classified into the
following five aspects:

Voter privacy: this aspect includes privacy and
receipt-freeness. The privacy property keeps the voter’s
choice information private from others if the voter does
not want to reveal it. Receipt-freeness, introduced by Be-
naloh and Tuinstra [9], has a much stricter requirement
than privacy. It requires that voters are unable to generate
receipts to prove to others how they have voted, or that
they can use fake receipts to lie to adversaries, and ad-
versaries cannot distinguish fake receipts from genuine
ones. Therefore, receipt-freeness implies privacy. In this
paper, voter privacy will have the same security require-
ment as receipt-freeness. The purpose is to ensure that
the whole election system will not leak voters’ choice
information, even if voters are coerced to collude with
adversaries. Therefore voters can cast their votes with-
out coercion and intimidation. We say that the election
system suffers from the information leakage problem if
some threats against voter privacy can be introduced with
non-negligible probability.

Verifiability: this aspect includes integrity, correct-
ness, individual verifiability and public verifiability. In-
tegrity means that all eligible voters will be allowed to
vote, each eligible voter is allowed to vote once and only
once, and all valid votes will be tallied. Correctness
means that if all participants in the election behave hon-
estly, the correct result will always be obtained. Individ-
ual verifiability ensures a correct mapping from voters’
intent to the received votes, and public verifiability en-
sures a correct mapping from the received votes to the
final result. The verifiability aspect is a combination of
the above four properties, therefore it ensures a correct
mapping from voters’ intent to the final result, and fur-
thermore, this procedure can be verified.

Reliability: includes robustness and fairness. Robust-



ness requires that the election systems are able to toler-
ate some mistakes caused by ordinary voters, as well as
some faulty behaviour caused by a minority of election
authorities. The ability to recover from cheating is im-
portant as well. Fairness ensures that no partial result
will be revealed before the final result is announced.

Versatility: the election system is able to handle
different election methods, such as First-Past-The-Post
elections, Borda Court elections, Condorcet elections
and Single Transferable Voting.

Usability: the election system can be used by
ordinary voters without special knowledge (e.g. click-
and-go). Besides, the system should be easy for election
authorities to set-up and control, no special or expensive
equipment is needed. Furthermore, the system can be
executed efficiently even if the number of candidates or
number of voters scales up.

Among these aspects, the first three, which are called
security aspects, are always crucial, that particularly of
certain for cryptographic electronic voting. The other
two aspects are called auxiliary aspects. And there are
two major conflicts among these aspects:

1. Voter privacy v.s. verifiability

2. Security aspects v.s. auxiliary aspects

1.1 Voter privacy v.s. verifiability
Generally speaking, early cryptographic e-voting
schemes were focused on the ballot tallying phase,
aiming to solve the first conflict by achieving voter
privacy and verifiability simultaneously. These schemes
can be classified into two major approaches: based on
mixnets, and based on homomorphic encryption.

In schemes based on mixnets, each voter first encrypts
her choice under some public key. The corresponding
secret key is distributed among a number of decryption
parties in a threshold fashion [46, 26]. The voter pub-
lishes this encrypted value on the bulletin board with
some proof to show her knowledge of the plaintext. The
proof aims to prevent the ballot duplication attack in
[47]. When all voters have cast their votes, a number
of mix servers will launch the shuffle phase. Each mix
server receives a batch of encrypted votes, randomly re-
encrypts and shuffles them, then outputs the result to
the next mix server. Therefore, if all mix servers are
honest, the outputs of the shuffle phase will be a per-
mutation of the incoming votes, but their relationships
have been mixed to ensure voter privacy. Finally, each
of the encrypted values in the outcome will be decoded
in a threshold fashion. Each decryption party publishes
some auxiliary information [13] to prove the correctness
of decoding. In order to audit the shuffle phase, each mix

server needs to post some certificates1 onto the bulletin
board which can be verified by the public afterwards.
These certificates should not reveal how the mix server
has shuffled the encrypted values. Note that the most ex-
pensive part in the mix networks is for mix servers to
prove the shuffle. There have been some attempts to im-
prove efficiency. Some repetitive robust mixnets are in-
teresting, e.g. [31, 32, 27], but most of them have been
broken [19, 39, 1, 55]. We advocate choosing one from
[25, 41, 28]2.

Schemes based on homomorphic encryption were first
introduced by Benaloh [15, 10, 7]. To cast a vote, each
voter generates an encrypted value of her desired vote
and posts it onto the bulletin board. A proof that her
encrypted value contains a valid vote is also required.
The proof should not reveal the content of that vote, but
it prevents dishonest voters from casting multiple votes.
The received encrypted values are then aggregated in
some public manner. Finally, the result can be tallied
in a threshold fashion without opening each ballot for
voter privacy. Similarly, some certificates to prove
the correct decoding are published on the bulletin
board. Schemes based on homomorphic encryption
are efficient in obtaining the final result3, however
intensive zero-knowledge proofs are needed to prove the
validity of each encrypted vote, and voting is normally
restricted to the 1-out-of-L format. Major issues and
important building blocks of e-voting schemes based
on homomorphic encryption have been introduced in
[17, 6, 18].

In these early schemes, the receipt-free property has
attracted a lot of interest. Each encrypted vote is pub-
lished, and the voter herself can prove the content of her
vote by revealing the randomness she used for encryp-
tion. Thus some additional methods need to be applied
in order to achieve receipt-freeness. We have to note that
although a number of schemes have claimed achievement
of the receipt-free property, some of them have been bro-
ken or shown to suffer drawbacks.

(1). Some schemes [9, 37, 38] suggest that after
the voter encrypts her vote, some trusted party will re-
encrypt each voter’s vote and prove the re-encryption in
an interactive way. However, if adversaries force vot-
ers to use some special randomness for their challenge,

1Note that the interactive proofs can be transformed into non-
interactive ones using Fiat-Shamir heuristics [22], and some early
schemes [11, 45] can be made publicly verifiable by applying [34].

2Note that [25] has been shown not to achieve computational zero-
knowledge in [24], but it is proved that their mixnets will not reveal the
relationships between inputs and outputs.

3Note that the decryption of exponential ElGamal ciphertexts in
some schemes, e.g. [16, 17], still suffers drawbacks. But compared
with schemes based on mixnets, schemes based on homomorphic en-
cryption only need to decrypt one ciphertext instead of decrypting each
received votes separately.
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e.g. the outcome of some hash functions, then receipt-
freeness fails. Therefore, the re-encryption proof has to
be given in a non-interactive and designated-verifier way.

(2). There are two reasons why if an e-voting system
uses designated verifier proof (DVP) [35] to prove some
facts, the prover needs to be some trusted party, e.g. a
tamper-resistant device, or some distributed parties [5].
First, when receiving some DVP proof, the verifier can-
not make an accusation if she is not satisfied with the
proof. Second, if adversaries coerce a voter to surrender
her private key and then share the key with the prover,
the prover can generate fake proofs which will be ac-
cepted by the voter. Furthermore, the verifier needs to
prove knowledge of her private key [53]. Otherwise, the
designated verifier proof will be meaningless to her.

(3). Hirt and Sako [30] claimed that a one-way un-
tappable channel from the authorities to the voters to
achieve receipt-freeness has the weakest physical as-
sumption. However, this kind of structure (also in
[52]) is not very elegant. Authorities prove the shuf-
fle of encrypted votes using DVP, and receipt-freeness is
achieved if voters are able to lie to adversaries about the
shuffle. However, in the context of coercion, the possi-
bility of a lying voter being caught is linear in the number
of authorities colluding with the coercer.

1.2 Security aspects v.s. auxiliary aspects
The early cryptographic e-voting schemes introduced
above require all voters to have an advanced knowledge
of mathmatics. Obviously, this requirement is not realis-
tic for ordinary voters. Some suggestions are for voters
to indicate their intent to some voting device (e.g. DRE
machine) or election authorities. These parties then help
the voters to generate the encrypted votes and publish
them onto the bulletin board. However, this might result
in two problems:

1. How can voters ensure that their intent has been
correctly transferred into encrypted votes, and these
votes are recorded in the election system?

2. How can voters ensure that the voting device or
election authorities, who know their intent, will not
leak the information?

Two approaches, SureVote [12] and MarkPledge [42],
that aim to solve the first problem have been proposed by
Chaum and Neff respectively. Both systems provide vot-
ers with a receipt, which does not allow voters to prove
how they have voted, but enables them to verify that their
votes have been recorded in the election system. To en-
sure that the voter’s intent has been correctly contained
in the receipt, Chaum and Neff have introduced different
ideas.

In Chaum’s scheme [12], the voter indicates her in-
tent to the voting machine, which then prints the ballot
into two layers that are encoded using visual cryptogra-
phy. The voter can read her intent on the ballot when the
two layers are laminated together. After the voter has ap-
proved the ballot, she separates the two layers, randomly
chooses one layer to retain as a receipt and destroys the
other part. Later, Ryan’s Prêt à Voter system [14] sim-
plified Chaum’s method using cut-and-choose. In [14],
each voter will be provided with two ballots, she can ran-
domly choose one ballot to challenge and use the other to
cast her vote. If the ballot is correctly generated, the re-
ceipt will contain voter’s intent. Although a single voter
only has 50% chance to detect the fraud ballot, any at-
tempt to cheat in more than a very small number of bal-
lots would be detected with overwhelming probability.
Ryan’s cut-and-choose method also appears in [51, 4, 8].

Neff’s scheme [42] is based on a different approach.
The voter first indicates her intent to the voting machine,
the machine then constructs an encrypted electronic
ballot representing this voter’s intent and commits it.
After that, the voter interacts with the voting machine
to obtain a receipt. Note that the voter’s task in this
process can be simplified, therefore ordinary voters can
cast their votes without special knowledge, and some
helper organisations [2] can help to verify the receipt
afterwards. Similar idea of voter intent verification can
be found in [3, 40].

The schemes introduced above have only solved our
first problem. However, because voters need to indicate
their intent to some voting device or election authorities,
the voter privacy will be violated if the voting device or
election authorities are faulty. Some work of e-voting
threat analysis [36, 50] have shown that because of this
problem, voter’s choice information can be leaked in a
number of ways. Taking the Prêt à Voter scheme [14]
as an example, because all ballot forms are generated
by some election authorities in advance, these authorities
have the ability to read the voter’s choice directly from
their receipts. Besides, these authorities can apply sub-
liminal & Kleptographic channel attacks to enable their
colluding parties to read voter’s receipt as well. Further-
more, the Chain-of-custody issues require that the bal-
lots generated in advance cannot be tampered with before
use, e.g. during transmission. Otherwise, voter privacy
will be violated because of information leakage.

To the best of our knowledge, the first e-voting scheme
which solves both our problems is Ryan’s Prêt à Voter
with re-encryption mixes [51], in which all ballots are
generated by a number of election authorities, called
clerks, in a distributed fashion. Therefore, although some
voting device is still proposed, the voters no longer need
to indicate their intent to the voting device or some sin-
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gle clerk. In theory, voter privacy can be computation-
ally preserved under the assumption that all clerks do not
collude. However, in order to apply the homomorphic
property to absorb voter’s choice index into the onion,
[51] has employed the exponential ElGamal encryption,
which is not a trapdoor function. After decryption, we
need to search some large field in order to retrieve the
plaintext. To overcome this problem, Ryan has intro-
duced Prêt à Voter with Paillier encryption (PAV-Paillier)
[49, 48].

1.3 Our contribution

Generally speaking, the PAV-Paillier scheme achieves a
high level of security properties. It is reliable because the
shuffle phase and the decryption phase are separated, and
the decryption phase is executed in the threshold fashion.
It is end-to-end verifiable because each voter can verify
that her vote has been properly recorded, and anybody
can verify that all recorded votes are correctly tallied.
Compared with other schemes, PAV-Paillier is remark-
ably superior for ensuring voter privacy. The relation-
ships between encrypted votes and results are shuffled in
the ballot tallying phase, and in the ballot casting phase,
instead of trusting a single voting device or some elec-
tion authorities, we just need to trust that there exists at
least one honest clerk.

In this paper, we analyse information leakage in PAV-
Paillier. Our analysis shows that although PAV-Paillier
seems to achieve a high level of voter privacy at first
glance, it might still leak voter’s choice information in
some circumstances. Some threats are trivial and have
appeared in the literature, but others are more compli-
cated because colluding adversaries may apply combined
attacks. Several strategies have been suggested to mit-
igate these threats, but we have not resolved all the
threats. We leave those unsolved threats as open ques-
tions. In order to describe our analysis in a logical man-
ner, we will introduce an information leakage model to
aid our analysis. We suggest that this model can be ap-
plied to analyse information leakage in other complex
mixnet based e-voting schemes as well.

Furthermore, we introduce a simplification of PAV-
Paillier. In our proposal, without degrading security
properties such as voter privacy, verifiability and reliabil-
ity, we no longer need to apply the homomorphic prop-
erty, thus we step back to employ the ElGamal encryp-
tion. This results in a simpler and more straightforward
threshold cryptosystem. Some other attractive proper-
ties of our proposal scheme are: unlike traditional Prêt
à Voter schemes, the candidate list in our scheme can
be in alphabetical order. Our scheme handles both ap-
proval elections and ranked elections (e.g. Single Trans-
ferable Voting). Furthermore, our scheme mitigates the

randomisation attack.

1.4 Outline of this paper
The paper is organised as follows. In Section 2, we in-
troduce a model which is helpful to analyse information
leakage in complex e-voting schemes. The PAV-Paillier
scheme will be briefly reviewed in Section 3, and it will
be analysed in Section 4. A simplification of PAV-Paillier
will be introduced in Section 5. Finally, we conclude in
Section 6.

2 Information Leakage Model

In this section, we first introduce some terminologies for
the information leakage model. Then we illustrate how
this model can be applied to analyse information leakage
in a simple e-voting scheme.

2.1 Terminologies
Definition 1 (Relation) Let X and Y are finite sets, and
f be a bijection from X to Y such that f is kept pri-
vate. We say that there is a relation from X to Y , if for
any particular target element x ∈ X , with non-negligible
probability, its image y = f(x) in Y can be found. We
denote such a relation as X =⇒ Y .

Definition 2 If there exists a relation from X to Y as
well as a relation from Y to X , we say that there exists a
relation between X and Y . We denote such a relation as
X ⇐⇒ Y .

Corollary 1 (Relation is transitive) Suppose X , Y and
Z are finite sets, f is a bijection from X to Y , and g is
a bijection from Y to Z . If there exist a relation from X
to Y and a relation from Y to Z , then there is a relation
from X to Z .

Proof. Since there is a relation from X to Y , for a tar-
get element x ∈ X , with non-negligible probability, its
image y = f(x) in Y can be found. Similarly, for the
target element y ∈ Y , with non-negligible probability,
its image z = g(y) in Z can be found. Then for a target
element x ∈ X , with non-negligible probability, its im-
age z = g(f(x)) in Z can be found. Therefore, there is
a relation from X to Z .

Definition 3 (Information leakage) In an election
scheme based on mixnets4, V OTER is the set which
contains a list of eligible voters, and RESULT is the

4The model is not suitable for schemes based on homomorphic en-
cryption because in those schemes, all received votes will be aggre-
gated before the decryption, thus there is just a final result instead of a
set of results for each vote.
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set which contains a list of the final votes for tallying.
In the ideal case5, there will be some function f which
is a bijection from V OTER to RESULT , but for
voter privacy, f is kept private. We say that the election
scheme suffers the information leakage problem if there
exists a relation from V OTER to RESULT .

Definition 4 (Threat) A threat is a way information
leakage can be introduced into an election scheme.

Definition 5 (Attack) An attack is a possible way of
finding a relation from one set to another set.

2.2 An E-Voting Example:
In a verifiable e-voting scheme based on mixnets, to cast
a vote, a voter indicates her intent to the voting machine,
and the machine generates an encrypted vote for this
voter. Note that the cut-and-choose method can be used
to challenge the voting machine. The voter submits her
vote to the election authorities. These authorities record
the encrypted vote and sign it. The voter can keep the
signed vote as a receipt, which can be used to check that
her vote has been recorded. Later, all received votes are
shuffled by mixnets, and finally the results are decrypted
and published onto the bulletin board.

In the above scheme, there will be three sets with the
same cardinality: the set of voters, the set of receipts,
and the set of result. We denote them as V OTER,
RECEIPT and RESULT respectively. Based on our
definition, the scheme will suffer information leakage if
there is a relation from V OTER to RESULT . There-
fore, there might be two possible threats of information
leakage in the scheme, as shown in Figure 1.

Figure 1: Two threats of information leakage

Threat 1: V OTER =⇒ RESULT
Some attacks may be applied by adversaries to gener-

ate a relation from V OTER to RESULT :
(1). Hidden camera attack: if the voting booth is mon-

itored by hidden cameras, adversaries can directly know
the choice made by a target voter.

(2). Knowledge of the voting machine: since the vot-
ing machine learns the voter’s intent, a cheating voting
machine can leak the choice made by a target voter.

5The ideal case means that each eligible voter will cast one and only
one valid vote, and each valid vote will be counted.

(3). Italian attack: this attack only happens in ranked
elections with a large number of candidates. Adversaries
can coerce a target voter to cast her vote in some
particular manner. The voter will be caught with high
possibility if she does not cooperate. This attack is
possible when the number of possible votes are much
more than the number of voters.

Threat 2: V OTER =⇒ RECEIPT =⇒ RESULT
Each voter will be provided with a receipt in the above

scheme, and any voter may reveal her receipt to oth-
ers. Therefore, there is always a relation from V OTER
to RECEIPT . The remaining task for an adversary
to violate voter privacy is to generate a relation from
RECEIPT to RESULT . Several attacks can be ap-
plied to generate such a relation:

(1). Ballot duplication attack: the attack is possible if
the vote is not encrypted using non-malleable encryption
[20, 31]: adversaries can cast a duplication of a target
vote in order to find out the choice information of the
target vote. For more information, see [47, 23].

(2). Subliminal & Kleptographic channel attack: the
voting machine which generates the encrypted votes can
employ this attack to enable any party colluding with it
to read a voter’s receipt without the need to have it de-
crypted.

(3). Chain voting attack: the above election scheme
does not suffer this attack, but some schemes which
uses paper ballots generated in advance may suffer this
attack, e.g. the Prêt à Voter scheme [14]. If adversaries
successfully smuggle one blank ballot out of the voting
booth, they can force a target voter to cast her vote
using this ballot and bring back another blank ballot.
Therefore, the receipt tells the adversaries how this voter
has voted.

The above election scheme is simple. Its use here is to
illustrate how the model can be applied to analyse infor-
mation leakage in mixnets based e-voting schemes. Note
that all the listed attacks have been introduced in the lit-
erature, e.g. [36, 50]. But it is obvious that the informa-
tion leakage model can help to summarise these attacks
in some logical manner, and this is very important if the
election scheme becomes complicated.

3 Review of PAV-Paillier

We now present an overview of the PAV-Paillier scheme
[49, 48]. In the voting booth, each voter selects a ballot
form at random. An example of the ballot form is shown
in Figure 2.

The ballot form contains two columns with a perfora-
tion down the middle. There are two encrypted values,
called onions, printed at the bottom. The onion in the
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Figure 2: A blank ballot form

left hand column is called the booth onion, which can be
decoded by the voting machine. If it is decrypted, the
voting machine will derive the seed value and print the
candidate list on the ballot form. At this moment, the
ballot form will be shown in Figure 3. Note that the or-
der of the candidate list is cyclically shifted and varies
among different ballots, thus it is infeasible to predict
the candidate order of a certain ballot form. The onion in
the right hand column, which is printed on some scratch
strips, is called the ready onion.

Figure 3: A ballot form with candidate list

3.1 Ballot construction
Paillier cipher [44] Let n be an RSA modulus
n = pq, where p and q are large primes. Let g be
an integer of order a multiple of n modulo n2. The
public key is (g, n), and the corresponding secret key
λ(n) = lcm((p − 1), (q − 1)). To encrypt a message
s ∈ Zn, we randomly choose x ∈ Z∗n and compute the
ciphertext c = gsxn (mod n2). To decrypt c, we com-
pute s = L(cλ(n) mod n2)/L(gλ(n) mod n2) mod n,
where the L-function takes in input values from the
set Sn = {u < n2|u = 1 mod n} and computes
L(u) = u−1

n .

Construction of the receipt onions Suppose the public
key (g, n) is made public and the corresponding secret
key λ(n) is shared among a number of decryption par-
ties, called tellers, in a threshold fashion [54], where a
quorum Q of these tellers work together can decrypt a ci-
phertext which is encrypted under the public key (g, n),
but fewer than Q tellers will learn nothing from the ci-
phertext.

The first step to construct the ballot forms is for a set
of l + 1 clerks to generate a receipt onion for each ballot
form.

The first clerk C0 randomly chooses some seed values
s0

i ∈ Zn and some blinding factors x0
i ∈ Z∗n. Then C0

generates a batch of initial onions as:

E(s0
i , x

0
i ) = gs0

i (x0
i )

n (mod n2)

After that, the remaining l clerks perform as fol-
lows: the jth clerk Cj receives a batch of onions
E(sj−1

i , xj−1
i ) from the clerk Cj−1. Cj chooses some

seed values s̄j
i ∈ Zn and some blinding factors x̄j

i ∈ Z∗n,
and then she calculates

E(sj
i , x

j
i ) = E(sj−1

i , xj−1
i ) · E(s̄j

i , x̄
j
i ) (mod n2)

where
sj

i = sj−1
i + s̄j

i (mod n)

xj
i = xj−1

i · x̄j
i (mod n2)

Cj shuffles the batch of onions E(sj
i , x

j
i ) and then out-

puts them to the next clerk Cj+1.
Finally, the last clerk Cl will output a batch of onions

E(si, xi) = gsi(xi)n (mod n2) where

si = sl
i = s0

i +
l∑

j=1

s̄j
i (mod n)

xi = xl
i = x0

i ·
l∏

j=1

x̄j
i (mod n2)

We call the onions output by the last clerk receipt
onions, in which each clerk has contributed to the
entropy of the seed values from which the candidate list
is derived. This process does not reveal the seed values.
Therefore, the final seed values si can be kept private
unless all these clerks collude. For each ballot, a unique
receipt onion will be printed on it, at the bottom in the
right hand column.

Transforming receipt onions into booth onions When
some of the above ballot forms are generated, a number
of re-encryption parties (which can be the same clerks)
will perform the following tasks:

1. The party Pj collects the ballot forms from Pj−1,
and Pj re-encrypts the onions in each ballot form as
E(si, xi

′) = E(si, xi) · tin, where xi
′ = xi · ti, and

ti is randomly chosen from Z∗n.

2. For each ballot form, Pj covers the original onion
E(si, xi) with a scratch strip and overwrites it with
its re-encrypted value E(si, xi

′).
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3. Pj shuffles all ballot forms and then sends them to
the next party Pj+1.

When the above procedure is finished, we call the
onions E(si, ri) which are printed on top of the scratch
surface ready onions. The major purpose of the above
procedure is to break the links between the receipt onions
and the ready onions. At this moment, we have a batch
of ballot forms, each contains a unique receipt onion, but
it is covered by multi-layer of scratch strip. The only vis-
ible value is the ready onion, which is the re-encryption
of the receipt onion. Note that Ryan has suggested that
in some cases, just one such re-encryption might be suf-
ficient.

The ready onions are transformed into the booth
onions, which can be directly decrypted by the voting
machine. However, the transformation procedure intro-
duced in PAV-Paillier is not very elegant. Ryan suggests
that each ready onion is partially decrypted by a Q − 1
subset of the tellers, and the result is the booth onion. In
the ballot forms, the booth onion is printed at the bottom
in the left hand column. Therefore, if the voting machine
is provided with another share of the secret key λ(n), it
can decrypt the booth onion to obtain the seed value.

Auditing the ballot construction To audit the ballot
construction phase, Ryan has introduced two methods
in PAV-Paillier. The traditional cut-and-choose method,
which is similar as in [14, 51], requires some tellers to
be online. The other method aims to resolve this draw-
back, but some auxiliary information needs to be pub-
lished. However, this information might result the leak-
age of the secret key λ(n). Thus, the second method
does not work. Because of space limitations, we will not
describe this technical weakness in detail.

3.2 Ballot casting
When a voter is authenticated in the voting booth, she
will be provided with a ballot form as shown in Figure
2. She then inserts the left hand column into the vot-
ing machine, which will read the booth onion, decode
it, and print the corresponding candidate list on the bal-
lot form. In this process, the seed value si will be re-
trieved first, then the candidate ordering is determined
by si (mod v), where v is the number of candidates.
At this point, the ballot will be as in Figure 3.

This voter marks her choice, followed by tearing the
ballot form apart along the perforation and destroying the
left hand column. The voter brings the right hand column
to the election officials and removes the scratch surface
in their presence. After that, the voter can keep the right
hand column as the receipt once it has been scanned by
the election officials. A receipt example is shown as in
Figure 4. The receipt can be used to check that the voter’s

vote has been properly recorded by the election system.
We note that the receipt only contains the voter’s mark
and the receipt onion.

Figure 4: A receipt example

3.3 Ballot tabulation
After the election day, all received votes are collected.
For each vote, the election officials will first perform
some calculation to absorb voter’s choice index value ι
into the receipt onion as6

c′ = (gsi(ri)n) · gι = gsi+ι(ri)n (mod n2)

Then these encrypted values (pure Paillier terms) will
be inserted into some re-encryption mixnet, which will
shuffle and re-encrypt these terms by changing the ran-
domisations while leaving the seed values untouched.
The mixnet can be audited using techniques in [34, 43].
Finally, the outputs of the mixnet will be decoded by a
quorum of tellers in a threshold fashion, and the results
will be announced.

4 Threat Analysis of Information Leakage
in PAV-Pailler

At first glance, the PAV-Paillier scheme should provide
a high-level of assurance of voter privacy based on the
following three assumptions:

• In the entire scheme, more than a quorum of tellers
are honest.

• In the ballot casting phase, there exists at least one
honest clerk.

• In the ballot tallying phase, there exists at least one
honest mix server.

In this section, we analyse information leakage in PAV-
Pailler. Our analysis shows that even under the above
three assumptions, a voter’s choice information still
might be leaked in a number of ways.

6Note that our computation of absorbing the choice index into the
receipt onion is slightly different from Ryan’s method. Ryan defines
the cyclic shift direction as downwards, while we define it as upwards.
Our change does not affect the threat analysis in the next section.
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4.1 Threat analysis

There are four objects in the PAV-Paillier scheme:
the voter, the ballot form (as shown in Figure 2), the
receipt (as shown in Figure 4), and the result. In the
ideal case, the sets of these four objects will have the
same cardinality. We denote these sets as V OTER,
BALLOT , RECEIPT , and RESULT respectively.
Based on our definition, the PAV-Paillier scheme will
suffer the information leakage problem if there exists a
relation from V OTER to RESULT . Therefore, if we
apply the information leakage model with PAV-Paillier,
as shown in Figure 5, the following five possible threats
might violate voter privacy. We will consider each in
turn.

Figure 5: Five threats of information leakage

Threat 1: V OTER =⇒ RESULT
We will examine some existing attacks to see whether

the PAV-Paillier scheme suffers from this threat.
(1). Italian attack: PAV-Paillier does not suffer this

attack because it cannot directly handle ranked elections.
(2). Knowledge of the voting machine: In PAV-Pailler,

the voter does not indicate her intent to the voting ma-
chine. Therefore, the voting machine itself has no way
to find out how this voter has voted.

(3). Hidden camera attack: PAV-Paillier suffers this
attack, but all other election scheme will suffer this at-
tack as well. To ensure voter privacy, the assumption is
needed that the voting booth is not monitored by hidden
cameras.

In the rest of this paper, we will not consider the
hidden camera attack, and we suppose there is no direct
relation from V OTER to RESULT in the PAV-Paillier
scheme.

Threat 2: V OTER =⇒ BALLOT =⇒ RESULT

Within this threat, we will first check whether there
is a relation from BALLOT to RESULT . Based on
our definition, such a relation can be generated if for any
particular target ballot form, with non-negligible prob-
ability, the adversaries can find out how this ballot has
been used to cast a vote.

In the PAV-Paillier scheme, for a target ballot form,
the voting machine can learn the seed value si after the
booth onion has been decrypted. In the ballot tallying
phase, the receipt onion c = gsi(ri)n (mod n2) will
absorb the voter’s choice index ι as

c′ = (gsi(ri)n) · gι = gsi+ι(ri)n (mod n2)

Then c′ will be shuffled by the mixnet. The outcome
of this ciphertext will be decrypted and the result si + ι
will be published on the bulletin board7. Because ι < v,
where v is the number of candidates, with non-negligible
probability, the voting machine will find that there is a
unique value in the final result, whose difference to si is
smaller than v. Therefore, the voting machine can learn
how a ballot form has been used to cast a vote, and there
exists a relation from BALLOT to RESULT .

To violate voter privacy, the remaining task for adver-
saries is to find a relation from V OTER to BALLOT .
It is obvious that if some adversaries know which ballot
form has been assigned to a particular voter, these author-
ities colluding with the voting machine can find out how
this voter has voted. To overcome this problem, all bal-
lot forms are required to be distributed in an anonymous
way.

Furthermore, even if we suppose that all ballot forms
are distributed in an anonymous way, and there does
not exist a direct relation from V OTER to BALLOT ,
does this mean that the PAV-Paillier can resist this threat?
Unfortunately, the adversaries can generate the relation
from V OTER to BALLOT as shown in Figure 6.

Figure 6: Generate a relation from V OTER to
BALLOT

Because any voter may reveal her receipt to oth-
ers, there always exists a relation from V OTER to
RECEIPT . Therefore, the task to generate a relation
from V OTER to BALLOT can be transferred to
the task of generating a relation from RECEIPT to

7Note that even if si + ι is not published on the bulletin board, all
tellers who have been involved to decrypt it have known this value, and
any dishonest teller can reveal this value.
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BALLOT . In order words, if adversaries can generate a
relation from RECEIPT to BALLOT , their collusion
with the voting machine can violate voter privacy. We
will discuss whether there exists such a relation later.

Threat 3: V OTER =⇒ RECEIPT =⇒ RESULT
Because any voter may reveal her receipt to others,

the relation from V OTER to RECEIPT always ex-
ists. The remaining task for adversaries to violate voter
privacy is to generate a relation from RECEIPT to
RESULT . We will examine some existing attacks
against this relation and check whether they can be ap-
plied with the PAV-Paillier scheme:

(1). Chain voting attack: PAV-Paillier does not suf-
fer the chain voting attack because even if some adver-
saries can smuggle a ballot form (with the candidate list)
out of the voting booth, they cannot coerce a voter to
cast her vote using this ballot form. In one aspect, if the
adversaries remove the scratch surface, the election offi-
cials will reject this vote when a coerced voter submits
it. In the other aspect, if the adversaries keep the scratch
surface intact, they will not know whether the voter has
voted using this ballot form, because the relationship be-
tween a ballot form and its receipt is kept private thanks
to the scratch surface.

(2). Subliminal & Kleptographic channel attack: The
PAV-Paillier scheme is designed to resist this attack
by generating the ballot forms in a distributed fashion.
However, some mechanisms are necessary to ensure this.
Otherwise, once a receipt onion is generated, no one can
tell whether it is generated by a set of clerks or just by a
single clerk. Therefore, if some receipt onions are gen-
erated by a single clerk, this clerk has the ability to learn
some voters’ choice just by reading their receipts. Also,
this clerk can apply the subliminal & kleptographic chan-
nel attack to enable her colluding parties to learn these
voters’ choice just from their receipts.

(3). Ballot duplication attack: Generally speaking,
the ballot duplication attack can be frustrated if the party
who generates the encrypted value has proven the knowl-
edge of the plaintext. However, in the PAV-Paillier
scheme, the receipt onions are generated in a distributed
fashion where each clerk contributes to the entropy of
the seed values from which the candidate list is derived.
The seed values will be kept private unless all these clerk
collude. Therefore, the non-malleable encryption solu-
tion is not suitable for PAV-Paillier since it is infeasible
for these clerks to generate such a proof. Another solu-
tion to this attack is that every receipt onion is proved to
be generated by a number of authorised clerks. Thus if
there exists at least one honest clerk, although some re-
ceipt onions might collide to have the same seed value,
no receipt onion will be the duplication of others. Similar
to the previous attack, some mechanisms are necessary to

ensure this point.
Therefore, to avoid a direct relation from RECEIPT

to RESULT , all the receipt onions need to be proved
that they have been generated by a number of clerks.
One possible solution is that each clerk who has been
involved in generating the receipt onion has to sign it.
Thus, both the subliminal & Kleptographic channel at-
tack and the ballot duplication attack can be frustrated.
However, this still does not guarantee that the relation
from RECEIPT to RESULT cannot be generated.
As shown in Figure 7, if adversaries can find a rela-
tion from RECEIPT to BALLOT and a relation from
BALLOT to RESULT , they can still generate a rela-
tion from RECEIPT to RESULT .

Figure 7: Generate a relation from RECEIPT to
RESULT

We have shown in Threat 2 that the voting machine
can generate a relation from BALLOT to RESULT .
Therefore, if any adversaries can generate a relation
from RECEIPT to BALLOT , the collusion of these
adversaries and the voting machine can find out how a
particular voter has voted. We will discuss whether the
adversaries can generate a relation from RECEIPT to
BALLOT later.

Threat 4: V OTER =⇒ BALLOT =⇒
RECEIPT =⇒ RESULT

This threat contains three parts. The first part is to find
a relation from V OTER to BALLOT . We have shown
in Threat 2 that even if all ballot forms are distributed
in an anonymous way, adversaries still can generate
such a relation as shown in Figure 6. The second part
is to find a relation from BALLOT to RECEIPT .
The third part of this threat is to find a relation from
RECEIPT to RESULT . Similarly, even if we apply
some mechanisms to ensure that all ballot forms are
generated in a distributed fashion, adversaries can still
find such a relation as shown in Figure 7. When we
combine these three parts together, we know that if
adversaries can find a relation between RECEIPT and
BALLOT , the colluding of these adversaries and the
voting machine can cause information leakage. Note
that the requirement within this threat is stricter than in
Threats 2 & 3, instead of requiring one way relation, a
two way relation is needed here. In other words, if the
voter privacy in PAV-Paillier can be violated by Threat
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4, it can also be violated by Threats 2 & 3.

Threat 5: V OTER =⇒ RECEIPT =⇒
BALLOT =⇒ RESULT

In Threat 2, we have shown that the relation from
BALLOT to RESULT can be independently gener-
ated by the voting machine. In this threat, because there
always exists a relation from V OTER to RECEIPT ,
if an adversary can generate a relation from RECEIPT
to BALLOT , the collusion of this adversary and the vot-
ing machine can generate the relation from BALLOT
to RESULT in a more straightforward manner. For
example, a voter has revealed her receipt. Then an ad-
versary who has the ability to generate a relation from
RECEIPT to BALLOT can find out the ballot form
which has been assigned to this voter. As follows, the
voting machine decrypts this ballot form and obtains the
candidate ordering. Therefore, the candidate ordering
and the choice mark in the receipt will reveal how this
ballot form has been used to cast a vote. Similarly, the
key point of this threat is whether there exists a relation
from RECEIPT to BALLOT .

4.2 How to link ballot form with its receipt

We will introduce several attacks which might be ap-
plied by the adversaries to generate a relation between
RECEIPT and BALLOT :

(1). Single re-encryption: The PAV-Paillier scheme
has suggested that just one re-encryption of the receipt
onion might be sufficient in some case. However, this
will enable the re-encryption party to learn the relation-
ship between the ballot form and its receipt. Further-
more, if this party colludes with the coercers, the PAV-
Paillier scheme will suffer the chain voting attack.

(2). Ready onion leakage: In the PAV-Paillier scheme,
in order to counter the chain voting attack and the chain-
of-custody issues, to submit a vote, the voter is required
to remove the scratch strip in the presence of the election
officials. However, if some officials see the ready onion
before it has been removed, they learn the relationship
between the ballot form and its receipt.

(3). Fingerprinting attack: Adversaries can apply this
attack to link a ballot form with its receipt. For every
ballot form, the adversaries leave a unique fingerprint-
ing on both columns. When the voting machine prints
the candidate list on the left hand column, it will build a
relation between the unique fingerprinting and the ballot
form. And when a voter submits her vote, some cheating
officials will build a relation between the unique finger-
printing and the receipt. Thus, if they work together, they
can link a ballot form with its receipt. Similar problem
will occur if voters leave their fingerprinting on the ballot
forms.

(4). Particular power of the last re-encryption party:
The last re-encryption party in PAV-Paillier will have
some particular power. When she receives a batch of bal-
lot forms from the previous party, she can remove all the
scratch surface and read every receipt onion. After that,
she generates multiple scratch layers for each ballot form
and prints the ready onion (which might be just one re-
encryption of the receipt onion) at the top of the scratch
surface. In this way, she has generated the link between
every ballot form and its receipt. And in most cases, this
attack will go without being detected.

4.3 PAV-Paillier improvement
Based on the above threat analysis, the PAV-Paillier
scheme has been shown to suffer several information
leakage problems. In order to achieve better voter pri-
vacy, we will introduce several strategies to mitigate
these problems.

(1). All ballot forms need to be distributed in an
anonymous way. Otherwise, if the party who distributes
the ballot forms colludes with the voting machine, they
might find out how a voter has voted. We suggest that af-
ter all ballot forms have been generated, each ballot will
be put into an envelope with uniform layout, and all these
envelopes are shuffled before use.

(2). All the receipt onions need to be proven that they
have been generated by a number of clerks. Otherwise, if
they are just generated by a single clerk, this clerk can vi-
olate voter privacy either by subliminal & kleptographic
channel attack or by ballot duplication attack. It is re-
quired that each clerk who has been involved in generat-
ing the receipt onion has to sign it.

(3). The re-encryption of the receipt onion needs to be
executed by a number of different parties. Just one such
re-encryption is not sufficient. And we need to trust that
there is at least one honest re-encryption party.

(4). When the voter submits her vote, the election of-
ficials should not read the ready onion before it is re-
moved. We suggest that once the ready onion has been
transformed into the booth onion, it will be covered by
another layer of scratch surface. Therefore, the booth
onion can be kept private in the ballot casting phase.

(5). Normally, we do not need to worry about the fin-
gerprinting attack. But if it is an issue we have to con-
sider, we need to apply some mechanisms to ensure the
ballot forms are fingerprinting free. For example, some
help organisations in the voting booth can help to check
that the ballot forms are free of fingerprinting (or digi-
tal watermarking) when it is assigned to the voters. And
each voter can be provided with some special gloves to
avoid leaving the fingerprinting on the ballot form.

(6). The use of multiple layers of scratch strips has
a drawback that the last re-encryption party has more
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power than the others. We are not clear how to resolve
this drawback. It might be necessary to replace the use
of multiple scratch strips by some other techniques.

(7). In the PAV-Paillier scheme, the voting machine
will have very high likelihood of finding out how a ballot
form has been used to cast a vote. This is because n =
pq, where p and q are large primes, and the seed value si

is randomly chosen from Zn. We suggest that all clerks
randomly choose the seed values from a smaller set Zv ,
where v is the number of candidates8. This will give the
voting machine less chance to find a unique value in the
final result whose difference to si is smaller than v.

5 A Simplification of PAV-Paillier

5.1 Other issues of PAV-Paillier
Apart from the information leakage problems we have
shown in the previous section, the following issues might
be considered as drawbacks in PAV-Paillier.

(1). The process of transforming the ready onion into
the booth onion is not very elegant. The booth onion is
the partial decryption of the ready onion by Q−1 tellers.
Although this enables the voting machine to decrypt the
booth onion, anyone else who has another share of the
secret key will have the same ability as the voting ma-
chine. Therefore, some of the information leakage at-
tacks might be applied by other tellers as well.

(2). The candidate list in PAV-Paillier is a cyclic shift
from the canonical order. This is an intelligent idea to
generate secret ballot forms. But in some elections with
large number of candidates, e.g. hundreds of candidates,
voters might face difficulty in finding their preferred can-
didate on the ballot form. The situation will become
much worse if the candidate order is randomly permuted
instead of just cyclic shifted, e.g. [29, 56]. Because of
this problem, election rules in some districts require that
the candidate order has to be in alphabetical order.

(3). The PAV-Paillier scheme only handles approval
elections. However, ranked elections, e.g. Single Trans-
ferable Voting, are widely used in a number of areas. It is
clear that any e-voting system aiming at a large potential
market needs to be able to deal with ranked elections.

(4). The PAV-Paillier scheme, as well as some other
schemes, suffers from the randomisation attack. Adver-
saries can coerce the voter to take out a receipt with the
mark at the top. Although, adversaries are unable to learn
the content of this vote, they coerce the voter to vote in a
random manner.

In this section, we will introduce a variant of the PAV-
Paillier scheme, aiming to resolve the above four issues.
Furthermore, because of the replacement of the Paillier

8Note that to ensure every clerk has chosen the seed values from
Zv , a cut-and-choose method can be used to challenge them.

cipher by the ElGamal cipher, the threshold cryptosys-
tem in our proposal scheme will be simpler and more
straightforward. The security properties of our proposal
scheme are similar to those in PAV-Paillier.

5.2 Building blocks

ElGamal cipher [21] Let p and q be two large primes
such that q|p − 1. We denote Gq as the subgroup of Z∗p
with order q. Let g be a generator of Gq . The secret
key is an element x ∈ Zq and the corresponding public
key is y = gx (mod p). In the following, we assume
all arithmetic to be modulo p where applicable, unless
otherwise stated. To encrypt a plaintext m ∈ Gq , we
choose a random blinding factor r ∈ Zq and compute
the ciphertext E(m, r) = (G,M) = (myr, gr). Note
that an ElGamal ciphertext is a pair of values of Gq .
To decrypt an ElGamal ciphertext (G,M), we compute
m = G/Mx. ElGamal is a probabilistic public-key
encryption scheme, which is semantically secure if the
decision Diffie-Hellman assumption holds in the group
Gq .

ElGamal re-encryption Given an ElGamal ciphertext
(G,M) = (myr, gr), a party can efficiently compute a
new ciphertext (G′,M ′) that decrypts to the same plain-
text as (G,M). We denote that the ciphertext (G′,M ′)
is a re-encryption of (G,M). To re-encrypt a ciphertext,
the mix server chooses a value s ∈ Zq uniformly at
random and computes (G′,M ′) = (G · ys,M · gs).
We note that this does not require the knowledge of the
secret key x.

Threshold ElGamal cipher Suppose the ElGamal
secret key is generated using a distributed key generation
protocol such as in [46] or [26]. We denote that xj is the
secret key of decryption party Pj and yj = gxj is the
corresponding public key share. A quorum Q decryption
parties working together can jointly reconstruct the
ElGamal secret key as x =

∑
j∈Q xj · λj , where

λj is the Lagrange coefficient for the jth share. To
decrypt an ElGamal ciphertext (G,M) = (myr, gr),
the decryption party Pj first publishes Mxj , and
then generates a Chaum-Pedersen proof [13] that
loggyj = logMMxj to prove that she has published the
correct Mxj . Finally, the plaintext m can be retrieved as
m = G/

∏
j∈Q Mxj ·λj .

Proxy re-encryption A proxy re-encryption [33] is a
function to transfer an ElGamal encryption from one en-
cryption key to another encryption key. Let (G1,M1)
be an ElGamal encryption of a plaintext m using public
key y1, and let x1 be the corresponding secret key, which
is shared among a number of decryption parties using
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a threshold scheme. A quorum Q of these parties can
transfer (G1,M1) to an ElGamal encryption (G2,M2),
which contains the same plaintext w.r.t. the public key
y2, without revealing m. Firstly, Pj selects a random
value δj uniformly at random from Zq , and computes
(αj , βj) = (M−x1j ·λj

1 · yδj

2 , gδj ). Then (G2,M2) can be
computed as (G2,M2) = (G1 ·

∏
j∈Q αj ,

∏
j∈Q βj).

5.3 Proposed voting protocol
In the proposal scheme, a ballot form example is shown
as in Figure 8. The candidate list is in the alphabetical
order. We denote each row of the ballot form as a ballot
slice. For each slice, the candidate name is printed on the
left hand column and the right hand column is covered
by some scratch surface.

Figure 8: A ballot form example

Stage 1. System setup
A number of tellers generate an ElGamal secret key

x1 ∈ Zq using a distributed key generation protocol
[46, 26]. The corresponding public key y1 = gx1 is
made public. The voting machine generates another
ElGamal private key x2 ∈ Zq and publishes its public
key y2 = gx2 . Furthermore, every clerk generates a
private key for signing and reveals the corresponding
public key.

Stage 2. Ballot construction
We first introduce how to generate a ballot slice, then

it will be clear how to construct an entire ballot form.

Generating the receipt onions. The first step is for a set of
l clerks to generate a large number of receipt onions. For
each receipt onion, the jth clerk Cj randomly chooses
a value mj ∈ Gq and a blinding factor rj ∈ Zq , and
computes an ElGamal ciphertext

(G1j ,M1j) = (mjy1
rj , grj )

Then the receipt onion can be constructed in a public
manner as

(G1,M1) = (
l∏

j=1

G1j ,

l∏

j=1

M1j) = (my1
r, gr)

where m =
∏l

j=1 mj and r =
∑l

j=1 rj (mod q). All
clerks who have been involved in the above procedure
need to sign the receipt onion. The receipt onion and
its signature {(G1,M1), σ} are printed in the right hand
column of a ballot slice.

Transforming receipt onions into ready onions When a
large number of such ballot slices have been generated,
several re-encryption parties will re-encrypt each of the
receipt onions. This procedure is similar to PAV-Paillier.
A re-encryption party receives a batch of ballot slices,
she re-encrypts each onion in the right hand column,
covers it by a scratch strip and overwrites it with its
re-encrypted value. Then this party shuffles all the ballot
slices and sends them to the next party. At this moment,
there is a receipt onion in each ballot slice, but it is
covered by multiple scratch strips. The only visible
value is the ready onion on top of the scratch surface,
which is the re-encryption of the receipt onion.

Transforming ready onions into booth onions For
each ballot slice, a quorum of tellers apply the proxy
re-encryption to transfer the ready onion which is
encrypted under the public key y1 into the booth onion
which is encrypted under the public key y2. The booth
onion is printed in the left hand column. When this
procedure finishes, the quorum of tellers use another
scratch layer to cover the ready onion.

Printing the candidate name For each ballot slice,
the voting machine decrypts the booth onion and
overwrites it with the corresponding candidate name.
Note that since the voting machine has the knowledge
of the private key x2, it can decrypt a booth onion
(G2,M2) = (my2

t, gt) and retrieve its plaintext m.
Then the candidate name is derived as h(m) mod v,
where h is a collision-resistant hash function and v is the
number of candidates.

Construction of the entire ballot forms When generating
a ballot slice, all parties know that they are generating
a ballot slice for some candidate, but not for which
candidate. Once a large number of such ballot slices
have been generated, there should be some ballot slices
for every candidate. We now sort these ballot slices
into piles according to the candidate names. Therefore,
an entire ballot form can be constructed by selecting a
ballot slice from each pile and stick them together with
the candidate in the alphabetical order. Therefore, a
ballot form will be shown as in Figure 8.

Step 3. Check the ballot construction
In the voting booth, each voter will be provided with

two ballot forms. The voter can randomly choose one
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ballot form to challenge and casts her vote use the
other one. To check whether a ballot form is correctly
constructed, the voter removes the scratch surface in the
right hand column. Then the voter requires the threshold
tellers to decrypt one or several of the receipt onions,
and checks whether the feedback of each receipt onion is
the same as the candidate name printed in the left hand
column.

Step 4. Ballot casting and tabulation
Our proposal scheme handles both approval elections

and ranked elections. We will introduce how to cast a
vote and how the received votes will be tallied in each
case respectively.

Approval elections In the voting booth, each voter can
randomly select a ballot form as shown in Figure 8. If a
voter wishes to vote for Bob, she tears off the right hand
column against Bob, as shown in Figure 9, destroys the
remaining ballot form and submits the small piece to the
election officials. The scratch surface is now checked,
and only a vote with an intact scratch surface will be ac-
cepted. Then the voter removes the scratch surface in the
presence of the election officials, revealing the receipt
onion and its signature. The election officials check the
signature, and return the small piece to the voter as the
receipt after it has been scanned and signed. In the bal-
lot tallying phase, all these received receipt onions will
be tabulated by some mixnets, e.g. Neff’s mix [41]. Fi-
nally, the shuffled votes will be decrypted by a quorum
of tellers in a threshold fashion and the result will be an-
nounced.

Figure 9: Cast a FPTP vote

Ranked elections We will introduce how to implement
the proposal scheme in STV elections. Furthermore, it
would be possible to implement it in some other ranked
elections, such as Borda Court elections and Condorcet
elections, if the ballot tallying phase has been modified
according to the election requirement.

In STV elections, besides the ballot form, each voter
will be provided with a voting card. A voter casts her
vote as shown in Figure 10. She first tears off the right
hand column against her most favourite candidate and
sticks it to the first choice position in the voting card.
Then she tears off the right hand column against her sec-

ond preferred candidate and sticks it to the second choice
position, and so on. The procedure of ballot submitting
is similar: the voter removes the scratch surface in the
presence of the election officials. Then the signatures are
checked and the voting card will be returned to the voter
as the receipt after it has been scanned and signed.

Figure 10: Cast an STV vote

To tally STV votes, we apply the techniques which
have been introduced in [29]. For simplicity, the notation
θ will be used to denote the receipt onions. For example,
a receipt onion for Bob will be denoted as θB . At first,
each received vote will be sorted in a public manner. E.g.
the example vote will be sorted as:

(θB , θD, θA, θC)

As follows, all valid votes will be shuffled by mixnets to
break the voter-vote relationship. The shuffle phase can
be denoted as:

(θB , θD, θA, θC) → (θ′B , θ′D, θ′A, θ′C)

Then each vote will be on-demand decrypted by a quo-
rum of tellers in a threshold fashion. In the first round,
only the first choice of each vote will be decrypted:

(Bob, θ′D, θ′A, θ′C)

If no candidate achieves the winning quota, some votes
(from the lowest placed candidate) will be decrypted to
reveal the second choice. This is done by removing the
first choice to the end and treating the second choice as
the first choice:

(David, θ′′A, θ′′C , θ′′B)

Note that the transfer history of a vote is concealed, so
the proposal scheme does not suffer the Italian attack
in STV elections. Furthermore, if the election allows
partial ranking, the receipt might reveal how many
candidate a voter has marked. This drawback has been
resolved in [29], and the same techniques can be applied
here. But we will omit the details. For more information,
see [29].
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6 Discussion and Conclusion

In this paper, we have introduced an information leakage
model to analyse information leakage in mixnet based
e-voting schemes. The model might be found useful be-
cause of the following two properties:

(1). In some complex e-voting schemes, just by ex-
perience, it might be difficult to work out all possible
threats against voter privacy. The information leakage
model can help to list all these threats in a systematic
manner9. Furthermore, different threats can be assigned
to different experts, therefore it is possible to implement
the threat analysis in parallel.

(2). In some circumstances, although it might be im-
possible to prevent all threats against voter privacy, the
information leakage model can help to identify which
parties could collude to obtain informaiton leakage.
Therefore, we can select these parties from different
groups with different interests. For example, in the PAV-
Paillier scheme, because of the use of multiple layer of
scratch surface, the last re-encryption party colluding
with the voting machine might find out how a certain
voter has cast her vote. Therefore, they should be care-
fully chosen so that they should not collude.

We have applied the information leakage model with
the PAV-Paillier scheme, and our result shows that the
scheme still suffers some threats which might leak vot-
ers’ choice information. However, the majority of the
threats can be mitigated as long as the scheme is carefully
implemented. And among all existing e-voting schemes,
we still consider PAV-Paillier to be one of the best e-
voting schemes to provide voter privacy.

We also have introduced a variant of the PAV-Paillier
scheme. We inherit similar ideas to construct the bal-
lot forms, but Paillier encryption has been replaced by
ElGamal encryption. This directly yields a more sim-
ple and straightforward threshold cryptosystem. Further-
more, it provides some other interesting properties such
as the candidate list can be given in alphabetical order,
the scheme can handle not only approval elections but
also ranked elections, and it mitigates the randomisation
attack.

Peter Ryan has suggested that our proposal would be
very convenient for French elections, in which there is a
separate ballot for each candidate. The voters will find all
the different ballots in the polling station. Each voter has
to pick several ballots before entering the voting booth
and then puts the ballot for the preferred candidate in an
envelope. Therefore, it would be not necessary to stick
the ballot slices together.

9Note that we do not mean to find out all the detailed attacks. The
discovery of these attacks still need experts’ experience. But the in-
formation leakage model might help the experts to carry out the threat
analysis in a logical manner.
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