On the Difficulty of Validating Voting Machine
Software with Software*

Ryan Gardner'
ryan@cs.jhu.edu

Abstract

We studied the notion of human verification of
software-based attestation, which we base on the Pio-
neer framework. We demonstrate that the current state
of the art in software-based attestation is not sufficiently
robust to provide humanly verifiable voting machine in-
tegrity in practice. We design and implement a self-
attesting machine based on Pioneer and modify, and in
some cases, correct the Pioneer code to make it func-
tional and more secure. We then implement it into the
GRUB bootloader [1], along with several other modifica-
tions, to produce a voting machine that authenticates and
loads both the Diebold AccuVote-TS voting software as
well as its underlying operating system. Finally, we im-
plement an attack on the system that indicates that it is
currently impractical for use and argue that as technology
advances, the attack will likely become more effective.

1 Introduction

The Florida 2000 debacle in the United States resulted
in passage of the Help America Vote Act, which pro-
vided billions of dollars in funding to the states to invest
in electronic voting systems. As a result, the use of the
Direct Recording Electronic (DRE) became widespread.
These software-based systems have come under fire from
security experts and activists claiming, among other
things, that there is no way to verify that the machines
do not contain malicious code. This is a valid concern.
In this paper, we address a subset of this problem.

We examine the possibility of a mechanism by which a
poll worker, on election day, could validate that the soft-
ware in a voting machine is the software that was pro-
duced by the vendor, without modification. Our con-
tribution highlights the difficulties in achieving voting
software integrity and demonstrates that it is extremely

*This work was supported by NSF grant CNS-0524252.
TJohns Hopkins University, Baltimore, Maryland

Sujata Garera'
sgarera@cs.jhu.edu

Aviel D. Rubin'
rubin @jhu.edu

unlikely that current software attestation techniques can
provide security for electronic voting.

Validating that software has not changed is not the
same as ensuring that it does not contain malicious code.
Although making strong guarantees about the security or
quality of the software itself may, in many ways, present
more challenges than ensuring authenticity, our work
does not make any claims in this regard. Other research
is developing improvements in this area [6, 25, 35].

The current solution to the problem of validating that
correct, unchanged software is on a DRE is inadequate.
While voting machine vendors are encouraged to sub-
mit hashes of their DREs’ code to the National Software
Reference Library (NSRL) [2], there is unfortunately no
process in place for verifying these hashes.

Even if there were a method to check the hash of the
executing binary on the voting machines in the precincts,
it would require complete trust in the hash verification
function. Thus, the approach reduces back to the un-
solved problem of ensuring that software is authentic.
Potential solutions using trusted hardware, such as a pro-
cessor with Intel Lagrande [19] or AMD Pacifica [4]
technology and a Trusted Platform Module (TPM) [32]
are similarly problematic. Although they could be used
to provide securely signed hashes of the software, one
would still require some completely trusted mechanism
to verify these signatures.

The goal of our work is to examine the possibility of
a solution whereby a human poll worker could validate
that the software running on a voting machine has not
been modified, without the assistance of any computing
device. We describe our implementation of a voting ma-
chine verification system designed to allow for the attes-
tation and verification of its software at boot time. Our
framework employs the Diebold voting machine soft-
ware that was found on the Internet in 2003 [16].

The core of our system is Pioneer [26], a software
based tool for verifying the integrity of code execution.
Pioneer provides a mechanism for validating that correct

code is running based on some of the performance char-
acteristics of the computer. In particular, it relies on the
fact that certain operations would require a noticeable in-
crease in computation time if code were modified. We
attempt to build on this concept by extending the Pio-
neer primitive so that the time difference between a run
with legitimate software and one with modified software
is easily discernible by a poll worker.

We implement a version of the best known attack on
our system, and show that to achieve the desired human
verifiability, Pioneer must run uninterrupted for roughly
31 minutes on each machine before every election and
the operation must be timed to within several seconds.
Every voting machine in the precinct needs to undergo
this procedure. We believe that our research demon-
strates that this solution is not practical.

Our data and analysis differs considerably from that
presented in [26]. We provide evidence that technologi-
cal advances in processor architecture reduce the security
of current software based attestation techniques. In par-
ticular, the increased parallelization of execution makes
it difficult to achieve uniqueness of a run-time optimal
implementation of a function.

2 Threat Model

Every system designed to provide security features needs
to be evaluated within a threat model. As such, our work
does not address all of the security problems in elec-
tronic voting. Rather, we are concerned with the issue
of determining whether the software running on a voting
machine on election day is the same software that was
produced by the manufacturer. In our design, we make
several assumptions about the capabilities of the adver-
sary and point out that in the real world, an adversary is
likely to be more powerful.

We assume that an adversary will not replace any of
the hardware components in the voting system or their
firmware. We limit attacks to modifications in the soft-
ware. Such modifications could occur, for example, if
an insider at the manufacturer changes the code after
the hash values are computed and before the system is
released. The software is also vulnerable to changes
when the machines are in storage. It is common prac-
tice prior to elections to store voting machines overnight
in the churches, synagogues and schools where the elec-
tion will take place. In many instances, there are multiple
people with physical access to the machines, and it is our
experience (based on working at the polls) that the tam-
per seals on these machines are not very effective against
a determined and resourceful adversary.

We assume that an adversary may be able to modify
and control all of the DRE software, including the BIOS,
bootloader, operating system, and voting application. In

Step | Poll Worker
Enter Challenge —
Start Timer

Voting Machine

o

Compute Self Checksum
«— Report Checksum
Stop Timer
Hash Voting Software
< Report Hash
Verify Time Difference
Verify Checksum
Verify Hash of Software

— =TS0 - 0 0 O

Figure 1: Poll worker election day procedure

our specific implementation, we also assume that an at-
tacker does not modify the BIOS. But, this assumption is
based on our specific implementation and is not a design
constraint.

3 Our Approach

In this section, we describe a high level overview of our
framework, without delving much into the implementa-
tion details, which are covered in a later section. One of
the primary goals of this architecture is to provide human
verifiable attestation.

3.1 Poll Worker Procedures

In our approach, each election day begins with a poll
worker verifying that each voting machine produces a
correct checksum, given a challenge, and that its soft-
ware matches an authentic hash. To that end, the poll
worker must be provided in advance with a trusted copy
of the correct hash value. Furthermore, she must be able
to produce a random, fixed-length challenge for each ma-
chine that cannot be anticipated by an adversary and for
which she can verify the response. One way we envision
that these values could be available to the poll worker is
to provide a card with values that are hidden under a gray
coating that could be scratched off by the poll worker
when each machine is set up.

The hash value could be printed on the card in visible
fashion, and the random challenge and corresponding re-
sponse would be kept secret with the scratch-off in the
same way numbers on lottery tickets are protected. To
further assure randomness and unpredictability, perhaps
the poll worker could pick such a card at random out of
a box full of cards. There are many ways that a ran-
dom challenge with a valid response could be chosen by
a poll worker, but all of them require that the poll worker
be given the values in advance and that the values be kept
secret.

At the start of an election day, the poll worker would
follow the procedures outlined in Figure 1. As illus-
trated, the poll worker enters a random challenge using a

key pad.! In response to this challenge, the voting ma-
chine displays a checksum value and a hash value as de-
picted in Steps d and g. The poll worker verifies that the
checksum is identical to the expected response, based on
the value on the scratch-off card. The poll worker also
verifies that the time taken by the voting machine to com-
pute the checksum is below a preset threshold? and that
the hash of the software is correct. If all verification steps
succeed, the machine’s software would be considered au-
thentic.

3.2 The Attestation Process

We now explain the process by which our system se-
curely attests itself. The attestation occurs in two distinct
phases:

Self-Checksumming. Shortly after the machine is pow-
ered on, the bootloader computes a checksum over
all its running code, and reports the result to the
user. If the response is verified to be correct, this
dynamically establishes a root of trust in the boot-
loader.

Hashing. The now trusted bootloader computes a stan-
dard cryptographic hash over the disk image about
to be booted. It then reports this hash to the user,
who can verify it and thus validate that the software
being booted is authentic.

VOTING
MACHINE
4) Compute
Hash
I
2) Self
Checksum

1)Challenge - BOOTLOADER

3) Checksum 5) Hash

b

Figure 2: Proposed architecture

The attestation process is depicted in Figure 2, and
we explain it in more detail below. Since the process
of hashing is straightforward, we limit our discussion to
the self-checksum and the attestation process as a whole.

To compute the self-checksum, we leverage Pio-
neer [26]. Pioneer is the work of Seshadri, Luk, Shi,
Perrig, van Doorn, and Khosla. It is a challenge-response
based tool originally designed for enforcing untampered
code execution and produces checksums intended for
verification by remote computers. Although we refer the
reader to [26] for its details, we briefly describe Pioneer
in the context of our work.

Pioneer can simply be thought of as an optimally im-
plemented function over a challenge and the state of
a specific range of memory that contains its code. It
reads from pseudo-random addresses within the speci-
fied memory range and incorporates their values into its
output (the checksum) and the pseudo-randomness itself.
Notice that in this process, Pioneer reads and attests its
own code.

The general idea behind Pioneer is that some author-
ity will run the authentic code of interest (in our case,
the honest bootloader), and can provide the correct func-
tion outputs corresponding to the “good” state of mem-
ory. These outputs can then be verified against the out-
puts of executions on other machines, and in this way, it
operates like a standard checksum.

The critical property of Pioneer that distinguishes it
from a regular checksum is its optimality. It was de-
signed with the intention of preventing any code from
computing the Pioneer function faster than it is currently
implemented, i.e. when it is computing a legitimate
checksum. Thus, an adversary may be able to write
malicious code other than Pioneer that gives the same
checksums for the same challenges, but that code should
not run as fast as Pioneer. The verification process then
makes use of this fact by requiring the verification of the
Pioneer execution time as well as the correctness of its
checksum. It is in this way that Pioneer can dynamically
establish a root of trust in itself.

The major difference between the original Pio-
neer [26] and our use of Pioneer, is that we designed
our version to be human verifiable. The original Pioneer
provides a means of ensuring code execution on remote
machines and is thus designed to run very quickly. As a
result, the malicious and honest Pioneer execution times
were distinguishable only by machines. In our work, we
drastically increase the number of checksum iterations
executed by Pioneer to force the best known attack ver-
sion to run approximately 3 seconds slower than the le-
gitimate one. With the aid of a clock, a human challeng-
ing our modified Pioneer can independently verify its in-
tegrity. We describe the implementation details of this
modification in Section 4.1.1 and the resulting bench-
marks from our honest and malicious implementations
of Pioneer in Section 4.4.4.

3.3 Integrity Checking Location

There are several layers in the software stack where Pio-
neer can be placed including the BIOS, bootloader, and
kernel. Note that, at higher layers, the complexity of
the implementation increases. Table 1 shows the ap-
proximate size of the image that would need to be self-
checksummed for each level (we approximated the size
of the BIOS using the memory layout described in [3]).

Level Image Size
BIOS System BIOS 8 KB
Bootloader | GRUB Stage 2 | 100 KB
Kernel Linux 2.6 2.5 MB
Windows CE 16 MB

Table 1: Approximate sizes of software images at differ-
ent levels of the software stack

We place Pioneer in the GRand Unified Bootloader
(GRUB) [1] both due to the small size of the bootloader
image and the consistency of memory state early on in
the boot process. Furthermore, the bootloader relies only
on the BIOS for input and output events. Thus, by plac-
ing Pioneer in the bootloader, we avoid dealing with the
complexity of the much larger input/output drivers of the
kernel. This design decision fostered a clean and conve-
nient implementation.

We compute the checksum and hash in the chain-
loader section of GRUB, which is the last thing to ex-
ecute before GRUB loads the OS. Placing the code here
minimizes the time between hash computation and vot-
ing machine use. We point out that, for our prototype, we
could not place the integrity computation in the BIOS,
primarily due to a lack of open source BIOS software.
There is no fundamental limitation, however, that would
prevent our proposed solution from being applied at the
BIOS level. This may, in fact, be an ideal location for it.

Finally, we note that the time difference between the
hashing of the disk image and its loading into memory
does not present any immediate security threats, as such
“check and use” scenarios often do. A successful verifi-
cation of Pioneer guarantees that we only have a single
thread of execution during this boot process, so no other
code can alter the disk image between these operations.
Similarly, our adversarial model excludes the addition of
any hardware that might directly write to the disk.

4 Implementation

The implementation and analysis of our voting machine
consists of three main pieces of software: the GRUB
bootloader augmented with Pioneer, a Microsoft Win-
dows CE operating system running the Diebold voting
software, and a malicious bootloader that we built to

analyze and test our implementation. We describe the
considerations and challenges involved in implementing
each as well as some corrections and modifications to the
Pioneer code.

4.1 Self Attesting Bootloader

The bootloader is the heart of our design. It first estab-
lishes a root of trust in itself by computing a challenge-
based checksum over its own code using Pioneer. It
then attests and loads the voting machine. Although we
use the bootloader to hash software for a voting system,
our implementation could attest, load, and execute any
bootable piece of code without modification.> We chose
to use GRUB [1] as the underlying bootloader of our sys-
tem due to its open source availability and high flexibil-
ity, and we explain the details and challenges of our mod-
ifications to it below.

4.1.1 User Interactions

Pioneer was originally designed to generate attestations
that would be challenged and verified by a machine. Be-
cause such a trusted machine is unavailable at the polling
place, we have made several modifications to Pioneer’s
functionality and interface so that it can interact mean-
ingfully with humans.

The first critical change we needed to make to Pio-
neer concerns its execution time. According to [26], the
difference in time between a checksum computed by a
benign version of the original Pioneer and that of a ma-
licious version is approximately .6 ms. We increase the
number of iterations of the checksum from 2.5 million to
8.3 billion in order to increase this difference to 3 sec-
onds, so that it is easily discernible by a poll worker.
Consequently, the wait time of the poll worker increased
to 31 minutes.

Our second, slight augmentation to Pioneer addresses
the challenge input. The original Pioneer uses an 832
bit challenge. This is unnecessarily large and very te-
dious for a human to enter. Furthermore, human input is
slow and no analysis has been conducted on Pioneer to
determine whether having early partial knowledge of the
challenge can enable an attacker to speed up its compu-
tation. To address both of these problems, we simply use
the string entered by the poll worker as a key to RC4 [23],
and after discarding the first 2048 bytes, the 832 bit chal-
lenge is set directly from the cipher stream. Although we
envision scratch-off challenges providing approximately
64 bits of entropy, this approach allows for challenges of
any size less than 256 characters.

In addition to modifying the input method, we try to
simplify the output as much as possible. Like the chal-
lenge, the standard Pioneer checksum response is 832

challenge> 72944829210352831634

checksum: MLDLFJUCSI48F

hash of booting partition:
1UIRC2BVEMGN7G7A86SKM7F7QH89D594

Computer locked for several seconds. Please

verify checksum and hash.

Figure 3: The GRUB bootloader output as displayed on
the screen. The challenge was entered by a user.

bits long. To avoid clouding the verification process with
unnecessary complications and possibly deterring poll
workers from strictly adhering to procedure, we reduce
the checksum output to 65 bits. We do this by computing
a hash over the full checksum response. Because Pio-
neer checksums have an approximately uniform distri-
bution over the challenge and the hash function weakly
randomizes? these outputs, this reduction is very unlikely
to produce any security threats. Finally, to minimize the
number of characters that must be verified, we convert
all values output, including those of the checksum and
the hash, to a 5 bit ASCII character encoding consist-
ing of characters [0-9A-NP-W]. (We omit the letter O to
avoid confusion with zero.)

A sample interaction with our final bootloader is de-
picted in Figure 3.

4.1.2 Time of Attestation

Because our bootloader design only computes one
checksum and hash, the time at which these computa-
tions are conducted is critical. We must ensure that at-
tested code is unable to alter itself after the attestations
are made. Thus, it makes the most sense to attest at a
point after which, all remaining booting actions are de-
terministic.

In our implementation, we chose to compute the
checksum and hash immediately before GRUB perma-
nently passes control onto the voting machine boot-
loader. Although attesting this late in the booting process
is not necessary, it allows for very easy verification that
the remaining boot process is deterministic.

4.1.3 Ensuring a Closed Execution Path

Another critical aspect of our bootloader implementation
concerns the possible paths of execution following attes-
tation. We want to ensure that all such paths contain only
attested code. (Of course, if the code is vulnerable, there
is little we can do to prevent an adversary from execut-
ing code of her choice, so we reiterate that we are at-
tempting to address this problem for secure software.)
We approach this problem from two angles: attesting an

0x0
BIOS
0x1000
Voting Machine | 0X7C00
OS Bootloader | ox7E00
0x8000
Grub Stage 2
0x245F4
Grub Buffers

Figure 4: The layout of memory when the bootloader
computes its self checksum. The shaded regions are the
ones that we currently attest.

appropriate range of memory, and strategically designing
bootloader code.

One seemingly straightforward means of achieving
our goal is to simply attest all of memory. This solu-
tion is problematic in practice, however, because sev-
eral memory values depend on time and other non-static
quantities. Without special consideration, their attesta-
tion will yield inconsistent checksums. For this reason,
we attempt to limit our attestation to a sufficient range of
memory to achieve our desired goal. Furthermore, mini-
mizing the range of attested memory also has significant
advantages in allowing for the verification of software se-
curity properties although we leave focusing on this issue
to future work.

The memory layout of our machine at the time of at-
testation is illustrated in Figure 4. Our implementation
currently computes a checksum over all of GRUB stage
2, including the data within it, and the voting machine OS
bootloader. From the point of attestation, GRUB stage 2
directly executes only within itself until it passes control
to the OS bootloader, which will begin loading the previ-
ously hashed OS image. Hence, assuming direct execu-
tion and software without vulnerabilities, a valid check-
sum computation implies that any malicious code that
would be executed must also be incorporated into one of
the two attestations. Our implementation falls slightly
short of our desired goals, however, with respect to the
BIOS interrupt handlers, which may execute after attes-
tation. We decided to leave the checksumming of the
interrupt handlers to future work because we had very
limited visibility of the BIOS internals and its code con-
tained several non-static values. We emphasize, however,
that this is not a limitation of our design, and with further
study of the BIOS, this code could easily be included in

Memory Attested by:
[Pioneer Instance 1

E= Pioneer Instance 2

Pioneer Instance 3

0x7C00
0x7E00

0x8000

0x145F4

0x18000

0x245F4

Figure 5: The memory regions attested by each instance
of Pioneer. The first section of contiguous memory being
checked represents the voting machine OS bootloader
and the second one represents GRUB stage 2. The three
instances of Pioneer checksumming code reside in the
black box and attest the three marked regions in the or-
der that they are numbered.

the attestation.

Although it seems like a reasonable solution, attest-
ing the proper range of code is not sufficient to prevent
undesired execution on its own. We must also protect
the stack. For example, an adversary could still put a
malicious return pointer on the stack and then jump to
the attestation code in the middle of the correct boot-
loader. After computing the correct checksum, the boot-
loader would then return to the adversary’s malicious
code. Since achieving consistent checksums on the stack
is quite challenging, the second way we ensure a closed
execution path is with code design. We explicitly mod-
ify the bootloader and write our code to avoid accessing
old data from the stack after attestation. We replace calls
and returns with pairs of jumps or sometimes manually
push correct return addresses before returning. Finally,
we move necessary stack variables to the data segment,
where they are incorporated into the checksum.

4.14 Checksum Chaining

One fundamental limitation of Pioneer is that it can only
directly compute a checksum over a continuous memory
range of n bytes, where n is a power of 2. However, as

noted in Section 4.1.3, we want our system to attest all
of GRUB stage 2 and the voting machine OS bootloader,
which, in total, does not have such nice form. To attest
the desired memory range, we run Pioneer several times
in succession, feeding the output from one instance to
the challenge input of another. (These are the same size.)
The individual memory ranges we attest, as well as the
order in which they are attested, are illustrated in Figure
5.

A slight complication occurs where Pioneer’s security
properties only hold when it computes a checksum over
its own executing code. For this reason, of the three Pio-
neer instances we run, only the first securely establishes
aroot of trust in itself. We mitigate this fact, however, by
using the first instance to attest all three sections of Pio-
neer code, establishing trust in each. From this point, the
second two instances of Pioneer can reliably attest their
target memory regions.®

As a last point of clarification, there are also no guar-
antees about the run time of malicious versions of Pio-
neer when it does not attest itself. Thus, to ensure that
any attack on our system will still be detectable by hu-
mans, we only increase the number of checksum itera-
tions executed by the first instance of Pioneer. We leave
the other two to compute the original 2.5 million itera-
tions, so they constitute a negligible .004% of the total
Pioneer runtime.

4.2 Pioneer Code

Some of the most notable aspects of our design are actu-
ally modifications and results regarding the Pioneer code
itself. Below we discuss how, in our implementation, we
make it functional and more secure.

We used the Pioneer source code downloaded from
[27], and confirmed with one of the authors that it was
the final code they used for obtaining the results in [26].

4.2.1 Functionality

One of the initial sources of inconsistencies in our
checksums was not caused by differences of values
stored in memory, but by a subtle result of an instruction
sequence in Pioneer itself. This sequence follows:

xor %rl4d, %rl2
pushfqg

It computes an xor of two values and pushes the
rflags register onto the stack, which is later incorpo-
rated into the checksum. The Intel Architecture Software
Developer’s Manual [18], states that the value of the aux-
iliary carry flag (AF) (in the rflags register) is unde-
fined after an xor instruction. It could have been possi-
ble that although undefined, AF is still deterministically

set after the execution of an xor. However, we found
that this was not case in practice on our Intel Core 2 Duo
processor. It may be the case that this same phenomenon
does not occur on the processor used by the Pioneer au-
thors, an Intel Pentium IV Xeon with EM64T extensions,
but Intel manuals define the result the same [18].6

As with most of the challenges of our implementation,
fixing this bug was much easier than finding it. We sim-
ply precede the pushfq instruction by an add, which
leaves no flags undefined.

4.2.2 Security

The Pioneer code that was released is not quite as secure
as Pioneer in design because it does not use code blocks
of exactly 128 bytes to prevent simple insertion of code.
The authors noted this fact [26].

We found that this lack of perfect alignment allows for
a significant attack on the Pioneer code as it was released,
and thus on our voting machine: After the rflags reg-
ister is pushed onto the stack, it is added to the next mem-
ory address to be incorporated into the checksum. Thus,
an adversary who can force the rf1ags register to have
a substantially higher value than what is used by an hon-
est Pioneer execution could cause the checksum to be
computed over an unintended, high memory range. En-
suring that r £ 1ags consistently contains a higher value
than was intended can be done by executing Pioneer at
the lowest privilege level, for example. Doing so sets the
IO Privilege Level (IOPL) bits of rflags, increasing
the attested address range by 0x3000 bytes.

This increase in the checksummed address range
comes at no cost in execution time on its own. The value
of the address is, however, incorporated into the check-
sum later, so we must add one instruction to reduce it
back to its expected value. This instruction could be an
xor. Hence, the total cost of the attack is one xor com-
putation per checksum iteration, approximately twice as
fast as the two shift instructions required by the fastest
attack described in [26].

To address this attack, we modify the Pioneer check-
sum code to simply incorporate the value of the rflags
register directly into the checksum, rather than using it
to calculate a memory address. The specific changes we
made to the code are illustrated in Figure 6.

4.3 Windows CE Voting Kiosk

In order to develop a complete prototype, we use the
Diebold source code analyzed by Kohno et. al [21] along
with Windows CE 6.0 to build a voting machine kiosk.

xor %rld, %rl2
pushfq
4: add (%rsp), S%rbx

w

5: a.ci'd ($rbx), %rl5
(a) Original code.

1: xor %rl4, %ril2
2: add %rl2, %rl5
3: pushfqg

4: xor (%rsp), %rl4

5: az.:i'd ($rbx), %rl5
(b) Our modified code.

Figure 6: Our modifications to a snippet of Pioneer code.
We insert an add instruction at step 2 to define the flags
before they are pushed. In step 4, we xor the flags into
part of the checksum rather than adding them to the ad-
dress of memory about to be read.

4.3.1 Integrating Diebold with Windows CE 6.0

The Diebold source was written to be compatible with
an older version of Windows CE. We modify the code
slightly to ensure compatibility with CE 6.0. A key
advantage of using Windows CE, as opposed to Win-
dows XP, is that Windows CE enables the entire oper-
ating system to be built into a read only image. This
feature specifically enables the consistency of the boot
process as discussed in the following section. The re-
vised Diebold executable was incorporated into this read
only image at compile time.

We further modify the CE platform infrastructure to
provide for a kiosk environment. Specifically, we only
incorporate into the CE image those features that are re-
quired by the voting machine, and we ensure that the OS
image boots into the voting software rather than the CE
shell.

One point to note is that while the executable and the
necessary DLL files are compiled into the Windows CE
image, the ballot definition file is passed externally. This
design decision is discussed in the following section.

4.3.2 Achieving Read Only and Consistent Boot

The implementation of Diebold we worked with requires
the administrator to configure the location of the ballot
definition file. This file is usually distributed on election
day via removable media such as storage cards. In ad-
dition, the software writes intermediate voting results, to
a directory specified by the administrator. This ensures
that if a machine shuts down during an election, it can re-
sume tabulating votes by restoring the correct totals from
persistent storage.

Given that we take a hash of the disk before it boots
into the voting machine, it is essential that the disk im-
age is consistent on all reboots. While the read only

nature of the OS image achieves this consistency, writ-
ing the votes to that image’s partition would result in in-
consistent hashes. To deal with this issue, we pass the
ballot definition externally through a USB flash disk and
configure the voting machine to write the votes to that
location.” This infrastructure not only ensures integrity
of the Windows CE image but also addresses the issue of
providing a consistent hash on boot.

4.4 Malicious Bootloader

In order to demonstrate the human verifiability of our
system and yet its overall impracticality, we also im-
plement an attack against our self attesting bootloader,
and show that its effects can be easily detected by hu-
mans but only after executing for an excessive amount
of time. When run, our malicious bootloader reports the
same checksum and hash values as the honest bootloader
for a given challenge, but does not boot the voting ma-
chine. As a result, it takes slightly more time to report
the checksum than the honest version. To our knowl-
edge, this is the first full implementation of a malicious
version of Pioneer.®

4.4.1 Attack Overview

Our attack represents a variation of the memory copy
attacks described in [26], and its methodology is quite
simple. We load an image of our honest bootloader
into memory one megabyte above where it would nor-
mally reside and we execute a malicious version of Pi-
oneer from its normal location. Figure 7 shows the cor-
responding memory layout for this attack. To compute
the checksum over the memory of the honest bootloader
rather than the malicious one, we xor the next check-
sum target address by 0x100000 (1 megabyte) immedi-
ately prior to memory read. Once the memory has been
accessed, we xor the address by the value again to undo
the change before the address itself is also incorporated
into the checksum.

The execution overhead incurred by our malicious
bootloader is two xor instructions per checksum itera-
tion. This can be compared to the attack, described by
the Pioneer authors as the best known attack, that alter-
natively requires the addition of two shifts. (The Pioneer
authors did not neglect a possible xor attack. This com-
parable attack does not work against the unimplemented
Pioneer design without modification, but its methodol-
ogy is analogous to that of the shift attack.)

Both xor and shift have an execution latency of one
CPU cycle [17], but the xor instruction is 7 bytes longer
than that of shift [18]. Since the Pioneer code is only
1024 bytes, however, it should be loaded entirely into
the CPU cache after the first checksum iteration, so the

l—» 0x108000
RUB

Checksum Good GRU

Target

Address

0x8000
Malicious GRUB
Program
Counter

Figure 7: Layout of memory as used by the malicious
bootloader.

difference in instruction length is insignificant.

4.4.2 Obtaining an Image of “Good” Memory

In order to implement the attack on our system, we
needed an image of the honest bootloader’s memory at
the time of attestation. Obtaining such an image was
difficult for several reasons. We could not use a debug-
ger at the low, bootloader level,? and we did not have
any specialty, memory reading hardware. We considered
the approach of manually constructing the desired im-
age from the bootloaders’ binary files, but we found that
such an approach was impractical. Specifically, in the
time between when the bootloaders’ binaries are loaded
into memory and when Pioneer is executed, a number of
variables in the data segment have been altered as well
as many others that are embedded throughout bootloader
assembly code. Furthermore, adding code to the boot-
loader to read the memory would substantially alter the
image we were trying to obtain. Code directly appended
to the binary was overwritten before it could be used.

To circumvent these problems, we decided to em-
bed the code for reading the memory image into the
menu.lst GRUB configuration file. menu.lst is
used by GRUB to generate a user menu, and several
parts of it are loaded into dedicated locations in unat-
tested memory.'? We inserted a small piece of code into
the file, and manually edited one of the GRUB binaries to
call the code in a way such that we could easily undo this
minor change in the final memory image. Running the
resulting bootloader with the modified menu. 1st file
successfully read an image of the desired memory and
wrote it to some unused sectors of our hard disk.

4.4.3 Mirroring Memory Changes

The last challenge we faced in completing our attack was
ensuring that the image of the bootloader’s memory al-
ways replicated that of the real, executing bootloader at

Bootloader Version Mean | Std. Dev.
Good 1873.230323 s 110441
Malicious 1876.191313 s .000232

Table 2: Checksum computation time statistics for the
good and malicious versions of the bootloader. Ten mea-
surements were taken for each bootloader version.

corresponding points in time.

Despite the fact that it seemed we had a perfect image
of what was attested by the good bootloader, that im-
age still differed from the memory that was actually exe-
cuted, corrupting the malicious checksum. Determining
the causes of these discrepancies was a rather challeng-
ing task. As before, we had no way of observing memory
without severely altering its state. Fortunately, one thing
we could do was alter the range of memory being at-
tested without significantly changing its contents. To do
this meaningfully, the new attested range must exclude
the code constants that define it. So our best approach
to locate memory inconsistencies was to adopt a binary
search technique.

We began by attesting a small memory range where
both the good and malicious bootloader would yield the
same checksum and then increased this range in a bi-
nary search fashion, checking, at each step, whether the
checksums remained the same or differed. Once we
honed in on the location of a specific discrepancy, we an-
alyzed the disassembled binaries and bootloader source
code to try to determine the cause of the difference.!!

We briefly point out two such discrepancies as exam-
ples:

e GRUB saves the location of the top of the protected
mode stack in line with part of its code when switch-
ing to real mode. The function we called to write
the good memory image to disk executes partially
in real mode, and as a result altered this value be-
fore it was read.

e A dynamic piece of the Pioneer checksum is stored
in the data segment, which is an attested portion of
memory. Without specific modification, the mali-
cious Pioneer alters this value in its own data seg-
ment rather than that of the good Pioneer image it is
attesting.

After addressing all such discrepancies, we were able
to perfectly mirror the execution of the honest bootloader
in the memory image used by our malicious version.

4.4.4 Benchmarks

We measured the checksum computation time of both of
our bootloaders in order to analyze the human verifiabil-
ity and practicality of our attestations. All of our timing

measurements were conducted on a 1.86 GHz, Intel Core
2 Duo processor with hyperthreading disabled and only
one running CPU core. To obtain our numbers, we used
slightly modified versions of the bootloaders, which we
augmented to report timing information.

We obtained our measurements using the CPU clock
cycle counter since the bootloader does not maintain a
system clock. The reported times were computed as the
number of clock cycles that executed during the com-
putation of a checksum divided by the CPU clock cycle
speed (1862.054 MHz). Although this method does not
account for minor variations in the clock speed, these are
minimal and are certainly undetectable by humans.

We recorded the computation time of 10 malicious and
10 good checksum computations. Our results are pre-
sented in Table 2. Each execution takes approximately
31 minutes. As can be seen by the minimal standard de-
viations, the times for each type of checksum are quite
consistent. They differ by 358.251 milliseconds in the
worst case. We observe that the standard deviation for
the good run-times is significantly higher than that of
the malicious run-times. We attribute this discrepancy
to the fact that our modified benchmarking bootloader
stores the execution start time in attested memory, bring-
ing inconsistency to each checksum computation. Fur-
thermore, the exit time from the Pioneer main loop is ac-
tually slightly probabilistic based on the state of memory
being attested. Recall that the malicious benchmarking
Pioneer, on the other hand, always attests the same saved
copy of the good Pioneer’s memory.

We presume that the slight variation between the run-
times of the malicious executions is caused by the fact
that there are instances during each timing where inter-
rupts are enabled (for instance when the checksum is
printed to the screen), and pending interrupts may con-
sume a small number of clock cycles. The difference
between the two average execution times is 2.96099 sec-
onds, approximately the 3 seconds we targeted. Al-
though this difference is discernible by a human, the
roughly 31 minute wait time is unfortunately long and
probably prohibitive for practical use.

Overall, the execution times are quite surprising. The
results of the original Pioneer paper [26] show an approx-
imate 1.23% overhead in execution time for a malicious
version of Pioneer. Hence, when we began this work,
we hypothesized that we could allow the bootloader to
compute its checksum for approximately 8 minutes to
create a 5.7 second difference between honest and mali-
cious executions. However, we observe a malicious com-
putation time overhead of only about 0.16%, requiring
the approximately 31 minute execution time. The exact
source of this difference in results is unknown to us with
absolute certainty.

The most probable explanation, however, concerns

CPU architecture. The original Pioneer study [26] em-
ploys an Intel Pentium IV Xeon while we run a newer
generation Intel Core 2 Duo. As Moore’s Law nears
the end of its applicability, microprocessor manufactur-
ers and researchers have increasing incentives to maxi-
mize the parallelization of instruction execution. Contin-
ual advances in this area, will make unique code optimal-
ity more difficult to achieve and increase the effective-
ness of attacks that require the insertion of instructions.
We hypothesize that as technology advances the already
minute overhead of the attack on our current implemen-
tation will diminish further, demanding longer run times.
If attack instructions can be parallelized completely, the
attack overhead on Pioneer may even reach 0. Because
we cannot expect or require voting machine vendors to
use legacy hardware, the current Pioneer implementation
is not suitable for providing human verifiable integrity of
voting machines.

5 Related Work

The notion of a trusted computer system was introduced
in the early 1980s by Tasker [31]. Since then, significant
research has been conducted in the areas of software at-
testation, verifiable code execution and the application of
these techniques to voting integrity in general. We dis-
cuss both hardware and software based techniques here.

Hardware Based Techniques. Tygar and Yee were
amongst the first to explore how secure coprocessors
could be applied to protect workstation integrity and
to remotely establish trust [33,34]. Similarly, Sailer,
Zhang, Jaeger, and van Doorn [24] describe a remote
load time integrity checking technique using Trusted
Platform Modules (TPMs) [32].

Gasser, Goldstein, Kaufman and Lampson were the
first to fully authenticate the platform’s software stack
[15]. They proposed a distributed architecture where
each machine is equipped with trusted hardware contain-
ing a public/private key pair. This is very similar to the
later proposed TPM [32]. The key pair is used to sign at-
testations (hashes) of all code that the system boots. This
attestation chain continues at higher levels in a recursive
manner.

Terra followed with a very similar approach to attesta-
tion, by Garfinkel, Pfaff, Chow, Rosenblum, and Boneh
[14]. It also uses chains of attestations up the software
stack and attempts to isolate individual virtual systems
by running each in a separate virtual machine. While
Microsoft NGSCB, [7, 10, 11] is similar in functionality
to Terra, it only attests software at the application level
rather than the whole stack.

Petri, Fraser, Molina, and Arbaugh take another ap-

proach through Copilot [22]. This system uses an ad-
ditional PCI card to perform periodic integrity measure-
ments of the Linux kernel in memory. Unfortunately, the
PCI card is unable to observe internal CPU state, so it
becomes unaware of memory mappings in use by hard-
ware, and is thus vulnerable to a kernel relocation attack
[26].

Like Pioneer, Cerium [8] and BIND [30] are two tech-
niques designed to guarantee the execution of attested
code to a remote party. BIND emphasizes the ability to
attest code at a “fine granularity” and relies on secure
hardware to bootstrap trust in a machine. Cerium’s se-
curity, on the other hand, is centered around a physically
tamper resistant CPU with an embedded public/private
key pair and a u-kernel that runs within CPU cache.

One problem of all the attestation solutions mentioned
above is that they require an external source of verifi-
cation. In the voting setting, this source must also be
trusted.

AEGIS, an architecture proposed by Arbaugh, Farber,
and Smith, unlike other hard ware solutions, provides se-
cure boot instead of trusted boot [5]. By adding a PROM
card and slightly modifying the system BIOS, the authors
ensure that successful boot of an AEGIS machine implies
that it has run only correct, expected software. While
AEGIS blends well into the voting setting, its most no-
table setback is that it requires trust of a very small por-
tion of code in the BIOS. Some of the software based
techniques discussed below can help address this issue.

Software Based Techniques. Kennel and Jamieson
proposed a software based technique, Genuity, to estab-
lish the authenticity of a machine to a remote party [20].
Genuity relies on self-checksumming code and attempts
to detect if the code runs in the correct location and if it
is running in a simulator. Unfortunately, Shankar, Chew,
and Tygar implement a successful attack on Genuity, and
argue that the authors’ approach of relying on machine
specific computations to detect execution in a simulator
is flawed [29].

Subsequently, Sheshadri, Perrig, van Doorn, and
Khosla proposed another software based attestation tech-
nique, SWATT, primarily intended for use in embed-
ded devices [28]. In SWATT, attesting devices conduct
pseudo-random memory walks based on challenges from
verifiers. The verifiers rely on the time of the memory
walk as a means of ensuring that a correct walk was not
simulated by malicious code. SWATT is very similar to
Pioneer [26] and may also provide a possible foundation
for human verifiable voting machine software attestation
with some modifications. However, we chose Pioneer
due to its more immediate application to a PC and guar-
anteed code execution.

We point out that the idea of deploying Pioneer in

voting has been suggested before. In an online Power-
Point presentation, many of the authors of Pioneer itself
also suggest increasing the time of the Pioneer checksum
computation to enable it to conduct human verifiable at-
testations of voting software [12]. They also claim to
have implemented Pioneer on an Intel XScale-PXA255
processor where they report an attack computation over-
head of approximately 40% in contrast with the reported
2% incurred on the original 64-bit x86.

Similarly, along with Wallach, in his comp527 com-
puter systems security class, Eakin and Smith propose
a project using Pioneer to attest software on voting ma-
chines [9]. They propose to re-engineer Pioneer to make
it platform independent or run on 32-bit x86 and main-
tain the original Pioneer model with a remote verifier.

Garay and Huelsbergen propose a final software based
integrity checking scheme [13]. Similar to Pioneer
and SWATT, it uses a challenge, response protocol be-
tween the attesting system and the verifier where the
time of response is critical to verification. However, the
Garay-Huelsbergen technique uses executable programs
(TEAS) as the challenges, which the attesting system
must then execute. Because execution of downloaded
code clearly presents a blaring security threat without
establishing the certain integrity of the executable, this
approach is not immediately applicable to voting.

Voting Machine Integrity. Along with work on veri-
fying general software integrity, research has also been
conducted towards ensuring the integrity of voting ma-
chines specifically. Sastry, Kohno, and Wagner describe
methods of designing voting machines for verification in
[25]. They focus on reducing the trusted computing base
of a voting machine by structuring code in a way such
that small sections of it can ensure the achievement of
certain properties. Yee, Wagner, Hearst, and Bellovin
propose a design for prerendering voting machine user
interfaces so that each election’s user interface may be
verified prior to the election [35]. This work again aims
to minimize the trusted code base and complexity of the
voting machine software, motivated by the fact that a
large portion of the machine software is typically the user
interface. Finally, the “frogs” voting architecture, pro-
posed by Bruck, Jefferson, and Rivest [6], separates the
voting process into two physically independent stages:
vote generation and vote casting. This approach, once
again, drastically reduces the amount of code that must
be trusted to ensure election integrity, since no trust is
required of the vote generation module.

6 Conclusion and Future Work

We present a candidate architecture for verifying the va-
lidity of the software running on voting machines and im-
plement it using Pioneer [26]. We implement an attack
on our system and demonstrate that Pioneer [26] does
not provide a practical solution to establishing self trust
in the voting context. As CPU technology advances, we
hypothesize that execution parallelization will increase,
making unique code optimality harder to achieve.

As future work, we aim to further explore the possibil-
ity of software based attestation with hopes of improving
these technologies and examining them in applications
that may prove more practical than that of electronic vot-
ing machines. We believe that by exploring methods
of forcing heavy interdependence between instructions,
we may be able to prevent successful parallel execution
of attack code. Some preliminary considerations indi-
cate that by designing a self-checksumming function that
modifies its own code, we may be able weaken many of
the assumptions required by Pioneer [26]. One challenge
that this approach must overcome, however, is that in-
validation of the CPU instruction cache, caused by code
modifications, could cause significant slowdowns in le-
gitimate execution overhead. A valid solution must en-
sure that an attacker could not implement the function in
a manner that avoids invalidating the instruction cache to
gain an overall advantage in run-time. We have yet to
determine the possibility of such a solution. Finally, we
hope to examine the possible benefits of a self checksum-
ming function that is bound by memory accesses rather
than CPU instructions. This type of function may also be
able to avoid many of the attack strengths derived from
parallelization by pushing the execution bottleneck to the
asynchronously accessed memory bus.

Acknowledgments

This work was supported by the National Science Foun-
dation grant CNS-0524252. We thank Arvind Seshadri,
Mark Luk, Elaine Shi, Adrian Perrig, Leendert van
Doorn, and Pradeep Khosla for developing Pioneer, pro-
viding its code, and replying to our questions. We also
thank the EVT program committee and specifically the
anonymous reviewers and Andrew Appel for providing
us with critical insights to our work. And we thank
Fabian Monrose for his helpful discussions.

References

[1] Grub: The grand unified bootloader.
gnu.org/software/grub/.

http://www.

[2] The national software reference library. http://www.
nsrl.nist.gov/vote.html.

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

[14]

[15]

(16]

(17]

(18]

(19]

Physical memory layout of the PC. http://my.
execpc.com/ geezer/osd/ram/index.htm.

Advanced Micro Devices. AMDG64 Architecture Program-
mer’s Manual, volume 2: System Programming. Septem-
ber 2006.

W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure
and reliable bootstrap architecture. In IEEE Symposium
on Security and Privacy, 1997.

S. Bruck, D. Jefferson, and R. L. Rivest. A modular vot-
ing architecture (“frogs”). In Workshop on Trustworthy
Elections, 2001.

A. Carroll, M. Juarez, J. Polk, and T. Leininger. Microsoft
palladium: A business overview, August 2002.

B. Chen and R. Morris. Certifying program execution
with secure processors. In USENIX HotOS Workshop,
2003.

B. Eakin, B. Smith, and D. Wallach. Code verifica-
tion for electronic voting machines. Rice University,
comp527. https://sys.cs.rice.edu/course/
comp527/PioneerVotingProjectProposal,
Fall 2006.

P. England, B. Lampson, J. Manferdelli, M. Peinado, and
B. Willman. A trusted open platform. IEEE Spectrum,
36(7):55-62, 2003.

P. England and M. Peinado. Authenticated operation of
open computing devices. In ACISP ’02: Australian Con-
ference on Information Security and Privacy, 2002.

J. Franklin, M. Luk, A. Seshadri, and A. Perrig. Se-
curely using untrusted terminals and compromised
machines with human-verifiable code execution.
http://www.cs.cmu.edu/” jfrankli/talks/
human-verifiable-code-execution_s$%
tanford.ppt.

J. A. Garay and L. Huelsbergen. Software integrity pro-
tection using timed executable agents. In ASIACCS ’06:
ACM Symposium on Information, Computer, and Com-
munications Security, 2006.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: a virtual machine-based platform for
trusted computing. In ACM Symposium on Operating Sys-
tems Principles, 2003.

M. Gasser, A. Goldstein, C. Kaufman, and B. Lamp-
son. The digital distributed system security architecture.
In NIST/NCSC National Computer Security Conference,
1989.

B. Harris. Black Box Voting: Vote Tampering in the 21st
Century. Elon House/Plan Nine, July 2003.

Intel Corporation. Intel 64 and IA-32 Architectures Opti-
mization Reference Manual. November 2006.

Intel Corporation. Intel 64 and IA-32 Architectures
Sofware Developer’s Manual, volume 2B: Instruction Set
Reference, N-Z. November 2006.

Intel Corporation. Intel trusted execution technology -
preliminary architecture specification, November 2006.

[20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

R. Kennell and L. H. Jamieson. Establishing the genuity
of remote computer systems. In USENIX Security Sym-
posium, 2003.

T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wal-
lach. Analysis of an electronic voting system. In IEEE
Symposium on Security and Privacy, 2004.

J. Nick L. Petroni, T. Fraser, J. Molina, and W. A. Ar-
baugh. Copilot - a coprocessor-based kernel runtime in-
tegrity monitor. In USENIX Security Symposium, 2004.

R. L. Rivest. The RC4 encryption algorithm, 1992. RSA
Data Security Inc.

R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn.
Attestation-based policy enforcement for remote access.
In CCS ’04: ACM Conference on Computer and Commu-
nications Security, 2004.

N. Sastry, T. Kohno, and D. Wagner. Designing voting
machines for verification. In USENIX Security Sympo-
sium, 2006.

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn,
and P. Khosla. Pioneer: Verifying code integrity and en-
forcing untampered code execution on legacy systems. In
SOSP ’05: ACM Symposium on Operating Systems Prin-
ciples, 2005.

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn,
and P. Khosla. Pioneer: Verifying code integrity and
enforcing untampered code execution on legacy sys-
tems — codebase, 2005. http://www.cs.cmu.edu/
“arvinds/pioneer.html.

A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla.
SWATT: Sofware-based attestation for embedded de-
vices. In IEEE Symposium on Security and Privacy, 2004.

U. Shankar, M. Chew, and J. D. Tygar. Side effects are not
sufficient to authenticate software. In USENIX Security
Symposium, 2004.

E. Shi, A. Perrig, and L. van Doorn. Bind: A fine-grained
attestation service for secure distributed systems. In JEEE
Symposium on Security and Privacy, 2005.

P. S. Tasker. Trusted computer systems. In /EEE Sympo-
sium on Security and Privacy, 1981.

Trusted Computing Group. TPM main part 1 - design
principles, specification version 1.2, revision 94, March
2006.

J. D. Tygar and B. Yee. Dyad: A system for using phys-
ically secure coprocessors. In IP Workshop Proceedings,
1994.

B. Yee and J. D. Tygar. Secure coprocessors in electronic
commerce applications. In USENIX Workshop on Elec-
tronic Commerce, 1995.

K.-P. Yee, D. Wagner, M. Hearst, and S. M. Bellovin. Pre-
rendered user interfaces for higher-assurance electronic
voting. In USENIX/ACCURATE Electronic Voting Tech-
nology Workshop, 2006.

Notes

I The Diebold DRE comes with a keypad that can be connected to
the machine for accessibility. We use this keypad for the validation
process to enter the challenge.

270 do this most easily, the poll worker could set a simple alarm
to go off at the moment by which the checksum should have been dis-
played.

3All of the code for our bootloader as well as the malicious
version is available at http://cs. jhu.edu/ ryan/pioneer_
voting/index.html.

41In a final release of this code, we will use a pseudo-random func-
tion here, rather than a hash.

5We could have used hash functions in place of the second two
instances of Pioneer but chose Pioneer for its short code size and to
maintain the clean separation between checksumming the bootloader
and hashing the disk.

61n their paper [26], the authors of Pioneer proceed the pushfg
with an or instruction rather than xor. It leaves the AF flag undefined
similarly.

7As an alternative approach, we could have written to a separate
partition of the built-in hard disk. However, one of the main challenges
we faced with regard to Windows CE was trying to get it to recognize
this disk. The hard disk drivers provided by CE 6.0 were incompatible
with our machine’s chipset, so the USB stick provided a comparable
option.

8 Although the authors of Pioneer implemented a malicious version
[26], the best evidence we have from their code [27] indicates that they
probably added the two instructions necessary to make Pioneer suc-
cessfully compute a correct checksum if inserted into the right memory
configuration without actually setting up the full attack to do so.

90ne approach that may have been beneficial here is to run our
bootloader inside a virtual machine or emulator although most virtual
machine monitors we are aware of use their own booting process and
bypass the standard bootloader.

10This memory region does not pose a security threat since an at-
tacker must modify the GRUB code to execute from it.

11 This technique was also used to find inconsistencies in the check-
sums produced by the good bootloader when we were developing it.

