Proceedings of DSL'99: Thé&Zonference on Domain-Specific Languages

Austin, Texas, USA, October 3—6, 1999

MONADIC ROBOTICS

John Peterson and Greg Hager

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WhttZ// www. usenix.org

Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Monadic Robotics

John Peterson
Yale University
peterson-john@cs.yale.edu, http://www.cs.yale.edu/homes/peterson-john.html
Greg Hager

The Johns Hopkins University
hager@cs.jhu.edu, http://www.cs.jhu.edu.dom/ hager

Abstract

We have developed a domain specific language for
the construction of robot controllers, Frob (Func-
tional ROBotics). The semantic basis for Frob is
Functional Reactive Programming, or simply FRP,
a purely functional model of continuous time, inter-
active systems. FRP is built around two basic ab-
stractions: behaviors, values defined continuously in
time, and events, discrete occurances in time. On
this foundation, we have constructed abstractions
specific to the domain of robotics. Frob adds yet
another abstraction: the task, a basic unit of work
defined by a continuous behavior and a terminating
event.

This paper examines two interrelated aspects of
Frob. First, we study the design of systems based
on FRP and how abstractions defined using FRP
can capture essential domain-specific concepts for
systems involving interaction over time. Second, we
demonstrate an application of monads, used here to
implement Frob tasks. By placing our task abstrac-
tion in a monadic framework, we are able to organize
task semantics in a modular way, allowing new ca-
pabilities to be added without pervasive changes to
the system.

We present several robot control algorithms speci-
fied using Frob. These programs are clear, succinct,
and modular, demonstrating the power of our ap-
proach.

1 Introduction

A successful DSL combines the vocabulary (values
and primitive operations) of an underlying domain
with abstractions that capture useful patterns in the
vocabulary. Ideally, these abstractions organize the
vocabulary into structures that support clarity and
modularity in the domain of interest. In robotic
control, this basic vocabulary is quite simple: it
consists of feedback systems connecting the robot
sensors and effectors. The more difficult task is to
build complex behaviors by sequencing among var-
ious control disciplines, guided by overall plans and
objectives. Controllers must be robust and effec-
tive, capable of complex interactions with an uncer-
tain environment. While basic feedback systems are
well understood, constructing controllers remains a
serious software engineering challenge. Many differ-
ent high-level architectures have been proposed but
no one methodology addresses all problems, mak-
ing this is an ideal area for the application of DSL
technology.

Frob is an embedded DSL for robotic control sys-
tems. Frob is built on top of Functional Reactive
Programming (FRP), which is in turn built on top
of Haskell, a lazy, purely functional programming
language[14]. Frob hides the details of low-level
robot operations and promotes a style of program-
ming largely independent of the underlying hard-
ware. It also promotes a declarative style of specifi-
cation: one that is not cluttered by low level imple-
mentation details.

An advantage of Frob (as well as many DSLs) is that
it is architecture neutral. That is, instead of defin-
ing a specific system architecture (organization or
basic design pattern) it enables arbitrary architec-
tures to defined in a high level, reusable manner. As

an embedded DSL, Frob includes the capabilities of
a fully-featured functional programming language,
Haskell.

This paper addresses both the Frob language itself,
its capabilities, usage, and effectiveness, and the im-
plementation of Frob. In particular, we examine the
use of a monad to implement one of the essential se-
mantic components of Frob. We demonstrate how
“off the shelf” monadic constructs may be incorpo-
rated into a domain specific language to express its
semantic foundation clearly and, more importantly,
in a modular manner. We address monads from
a practical vantage rather than a theoretical one,
emphasizing their usage and benefits within our do-
main.

This paper contains many examples written in
Haskell. Readers must have at least a passing fa-
miliarity with the syntax, primitives, and types of
Haskell. Those unfamiliar with Haskell will find
www.haskell.org has much helpful information.
Although we make extended use of Functional Re-
active Programming, we attempt to explain FRP
constructs as they are used. No prior understand-
ing of monads is required.

The remainder of this paper is organized as follows.
Section 2 discusses the domain of robot control and
essentials of FRP and monads. Section 3 demon-
strates the construction of the task monad in an in-
cremental manner, adding features one by one and
examining the impact on the system as the defini-
tion of a task changes. In Section 4, a number of
non-trivial examples of Frob programming are pre-
sented. Section 5 concludes.

2 Background

2.1 The Problem Domain

Programming robots operating in the real world
provides a unique example of a programming system
operating in conjunction with the physical world.
As such, any system must coordinate multiple on-
going control processes, detect special events gov-
erning task execution, and supply data structures
and language primitives appropriate to the domain.

Unsurprisingly, the development of robot program-

ming systems has been an area of active research
in robotics (see [2] for a recent collection of arti-
cles in this area). Many of these languages are re-
alized by defining data structures and certain spe-
cialized library routines to existing languages (no-
tably C [6, 5, 10, 16], Lisp [1], Pascal [11], and Basic
[15]). In particular, most of these “languages” in-
clude special functions or commands that operate
in the time domain. For example, VAL includes a
command to move the robot to a given spatial loca-
tion. This command operates asynchronously and
has, thereby, the side-effect of “stitching together”
multiple motions if they are supplied in rapid order.
Likewise, other embedded languages such as the
“Behavior Language” of Brooks [1] and the Reac-
tive Control Framework of Khosla [16] provide rich
programming environments for the coordination of
time-domain processes. AML [17] is an exceptional
case — it is a language designed from scratch. As
such, it supplies similar capabilities to VAL, but
with the addition of enhanced error handling ca-
pabilities for robot program execution.

Despite the proliferation of robot programming sys-
tems, relatively little work has been done on deriv-
ing a principled basis for them. For example, none of
the languages cited above has a formal (or in many
cases even informal!) semantics. Counter to this
trend, Lyons [9] provides a compositional paradigm
for expressing robot plans (collections of atomic ac-
tions) that are sequenced and coordinated using a
rich set of primitives. The notion of continuous be-
havior and discrete event-based transitions is also
introduced. However, no transparent implementa-
tion of the language (or even realistic examples) is
presented.

In contrast, Frob has a transparent, extensible, and
semantically clear basis, and is a practical, useful
tool for implementing robot programming systems.
While Frob is also a library embedded in an exist-
ing language, the abstractions defining Frob are at
a higher level than those used to embed controllers
in languages such as C. While a controller embed-
ded in C or C++ could, in theory, handle the same
sort, of abstractions we have used in Frob, their im-
plementation would be much more difficult and the
reliability of the system would suffer in the absence
of a good polymorphic type system.

2.2 About Haskell

Since Frob inherits the syntax, type system, and
libraries of Haskell users of Frob must, of necessity,
learn about Haskell. This section contains a brief
overview of the Haskell features used in Frob; those
familiar with Haskell may wish to skip to the next
section.

Basic Haskell features include the following;:

e Variables: these start with lower case letters,
such as x or robotPosition. Variables may
include _ and ’ characters, so x” is a also a vari-
able name. Operators are composed of punctu-
ation, such as -=>or . |..

e Function application: Haskell does not use
f(x,y) style notation for function calling. In-
stead, the parenthesis and commas are omit-
ted, as in £ x y. Parentheses may be used for
grouping, as in £ (g x) (h y), which would
be written f (g(x) ,h(y)) in other languages.

e Infix operators: examples include x + y or
e —=> f. An infix operation is converted into
an ordinary variable using parentheses, as in
(-=>) or (+). Ordinary functions, such as
f, can be used in the infix style when sur-
rounded by backquotes, asin x ‘f¢ y, which
is the same as £ x y. Application takes prece-
dence over infix operators, so f x+y z parses
as (f x)+(y =z).

e Layout: indentation separates definitions: each
definition in a list must start in the same col-
umn and the list is terminated by anything in
a preceeding columm. For example, in

let x =1
y=2
in x+2

the indentation of the y must exactly match
that of x.

e Definitions: the = in Haskell creates a defini-
tion. You can define a constant, as in x = 3,
or a function, as in f x y = x + y. As with
function application, no parenthesis are needed
around the function parameters.

e Lambda abstractions: functions need not
be named. The expression \x y -=> x + y

is an anonymous function. For exam-
ple, you can pass a function as a pa-
rameter: £ (\y -> y + 2). There’s no

difference between f xy =x +y and
f=\xy ->x+y.

Type signatures: the polymorphic types in
Haskell are quite descriptive. Types are in-
ferred, allowing type signatures to be omitted,
but for clarity we include signatures in all ex-
amples. Type signatures supply valuable docu-
mentation and make type errors easier to diag-
nose. The syntax of a signature declaration is
x :: Int, where this defines the type of x to be
Int. Type signatures are generally placed im-
mediately preceding the associated definition.

Function types: the type of a function from
type t1 to type t2 is written t1 -> t2.
A function with more than one argument
will have more than one arrow in its type.
Watch for parenthesis, though: the type
f :: (Int -> Int) -> Int defines a function
with one argument, a function from Int to Int,
rather than two Int arguments; that would be
f :: Int -> Int -> Int.

Currying: you don’t need to pass all of the
arguments to a function at once. A call to
f :: Int -> Int -> Int without the second
argument, as in £ 3, results in a function that
takes the remaining argument.

Polymorphic types: lower case identifiers in
type expressions are type variables. These
scope over a single type signature and denote
type equality. Many types are parameterized;
the parameters are passed using the same syn-
tax that expressions use. For example, the sig-
nature

(==>) :: Event a -> (a -> b) -> Event b

defines an operator, ==>, that takes an Event
parameterized over some type a and a func-
tion from type a to another type b, yielding
an Event parameterized over type b. Polymor-
phic types are an essential part of Frob; many
built-in Frob operators are may be almost com-
pletely described by their type signature.

Contexts: In Haskell, overloading is manifested
in type signatures that contain a context: a set
of constraints on type variables, prefixing an
ordinary signature. For example, the type

) :: Ord a => a -> a -> Bool

indicates that two arguments to > are of the
same type and that this type must be in class
Ord. A Haskell type class is similar to a Java
interface.

e Tuples and Lists: A tuple is a simple way
of grouping two or more values. Tuples use
parentheses and commas: (x,y) is an expres-
sion that combines x and y into a single tu-
ple. The elements of a tuple may have different
types. Lists are written using square brackets:
[1,2,3] is a list of three integers. The : oper-
ator adds a new element to the front of a list;
[1,2,3] = 1:2:3:[]. Many list functions are
pre-defined in Haskell.

e The Maybe type: the type Maybe a denotes ei-
ther a value of type a, Just x, or Nothing.
Maybe is often used where C programmers
would use a pointer that may be void.

e The void type: the type (), pronounced ”void”,
is used in situations where no value is needed.
The only value of this type is ().

2.3 Functional Reactive Programming

In developing Frob we have relied on our experi-
ence working with Fran, a DSL embedded in Haskell
for functional reactive animation [4, 3]. Functional
Reactive Programming can be thought of as Fran
without animation: the basic events, behaviors, and
reactivity without operations specific to graphics.

At the core of FRP is the notion of dynamically
evolving values. A variable in FRP may denote an
ongoing process in time rather than a static value.
There are two sorts of evolving values: continuous
behaviors and discrete events. A behavior is defined
for all time values while events have a value only at
some discrete set of times.

For a type t, the type Behavior t is an evolv-
ing quantity of type t. Behaviors are used to
model continuous values: a value of type Behavior
SonarReading represents the values taken from the
sonars; Behavior Point2 represents the position of
the robot. Expressions in the behavioral domain are
not significantly different from static expressions.
Through overloading, most static operators operate
also in the dynamic world: users see little difference
between programming with static values and with
behaviors. For example, the following declaration is
typical of Frob:

Robot -> Behavior Float
rerror r =

rerror ::

limit
(velocity r * sin thetamax)
(setpoint - leftSonar r)

where limit m v = (-m) ‘max‘ v ‘min‘ m

This example shows a function mapping robot sen-
sors (as selected by the velocity and leftSonar
functions) onto a time-varying float, part of a larger
control system. The details of this example are
unimportant; the point is that writing functions
over behaviors is little different from writing func-
tions for static value.

Behaviors hide the underlying details of clocking
and sampling, presenting an illusion of continuous
time. Behaviors also support operators not found in
the static world: both integral and derivative,
for example, exploit time flow. As a further exam-
ple of the expressive power of behaviors, consider
the following;:

: Ord a =>
Behavior a -> Behavior b -> Behavior b

atMin

This returns the value of the second behavior at the
time the first behavior is at its minimum.

The other essential abstraction supplied with FRP
is the event. The type Event t denotes a process
that generates discreet values (messages) of type
t at specific instances. Some components of the
system are best represented by events rather than
behaviors. For example, the bumpers are of type
Event BumperEvent; occurances happen when one
of the robot bumper switches is activated. The con-
sole keyboard has type Event Char, where each key-
press generates an event occurance.

Events may be synthesized from boolean behaviors,
using the predicate function:

predicate :: Behavior Bool -> Event ()

This can be thought of monitoring a boolean be-
havior and sending a message when it becomes true.
This definition uses predicate to generate an event
when an underlying condition first holds:

stopit :: Robot -> Event ()
stopit r = predicate
(time > timeMax || frontSonarB r < 20)

This event occurs when either the current time
passes some maximum value or when an object ap-
pears less than 20 cm away on the front sonar of the
robot.

Within FRP, a robot controller is simply a function
from the robot sensors, represented using behaviors
and events bundled into the Robot type, onto its ef-
fectors, behaviors and events that drive the wheels
and any other systems controlled by the robot. The
flow of time is hidden with the FRP abstractions;
the user sees a purely functional mapping from in-
puts to outputs.

Is this all we need? Perhaps; complex robot con-
trollers can be constructed using only the basic FRP
primitives. However, such controllers have a num-
ber of problems:

e While FRP is well suited for the low-level con-
trol systems present in this domain, it lacks
higher level constructs needed to plainly ex-
press robot behaviors at a high level.

e Controllers may be complicated by “plumbing”
code needed to propagate values in a functional
manner.

e Hard to understand FRP constructs are some-
times required. While users easily comprehend
basic event and behavioral operators, FRP is
also littered with arcane (but essential) opera-
tors such as snapshot, switcher, or withElem
that are unfamiliar to users and are not a nat-
ural part to the underlying domain.

Our goal is to create better abstractions: ones that
embody patterns that are familiar to domain engi-
neers and that have well-defined semantic proper-
ties.

2.4 Monads as a Modular Abstraction
Tool

Monads have been surrounded by a great deal of
hype in the functional programming community.
This has led those outside of this community to ask
questions such as “What the heck are monads any-
way?”, “If monads are so useful why don’t they have
them in Java?”, and “Do I have to understand cat-
egory theory to write Haskell programs?”. In this

section we will attempt to demystify monads some-
what.

First, why don’t C programmers or Java program-
mers use monads? The answer is really quite sim-
ple: monads don’t actually do anything new. Mon-
ads are used for state, exceptions, backtracking, and
many other things that programmers have long done
without monads. What the monad does is allow
many well-understood constructs to be explained
conveniently in purely functional terms. Outside a
purely functional language, it’s usually easier (but
maybe not better) to do what you want directly
without involving monads.

In a pure language, though, monads are an ideal
way to capture the essential semantics of a domain
without compromising purity or modularity. Mon-
ads hide the “gears and wheels” of the domain from
the user while also presenting a simple, intuitive in-
terface to the user. The user (as opposed to the DSL
designer) sees only sequencing and the return oper-
ator, together with ‘magic’ functions that reach in-
side to these gears and wheels in some way. Monadic
programming is made more readable in Haskell us-
ing the do notation. Users of the DSL don’t really
have to know anything about monads at all; they
simply “wire up” their program using do and the
rest of the monadic internals are unseen.

The most important feature of the monadic ap-
proach is modularity: new features may be added
without breaking existing code. Under the hood,
though, interactions between different features in a
monad are out in the open. This is the advantage of
a purely functional style: the interplay among these
various features is very explicit.

Another advantage of monads is that there are
many “off the shelf” monadic constructions avail-
able. There is no need to re-invent a basic semantic
building block such as exception handling; this is
already well understood. A DSL designer may com-
bine many such building blocks into a very domain-
specific monad. There are also a number of alge-
braic properties that make monadic programs easier
to understand and reason about.

Going back to a very concrete level, a monad in
Haskell defined with an instance declaration that
associates a type with the two monadic operations
in the class Monad:.

class Monad m where

(>>=)
return

::ma->(a->mb) ->mb
ra->ma

The operators are simple enough: >>= (or bind)
is sequential composition while return defines an
“empty” computation. A special syntax, do no-
tation, makes calls to >>= more readable. In ad-
dition to this instance declaration, other functions
may reach inside the monad, hooking into its inter-
nals. For example, consider the state monad. Here,
the bind and return define the propagation of the
state from computation to computation. To actu-
ally reach inside to the state, additional functions
must be written to get at this internal state. The
following example shows the declarations needed to
define a monad over a container type T that, inter-
nally, maintains a state of type S:

data S = ...

-- A computation in T that returns type a
-- is a function that takes a state and returns
-- an updated state and an a.

data T a =T (\S -> (S, a))

instance Monad T where
(T f1) >>= c2 =
T (\state ->
let (state’, r) = f1 state
T f2 = c2 r in
f2 state’)
return k = T (\state -> (state, k))

getState :: T S
getState = T (\state -> (state, state))

setState :: S > T ()
setState state = T (_ -> (state, ()))

runT :: S -> T a -> (S, a)
runT state (T f) = f state

The Monad instance explicates the passing of the
state from the first computation to the second. The
getState and setState reach inside this particular
monad to access the normally hidden state. Finally,
the runT function runs a computation in monad T,
passing in an initial state and producing the final
state and returned value.

We may add new capabilities to the state monad
(exception handling, for example) without chang-
ing any of the user level code that uses the monad.
That is, we may often enrich a monad’s vocabulary
without altering “sentences” expressed in the old

vocabulary.

Perhaps the best introduction to the practical use
of monads is Wadler’s “The Essence of Functional
Programming”[18§].

3 Implementing Frob

The basic implementation of Frob is discussed in [13]
and [12]. Here, we examine only tasks and their use
of monads.

3.1 The Basic Task Monad

Rather than present the full definition of Frob tasks
up front, we will instead develop the task abstrac-
tion incrementally, adding features one by one and
showing how each incremental extension in the ex-
pressiveness of tasks affects programs and the task
implementation. Our purpose here is twofold: to
show the ability of functional reactive programming
to define the abstractions needed for our domain
and, more importantly, to show how the use of
a monad to organize the task structure promotes
modularity.

The essential idea behind a task is quite simple: the
type Task a b defines a behavior (actually, any re-
active value), a, over some duration and then exits
with a value of type b. In terms of FRP, a task is
represented as

behavior ‘untilB‘ event ==> nextTask

where untilB switches the behavior upon occurance
of the terminating event. The ==> operator passes
the value generated by the event to the next task.
Tasks are a natural abstraction in this domain: they
couple a continuous control system (a behavior)
with an event that moves the system to a new mode
of operation. Tasks are not restricted to the top
level of the system: any reactive value (event or be-
havior) may be defined as a task; many tasks may
be active at one time.

Initially, the task monad requires only one instru-
ment from the monadic toolbox: a continuation to
carry the computation to the next task. This is

implemented by a type, Task, and an instance dec-
laration for the standard Haskell Monad class:

data Task a b

= Task ((b -> a) -> a)
unTask (Task t) =

t

-- standard continuation monad
instance Monad Task where
(Task f) >>=g

Task (\¢c -> £ (\r -> unTask (g r) c))
return k =
Task (\¢ -> c k)

This defines a structure for combining computations
(the glue); we still need to define the computations
themselves. Here is a simple task creation function:

mkTask :: (Behavior a, Event b) -> Task a b
mkTask (b,e) =
Task (\c -> b ‘untilB‘ e ==> ¢)

Now that we can create tasks and sequence tasks,
how do we get out of the Task world? After all,
the robot controller is defined in terms of behaviors,
not tasks. That is, we need to convert a task into
a behavior. This brings up a small problem: what
to do when the task completes? That is, what is
the initial value of the continuation argument? One
way out of this dilemma is to pass in an additional
behavior to take control after the task exits:

runTask :: Task a b -> a -> a
runTask (Task t) finalB = t (const finalB)

We now have everything needed to write a simple
robot controller. Here are two simple tasks:

goAhead, turnRight, runAround ::
Robot -> Task WheelControlB ()
goAhead r =
mkTask (pairB 10 0)
(predicate (frontSonar r < 20))
turnRight r =
mkTask (pairB 0 0.5)
(predicate (frontSonar r > 30))
runAround r = do goAhead r
turnRight r
runAround r -- loop forever
main =
runController
(\r -> runTask (runAround r) undefined)

The wheel controls are defined by a pair of num-
bers, constructed using pairB, with the first be-
ing the forward velocity and the second the turn

rate. The runController function executes a con-
troller, a function from sensors (Robot) to effectors
(WheelControlB). Since runAround is not a termi-
nating task there is no reason to pass a final behav-
ior to runTask.

Starting with this foundation (the monad of contin-
uations, mkTask to build atomic tasks, and runTask
to pull a behavior out of the task monad), we will
now add some new features.

In the previous example, the robot description had
to be passed explicitly into each part of the con-
troller. We can pass this description implicitly
rather than explicitly by building it into the task
monad directly. That is, we want to pass the robot
description to runTask and then have it appear
wherever needed without adding extra r parame-
ters to everything. In particular, the place we really
need it to appear is mkTask, since the behavior and
event are generally functions of the current robot.

We define a new type to encapsulate task state:

data TaskState =

TaskState {taskRobot :: Robot}

For now, our state has only one element: the current
robot. The type TaskState is defined using Haskell
record syntax, which here defines taskRobot as a
selector function to extract the robot from the task
state. As more components are added to the task
state, the definition of TaskState will change but
code referring to state values will remain unaltered.
We now add this state to the definition of Task.
A task is given an initial state (the first parameter)
and then passes a (potentially updated) state to the
continuation carrying the next task:

data Task a b =
Task (TaskState —->
(TaskState -> b -> a) -> a)
instance Monad Task where
(Task f) >>=g =
Task (\ts c ->
f ts (\ts’ r >
unTask (g r) ts’ c))
return k =
Task (\ts ¢ -> ¢ ts k)

Again, this instance definition is “off the shelf”: a
standard combination of continuations and state.
The runTask function now needs an initial state to
pass into the first task. The definition of runTask
is now:

runTask :: TaskState -> Task a b -> a -> a
runTask ts (Task t) finalB =
t ts (_ _ -> finalB)

In general, the call to runTask will need to fill in
initial values for all components of the task state.

We’ve put TaskState into the monad, but how
can we get it back out again? That is, how can
tasks access information inside TaskState? These
monadic operators directly manipulate the current
TaskState:

getTaskState :: Task a TaskState
getTaskState = Task (\ts c -> c ts ts)
setTaskState :: TaskState -> Task a ()

setTaskSTate ts = Task (_ ¢ -> ¢c ts ())

We also make the state available to tasks defined via
mkTask. The argument to mkTask is now a function
from the current task state onto the behavior and
event defining the task:

mkTask :: (TaskState ->
(Behavior a, Event b)) ->
Task a b
mkTask f =

Task (\ts c ->
let (b,e) = f ts in
b ‘untilB¢ e ==> c)

The definitions in the previous example are now sim-
plified: the robot is propagated to the tasks implic-
itly rather than explicitly:

goAhead, turnRight, runAround ::
Task WheelControlB ()

goAhead =
mkTask (\ts —->
let r = taskRobot ts in
(pairB 10 0,
predicate (frontSonar r < 20)))

turnRight =
mkTask (\ts —->
let r = taskRobot ts in
(pairB 0 0.5,
predicate (frontSonar r > 30)))

runAround =
do goAhead
turnRight

runAround -- loop forever

main =
runController
(\r -> runTask
(TaskState {taskRobot = r})
(runAround r)
undefined)

Note that the composite task, runAround, is not
aware of the propagation of the task state. We
could have retained the old mkTask (without the
TaskState argument) for compatibility but have
chosen not to. This change could, though, have been
made without invalidating any user code.

We have, so far, exploited well known monadic
structures for continuations and state. One more
basic monadic construction is of use: exceptions.
With exceptions, tasks of type Task a b may suc-
ceed, returning a value of type b, or fail, raising an
exception of type RoboErr. This is reflected in a
new definition of the Task type in which a task may
return either its terminating event value, b, or an
error value, of type RoboErr.

data Task a b =
Task (RState ->
(RState -> (Either RoboErr b) -> a) -> a)

These primitives raise and catch exceptions:

taskCatch
Task a b ->
(RoboErr -> Task a b) —>
Task a b
taskError -- Raise an error

RoboErr -> Task a b

We omit the definitions of these primitives and the
modified Monad instance; these are standard con-
structions along the lines of those in [18]. How-
ever, we will examine the changes needed to mkTask.
That is, the Monad instance itself is essentially inde-
pendent of the underlying domain, defined in terms
of standard monad constructions and unspecific to
robotics while the task creator, however, is very
domain-specific and must be modified to account
for the presence of exceptions.

Here is a new version of mkTask that adds an error
event to the basic definition of a task. We use a
slightly different name, mkTaskE, so that the old in-
terface, mkTask, remains valid. The new definitions
are:

mkTask ::
(TaskState -> (Behavior a, Event b)) ->
Task a b
mkTask f =
mkTaskE (\ts -> let (b,e) = f ts in
(b, e, neverE))

mkTaskE ::
(Robot ->
(Behavior a, Event b, Event RoboErr)) ->
Task a b
mkTaskE f =
Task (\ts c ->
let (b,e,err) = f ts in
b ‘untilB‘ ((e ==> Right) .|.
(err ==> Left))
==> ¢)

The only change here is that the terminating event
is either the normal exit event with the Right con-
structor added or an error event, as tagged by Left.
The .|. operator is FRP construct that merges
events, taking the first one to occur. The ==> oper-
ator modifies the value of an event, so if err has type
Event RoboErr,then err ==> Right has type Event
(Either a RoboErr). The constructors Left and
Right define the Either type.

Next, consider a task such as “turn 90 degrees
right”. Can we encode this easily as a Frob task?
Not yet! The problem is that a task don’t know
the orientation of the robot at the start of the task.
We can build a control system to turn to a specified
heading, but how do we know what the goal should
be? The answer lies in the task state. During task
transitions (the untilB in mkTaskE), we should also
take note of where the robot is, which way its point-
ing, and other useful information.

In this simplified example, we capture the current
robot location when moving from task to task. The
monad remains unchanged (except for a new field in
the TaskState structure) but the task builder must
be modified as follows:

type RobotStatus = Point2

snapRobot ::

Event a -> Robot -> Event (a,Radians)
snapRobot e r =

e ‘snapShot‘ (orientationB r)

mkTaskE f =
Task (\ts c ->
let (b,e,err) = f ts in
b ‘untilB*¢

((e ==> Right .|. err ==> Left)
‘snapRobot‘ (tsRobot ts))
==> (\(res,rstate) ->
c (addRstate ts rstate) res)

The terminating event of the behavior is augmented
with the state of the robot at the time of the event
by the the snapshot function, a primitive defined
FRP to capture the value of a behavior at the time
of an event occurance. Tasks will now find this ini-
tial orientation as part of the task state. This, a
“turn right” task would be as follows:

turnRight =
mkTask (\ts ->
let goal =
initialOrient ts + 90 in ...)

Empty tasks (those defined as a return) pass the
state onto the next task unchanged.

3.2 Task Transformations

Having described the elementary task operations in
detail, we now examine, briefly, other task oper-
ations. Given an existing task, what useful task
transformations can be implemented? Examples in-
clude:

addError :

Event RoboErr -> Task a b -> Task a b
timeLimit

Time -> Task a b -> Task a (Maybe b)
withB HH

(TaskState —-> Behavior a) ->

Task b ¢ ->

Task b (c,a)
withExit :

Event a -> Task b ¢ -> Task b a
withMyResult ::

(a => Task a b) -> Task a b
withFilter

(a->a) -> Task a b -> Task a b
withPicture

Behavior Picture -> Task a b -> Task a b

The operation of many of these functions is obvious
from the type signature: an illustration of the value
of polymorphic type signatures as documentation.
While the full implementations of these functions
is beyond the scope of this paper, we will provide
a basic outline of each of these functions and how
they are supported by the Task monad.

Most of the interesting semantic extensions to the
system involve the basic definition of an atomic task.
By bringing values from the task state into this
definition, we can parameterize sequences of tasks
rather then atomic ones. For example, consider
addError: this function adds a new error event to
an existing task. Note that the error event spec-
ified in mkTaskE applies only to an atomic task.
The task passed to addError, however, may con-
sist of many sequenced subtasks. The definition of
addError looks something like this:

addError err tsk
do oldErr <- previous global error event
let newErr = err .|. oldErr
place newErr into the task state
execute tsk
restore prior global error event

Of course, mkTask must be changed too. The event
err now becomes err .|. getGlobalErr ts: the
error event in the task state must be included in the
error condition in the untilB. This sort of “scoped
reactivity” is not easily expressed in basic FRP; us-
ing the task monad makes it much easier to imple-
ment this feature.

The timeLimit function aborts a task if it does not
complete within a specified time. It is implemented
using addError to attach an event that to the asso-
ciated task which occurs at the specified time. This
requires both the exception and state capabilities of
the underlying monad.

The withB function defines a behavior to run in par-
allel with a task. When the task exits, the value of
the behavior is added to the task’s result value. This
is implemented by building a task that attaches a
snapshotting function to the incoming continuation.

The withExit function aborts a task upon an event.
If the task completes before the aborting event, an
error occurs. This is implemented directly in FRP
by untilB, as in this simplified definition:

withExit e (Task t) =
Task (\ts ¢ -> t ts err ‘untilB‘ e ==> c)
where err = error "Premature task exit"

This function is implemented directly at the contin-
uation level.

The withMyResult function it allows a task to ob-
serve its own result, which is often needed in the
differential equations that define a controller.

withMyResult f =
Task (\ts ¢ -> let r = (unTask t) ts c
t=fr in

e)

Another place in which the atomic definition of a
task may be further parameterized is the resulting
behavior. That is, instead of

b ‘untilB¢ (e ...)

we modify the resulting behavior using a filter in
the task state:

((getfilter ts) b) ‘untilB‘ (e ...)

This is implemented in a manner similar to
withError, using

withFilter
(a->a) -> Task a b -> Task a b

Finally, we discuss a more global change to the task
structure. Debugging controllers is difficult: it is
hard to visualize the operation of a control system
based on printing out numbers on the screen as the
controller executes. A much better debugging tech-
nique is to display diagnostic information graphi-
cally in the robot simulator, painting various cues
onto the simulated world to graphically convey in-
formation. For this, we augment the behavior de-
fined by a task to include an animation. That is,
using the task monad we provide an implicit chan-
nel to convey diagnostic information along with the
behavior. This modification requires changes to the
definition of Task: a is replaced by (a,Behavior
Picture), the type now produced by runTask. This
change does not affect user-level code; the extra pic-
ture is implicit in every task. When a program is
running on a real robot, the animation coming out
of runTask is ignored.

This is the definition of withPicture:

withPicture

Behavior Picture -> Task a b -> Task a b
withPicture p t =

addFilter (addPicture p) t

The addPicture function introduces an additional
picture to an augmented behavior. For example,

this function makes driveToGoal easier to under-
stand in simulation:

driveToWithPicture goal =
driveTo goal ‘withPicture
paintAt goal (withColor red circle)

3.3 Parallel Tasks

So far, we have only modified tasks or combined
them sequentially. Now, we wish to combine tasks
by merging the results of multiple tasks running in
parallel. The withTask function is the basic primi-
tive for combining tasks in parallel:

withTask :: (t2b -> Task tlb tle) ->

(t1b >
Event (Either RoboErr t2e) ->
Task t2b t2e) ->

Task t2bt2e

This initiates two tasks, each observing the behavior
defined by the other. The termination of the first
task, either through an exception or normal termi-
nation, may be observed by the other task as an
event.

The code associated with withTask is as follows:

withTask ti1f t2f =
Task (\ts c ->
let tle = makeNewEvent
tib = (unTask t1)
(cloneState ts)
(sendTo tle)
t2b = (unTask t2) ts c
tl = ti1f t2b
t2 = t2f tlb tle in
t2b)

Note the somewhat imperative treatment of the
terminating event of tl. The sendTo and
makeNewEvent functions exploit FRP internals, an
expedient but semanticly unusual way of dealing
with events. The sendTo function becomes an un-
defined behavior after sending the termination mes-
sage; reference to the value of t1 after this event will
result in a runtime error.

More importantly, notice the treatment of the task
state. The task t1 needs to receive a “fresh copy”

of the overall task state. Local error handlers and
filters are removed from the state so that only t2
inherits these.

4 Examples

Assessing a DSL is often difficult; different DSL’s
are designed with different goals. Since our goal
is to build a language that is declarative and de-
scriptive, we choose to assess it with examples of
code rather than performance figures. These exam-
ples are chosen to demonstrate expressiveness rather
than computational speed.

4.1 The BUG Algorithm

First, we demonstrate the use of tasks to implement
a well known control strategy. BUG [7] is an algo-
rithm to navigate around obstacles to a specified
goal. When an obstacle is encountered, the robot
circles the obstacle, looking for the point closest
to the goal and the returns to this point to re-
sume travel. The following code skeleton imple-
ments BUG in terms of two primitive behaviors:
driving straight to a goal, and following a wall.
The driveTo task returns a boolean: true when
the goal is reached, false when the robot is blocked.
The followWall runs indefinitely, traveling in cir-
cles around an obstacle. If for some reason the wall
disappears from the sonars, this task raises an ex-
ception.

-- Basic tasks and events (not shown)
followWall ::

Task WheelControlB ()
driveTo

Point2 -> Task WheelControlB Bool
atPlace

Robot -> Point2 -> Event ()

bug H
Point2 -> Task WheelControlB ()
bug g =
taskCatch (bug g)
(do finished <- driveTo g
if finished
then return ()
else goAround g)

-- restart on error

goAround
Task WheelControlB ()

goAround g =
do closestPoint <- circleOnceP g -- circle
circleTo closestPoint -- then back

bug g -- restart

circleOnceP
Point2 -> Task WheelControlB Point2
circleOnceP g =
do (_,p) <- withB closestP (circle0Once g)
return p
where closestP ts =
let r = taskRobot ts in
(distance (place r) g) ‘atMin‘ (place r)

circleOnce =
do ts <- getTaskStatus
let initp = initialPlace ts
r = taskRobot ts
-- get away from initial place
timeLimit followWall 5
followWall ‘withExit‘ (atPlace initp)

This definition is quite close to the informal defini-
tion of BUG. Some necessary details have been filled
in: what to do if the wall disappears from the sen-
sors (this is caught at the top level and restarts the
system), how to circle (travel for 5 seconds to get
away from the start point and then continue until
the start point is re-attained).

4.2 A Process Architecture

As another example, consider Lyons’ approach of
capturing robotic action plans as networks of con-
current processes [8, 9]. Frob tasks can easily mimic
Lyons’ processes. His conditional composition oper-
ation is identical to >>= in the task monad with ex-
ceptions. Of more interest is parallel composition:
his P | Q executes processes P and Q in parallel,
with ports connecting P and Q. This can be directly
implemented with withTask. His disabling compo-
sition, P # Q is also contained in withTask, however
withError is also needed to correctly disable the re-
sulting task when one task aborts.

The lazy evaluation semantics of Frob permits the
following operations (synchronous concurrent com-
position and asynchronous concurrent composition)
to be implemented directly:

P <> Q
P >< Q

do { v<-P; Q; (P<>Q) }
do { v<-P; (Q | (P><Q)) }

5 Conclusions

We have demonstrated both a successful DSL for
robotic control and shown how a set of tools de-
veloped in the functional programming community
enable the construction of complex DSLs with rela-
tively little effort.

Assessing a DSL (or any programming language)
is difficult at best. We feel the success of Frob is
demonstrated in a number of ways:

e Users from outside of the FP community find
that Frob is easy to use and well-suited to the
task of robot control. The abstractions sup-
plied by Frob may be understood at an intuitive
level. While there is a definite learning curve,
especially with respect to the Haskell type sys-
tem, users soon become accustomed to poly-
morphic typing and find Haskell types much
more descriptive than those of object oriented
systems.

e We have encoded a number of well-known al-
gorithms and architectural styles in Frob and
found the results to be elegant, concise, and
modular.

e As an embedded DSL, Frob inter-operates eas-
ily with other DSLs. Preliminary work on com-
bining Frob with FVision (a very different DSL
for vision processing) suggests that at least
some DSLs may be combined to great advan-
tage.

e Monads support relatively painless evolution of
DSL semantics. DSLs are, rather naturally,
somewhat of a moving target: as domain en-
gineers and DSL implementors work together,
improvements in semantic expressiveness are
continually being developed. The monadic
framework has allowed this semantic evolution
to proceed without requiring constant rewriting
of existing code.

Some issues are still unresolved or unaddressed: we
have not yet ported the system to new types of
robots or implemented systems in which system per-
formance is critical. We also have yet to experiment
with multi-robot systems. Frob has not been used
in any way that taxed system performance; the data
rates from our sensors are so low that the controller
has relatively little work to do.

One particularly large part of this domain that has
yet to be addresses is real time. For example, we
cannot express the priorities of various activities, al-
lowing Frob to direct resources toward more critical
systems when needed. No guarantees are made with
respect to responsiveness or throughput. We expect
that Frob is capable of addressing these issues but
much more complex analysis and code generation
may be required. However, for high level system
control (as exemplified by the BUG algorithm) these
issues are of less importance.

We have used Frob to teach an undergraduate
robotics course. Frob was quite successful in al-
lowing assignments that traditionally required many
pages of C++ code to be programmed in only a page
or two. While there was an admittedly steep learn-
ing curve, students eventually became quite produc-
tive. The addition of graphic feedback in the simu-
lator was especially useful to them.

Turning to the issue of DSL construction, this re-
search shows that monads are an important tool
for attaining program modularity. The definition of
task monad evolved significantly over the term but
the interfaces remained the same, allowing all stu-
dent code to run unchanged as Frob evolved. Mon-
ads effectively hide potentially complex machinery
and provide a framework whereby new functionality
can be added to a system with minimal impact on
existing code.

All Frob software, papers, and manuals are available
at http:haskell.org/frob. Nomadics has agreed
to license their simulator to Frob users at no cost,
allowing our software to be used by those without
real robots to control.

6 Acknowledgements

This research was supported by NSF Experimental
Software Systems grant CCR-9706747.

References

[1] Rodney Brooks. A robust layered control sys-
tem for a mobile robot. IEEE Trans. on
Robotics and Automation, 2(1):24-30, March
1986.

[2] E. Coste-Maniére and B. Espiau, editors. In-
ternational Journal of Robotic Research, Spe-
cial Issue on Integrated Architectures for Robot
Control and Programming, volume 17:4, 1998.

[3] Conal Elliott. Composing reactive animations.
Dr. Dobb’s Journal, July 1998. Extended
version with animations at http://-
research.microsoft.com/ conal/fran/-
{tutorial.htm,tutorialArticle.zip}.

[4] Conal Elliott and Paul Hudak. Functional reac-
tive animation. In International Conference on
Functional Programming, pages 163—173, June
1997.

[5] V. Hayward and J. Lloyd. RCCL User’s Guide.
McGill University, Montreal, Québec, Canada,
1984.

[6] K. Konolige. Colbert: A language for reactive
control in sapphira. In G. Brewka, C. Habel,
and B. Nebel, editors, Advances in Artificial
Intelligence, volume 1303 of Lecture Notes in
Computer Science. Springer, 1997.

[7] V.J. Lumelsky and A.A. Stepanov. Dynamic
path planning for a mobile automaton with lim-
ited information on the environment. I[FEFE
Trans. on Automatic Control, 31(11):1058-63,
1986.

[8] D. Lyons and M. Arbib. A formal model of
computation for sensor-based robotics. IEEFE
Trans. on Robotics and Automation, 6(3):280—
293, 1989.

[9] Damian M. Lyons. Representing and analyz-
ing action plans as networks of concurrent pro-
cesses. IEEE Transactions on Robotics and Au-
tomation, 9(7):241-256, June 1993.

[10] J.L. Mundy. The image understanding environ-
ment program. [EEE EXPERT, 10(6):64-73,
December 1995.

[11] Pattis, R et al. Karel the Robot. John Wiley &
Sons, 1995.

[12] J. Peterson, G. Hager, and P. Hudak. A lan-
guage for declarative robotic programming. In
Proceedings of IEEE Conf. on Robotics and Au-
tomation, May 1999.

[13] J. Peterson, P. Hudak, and C. Elliott. Lambda
in motion: Controlling robots with haskell. In
Proceedings of PADL 99: Practical Aspects of
Declarative Languages, pages 91-105, Jan 1999.

[14]

[15]

[16]

[17]

[18]

John Peterson and Kevin Hammond. Haskell
1.4: A non-strict, purely functional language.
Technical Report YALEU/DCS/RR-1106, De-
partment of Computer Science, Yale Univer-
sity, May 1997.

B. Shimono. VAL: A Versatile Robot Program-
ming and Conirol Language. IEEE Press, 1986.

D.B. Stewart and P.K. Khosla. The chimera
methodology: Designing dynamically recon-
figurable and reusable real-time software us-
ing port-based objects. International Journal
of Software Engineering and Knowledge Engi-
neering, 6(2):249-277, 1996.

R. H. Taylor, P.D. Summers, and J. M. Meyer.
AML: A manufacturing language. Int. J. of
Robot Res., 1(3):3-18, 1982.

P. Wadler. The essence of functional program-
ming. In Proceedings of ACM Symposium on
Principles of Programming Languages. ACM
SIGPLAN, January 1992.

