Proceedings of DSL'99: Thé&Zonference on Domain-Specific Languages

Austin, Texas, USA, October 3—6, 1999

USING JAVA REFLECTION TO AUTOMATE
EXTENSION LANGUAGE PARSING

Dale Parson

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WhttZ// www. usenix.org

Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Using Java Reflection to Automate Extension Language Parsing

Dale Parson (dparson@lucent.com)
Bell Laboratories, Lucent Technologies

Abstract designing, building and maintaining LUXWORKS has

i) i . led to this current research project within Bell Labs.
An extension language is an interpreted programmingsection 3 examines some limitations that have surfaced

language designed to .be embedde_d ina qf?mai")-SPeCifiﬁ the original, C++-based implementation of
framework. The addition of domain-specific primitive | |;,\\WORKS. Section 4 follows through by eliminating

operations to an embedded extension languagg,ese limitations, using a combination of Java reflection,
transforms that vanilla extension language into a

. > Java dynamic class loading, a language-neutral
domain-specific language. The LUXWORKS processorg,ansion language abstraction, and a set of naming

simulator and debugger from Lucent uses Tcl as its;gnyentions. Section 5 looks at related extension
extension language. After an overview of eXte”S'O”Ianguage-Java efforts. Section 5 also summarizes.
language embedding and LUXWORKS experience, this

paper looks at using Java reflection and related?. Extension Languages for domain-specific
mechanisms to solve three limitations in extension software systems

language - domain framework interaction. The three)))
limitations are gradual accumulation of ad hoc interface”n €Xtension languagss a programming language that

code connecting an extension language to a domaifXtends a domain-specific software application, tool or
framework, over-coupling of a domain framework to a ramework (hereafter “framework”). Interpreted

specific extension language, and inefficient command@nguages such as Scheme [1], Tcl [2], or Python [3]
interpretation. often serve as extension languages because their

interpreters support interactive creation and execution of
Java reflection consists of a set of programmingcustom extensions by framework users at run time.
interfaces through which a software module in a Javaviany proprietary, framework-specific ~ extension
system can discover the structure of classes, methodsnguages have come and gone, but with the maturation
and their associations in the system. Java reflection angf extension language technology and the mass
a naming convention for primitive domain operations acceptance of so-callestripting language$4], there is
eliminate ad hoc interface code by supporting recursivehow seldom a need to invent a new extension language
inspection of a domain command interface andfor an interactive framework. The ternsommand
translation of extension language objects into domainanguagehighlights the fact that an extension language

objects. Java reflection, name-based dynamic clasgsually adds imperative commands to a framework.
loading, and a language-neutral extension language

abstraction eliminate language over-coupling byAn €xtension language provides an application
transforming the specific extension language into a runProgramming interface (API) that supports connections
time parameter. Java reflection and command objectétween the extension language and thgstem
eliminate inefficiency by bypassing the extensionProgramming languagéd] such as C, C++ or Java that
language interpreter for stereotyped commands. Overanmplements the basic ca_pabllltles of the domain-specific
Java reflection helps to eliminate these limitations byfamework. An extension language supports three
supporting reorganization and elimination of hand-Categories of extensions:

written code, and by streamlining interpretation. « A framework extends an extension language by adding
1. Introduction domain-spe_cific pri_mitiveto the extension

language’s instruction set.
This paper examines the design _of a set of Java utility, Conversely,
interfaces and classes that simplify the work of
integrating an extension language into a Java-based
domain framework. Section 2 examines the role that
extension languages play in extending domain-specifi¢ An extension language user extends the composite
application frameworks. Section 3 looks at a framework-language by writing extension functions
commercial domain framework - extension language in the extension language.
from Lucent called LUXWORKS. Experience in

an extension language extends a domain-
specific framework by adding an interpreted language
capability.

A framework engineer codes domain-specific primitivesEval builds atop generic extension language primitives
in a system programming language for efficiency, foras well as domain-specific primitives. Primitives build
security, and for compatibility with existing code atop library classes and functions in their respective
libraries. Extension language designers intend theimodules. In addition, domain code can call extension
languages to be extended with new primitives; extensiotanguage primitives directly, without the overhead of
languages differ in this way from languages whoseeval-based parsing. Domain code can also call extension
definitions are frozen by standardization. A primitive language library code, for example string or hash table
becomes an integral part of the extension language. lfitility functions. Finally, eval itself is a primitive,
the extension language suppodgnamic loadingof allowing nesting of expressions within expressions and
primitives, then even users in the field can extend awithin domain data structures to arbitrary depth. One
framework-language system. Otherwise frameworktypical use of nesting is attachment of an extension
developers must add primitives via static linking. languagecallback expressiomo some condition in the

. _domain framework. When the domain meets that
Figure 1 illustrates the major calling relationships in a " o)

condition, it triggers acallback evento the extension

framework-language system. A user interface or :
. I language, and the extension language evaluates the
extension language program (a.k.a. “script’) passes
; : . expression as part of domain execution. Event-directed
textual extension language expressions to the extension

) L : control is found in graphical user interfaces, in
language’seval primitive, named after the classic LISP . . . S
) simulation systems, in loosely coupled distributed
eval that evaluates a textual expression [5]. Eval

tokenizes and parses the expression. Eval then executcce(s)mpu“ng’ and in the JavaBeans programming

. . . . eénvironment [6].
the functional pieces of the expression by callayply
(again from the LISP legacy) with a function and its 3, Tcl and the LUXWORKS embedded
arguments as parameters. Apply calls a primitive system simulator and debugger
function directly. Apply invokes a function written in
the extension language by binding formal parameters ta.1 Tcl-Luxdbg architecture

arguments and calling eval recursively with the text OfThe research project of this paper grew out of

the interpreted function. In extension languages that
. - . . experience in the architecture, design, implementation
support incremental compilation of intermediate code

(ak.a.byte codg apply invokes a function written in and maintenance of LucentBixdbg simulator and
T . PPy .) : debugger for embedded processors [7]. Luxdbg uses Tcl
the extension language by calling an intermediate code

interpreter with the intermediate code of the compiledals |ts,exten_3|on language .[8]' For an overview of
function. luxdbg’s architecture and design patterns see [9].
Figure 2 shows Tcl applied to luxdbg. Luxdbg registers

In a purely functional, LISP-like language, the result . . .
. . the names and C++ function addresses of its primitives
returned from eval is the result of the outermost function_ . ST . . .
with Tcl at initialization time. Command strings drive

E;OC?;'C?S dI(ra] (t)hi;)ig::stﬂg?' dgOﬂ”(;{”::g&?if“ﬁ;?ﬁfjcI. Tcl performs its language-specific manipulations on
Y P P command strings, including variable substitution and

function calls; eval interprets these directly. concatenation of strings returned from nested Tcl

User interface

Extension language Domain framework
or program
. domain primitives
———®| eval(expression
invoke (exp) apply .
- * apply (function, args ...) ¢ function call
return language primitives domain classes
* function call . & functions
function

library classes & functiong call

U7

Figure 1: Calling patterns in a domain framework - extension language system

function invocations. Tcl then interprets byte codes forlog debugging information. Callbacks can access
built-in primitives, and it forwards commands that start multiple processors. All callbacks can conditionally

with registered primitive names to luxdbg. Like all Tcl continue or halt processor execution. Tcl callbacks can
functions, a luxdbg primitive returns a result string or consequently implement a multiprocessor simulation
error diagnostic upon completion of its invocation. Tcl scheduler.

can insert a result from a luxdbg primitive back into a
higher-level expression; Tcl exception handling can
catch luxdbg errors.

These four categories of primitives combine with
domain event-driven control to transform Tcl from a
vanilla programming language to a domain-specific
Figure 2 shows four classes of luxdbg primitives. processor manipulation language. Tcl expressions
Processor managemeptimitives allow users to create, evaluated within callback functions can extend or
locate, initialize and destroy multiple processor override the native computations of processors.
instances. Processor instances include simulatio T

models or connections to hardware processors o%'z Tcl-Luxdbg limitations

assorted typesrocessor accesgrimitives allow users |uxdbg as diagrammed in Figure 2 has a number of
to read and write processor state found in processolimitations.

memory, registers and signal€Processor control o
primitives allow users to set and clear breakpoint event-2-1 Ad hoc primitive interface code

triggers, to handle breakpoint and error exceptions, tcbonnecting a new luxdbg primitive to Tcl requires

reset a processor, and to resume processor executiofyiting new, special-case code. Tcl forwards commands
Processor IOprimitives _allow users to connect mpgt or o luxdbg through the following interface function:
output from processor input-output ports to data files or

Tcl callback functions. int Primitive(ClientData clientData, Tcl_Interp *interp,

.) i _ int argc, char *argvl[])
Exception processing and input-output processing

provide two interesting examples oévent-driven The clientData parameter is a C void pointer that the
callbacksfrom the luxdbg domain framework to the Tcl domain framework initializes when it registers a
extension language. A user can enable callbacks bprimitive with Tcl. Thereafter Tcl supplies this pointer
associating a Tcl expression string with a breakpoint,as clientData when it calls the primitive. The pointer is
with a processor error, or with a processor 10 eventuseful for passing domain state information.

When one of these events occurs, luxdbg calls back tqpeinterp parameter is a reference to the Tcl interpreter.

Tcl, passing a processor-event-expression triplet. Tc}; js sefyl for eval callbacks and calls to Tcl primitives
evaluates the expression in the context of the processgy, g library functions.

and event. Callbacks can extend processor capabilities.

An output callback, for example, can copy results from The remaining two parameterargc (argument count)
an output port to the input port of another processor@nd argv (argument vector), are standard fare for C
simulating interconnection. A breakpoint callback canProgrammers. Argument vector is a vector of strings and

User interface

or programmed Tcl luxdbg
Tcl commands

. — % Tcl_Eval(Tcl expression) domain primitives
invoke - * processor management

-« * TclExecuteByteCode * processor access
return * processor control
* processor 10

language primitives

* function call ,
function

_) function call
library functions call

processor hardware &
simulation functions

Figure 2: Calling patterns in the Luxdbg framework - Tcl language system

argument count holds its length. In calling a domain-manipulation to grow. Section 4 shows that Java
specific primitive, Tcl stores the name and arguments ofeflection and a simple naming convention for primitives
the primitive in argv. The primitive receives the can eliminate this code.

arguments as strings, and the primitive has the
responsibility of converting the strings to their 3.2.2 Hard-coded dependence on Tcl

appropriate values. Values might include strings asseveral research-oriented luxdbg users have expressed
received, atomic types (e.g., int or float), Tcl-specificinterest in using the Scheme and Python languages with
structured strings (e.g., Tcl lists), or domain-specificluxdbg. Nothing about the architecture of Figure 2
structured strings (e.g., an infix expression string for aprecludes replacing Tcl with a different extension
processor debug statement). When a conversion err@anguage, but there are some hurdles. ELK-Scheme [1]

such as an invalid integer string occurs, the primitive hasand Python [3] use the following primitive interfaces:

the responsibility of detecting the error and asserting a_ N : ,
Tcl exception. Object ELK_Constarg_Primitive(Object firstArg,

Object secondArg /* , etc. */)
Tcl version 8.0 introduced an additional primitive . o .
interface for simplifying conversion of argument strings Object ELK_Vararg_Primitive(int argc, Object *argv)

to atomic C types and for type mismatch detection [2]: Object ELK_Lazyeval_Primitive(Object arglist)

int TcIPrim(ClientData clientData, Tcl_Interp *interp,)
int objc, Tcl_Obj *CONST objv[]) int PyArg_ParseTuple(PyObject *argv, char *format,...)

This interface replaces the string-based argv parametgf| k provides the first three, distinct interfaces. The first
with an array ofTcl objects Client code can request jyierface organizes arguments to a primitive call
conversion of one form of an object to another (€.9., gyrecisely by number of parameters supplied as part of
numeric string to an integer), but responsibility for himitive registration. The second interface allows a
dlrectmg argur_nen_t type_conversmn and raising format, 5 iaple number of arguments. Both types smer
exceptions still lies with the procedural code of gyqjyation resolving arguments to built-in Scheme
primitives. types before calling the primitive. This is standard call-

The need for testing parameter type-specific formatsby-value evaluation. ELK passes arguments as
directing translation of argument strings into objects ofdynamically-typed Scheme objects. The second
these types, verifying the correct number of argumentsinterface supports variable-length argument lists and
and formatting return values, has resulted in a layer oPptional parameters. The third ELK interface usesy
luxdbg code to satisfy this need. Each new primitive@valuationto pass a list of unevaluated Scheme objects
requires a function to test and to convert its Tclto the primitive. This is a call-by-name mechanism that
arguments to argument types required by itsrelies on the primitive to resolve argument text to
corresponding implementation function. The argument values.

measurable cost is 1537 lines of non-comment code f°|5yth0n's argv is @Python tuplethat contains call-by-

48 primitive functions in the current luxdbg, or about 32, | ;e argumentsFormat is a type conversion string
lines of code on average for each primitive. While 1537;iar to C’s scanf function’s format string [10]; it uses

lines is a small number when compared with the roughlyy se conversion characters to direct type conversion of
80,000 lines of processor-neutral simulator andpyihon arguments into C atomic values and strings.
debugger code currently in luxdbg, the need to performeqrmat implements a run-time interface definition

Tcl argument manipulation within each primitive language (IDL). Arguments following format are

contributes complexity out of proportion to the number qqresses of C variables that receive the results of
of lines of code. Each designer of a primitive is saddled, mat-directed conversions: there is no compiler or
with the job of writing argument conversion code that ;n time check to ensure that format strings match the
has nothing to do with the primitive’s semantics. types of these variables. Python supports optional

Because this code comes in little, unrelated paCketSarguments and variable-length arguments, but
each of which is specific to its primitive, it is written in PyArg_ParseTuple’s format is limited to a ’fixed
an ad hoc manner. The process invites errors and timez, 5ximum number of arguments.

consuming debugging and correction.

. . This variety in extension language-to-primitive
In addition, the creation of other tools that use Tcl asiierfaces presents a problem for designing a multiple
their extension language in our organization is causing,ytension language interface for a domain framework. A
the amount of code involved in ad hoc argc-argvnique domain interface might be required for each

extension language. There is an underlying similarityextension language control constructs, variables or
among these interfaces, however, that is of assistancerocedure calls. One example is a button for resuming
Each invokes a primitive function with an argument list processor execution; it always sends the “resume”
of extension language object&n object may be &cl command, which Tcl interprets and sends to a luxdbg
string, aTcl_Obj an ELK Objector a PythorPyObject primitive. Another example is a text box for modifying a
but it is some type of an extension language objectprocessor register value; it always sends a register
Multiple extension languages result in a two- assignment command with a value entered by the user,
dimensional type system, where the set of extensiormnd again Tcl interprets the command and sends it to
languages defines one dimension (set of ty{ypg, = luxdbg without changes. Most commands attached to
{Tcl, ELK, Python, ...}) and the union of all extension GUI objects are stereotyped commands that Tcl passes
language internal types defines the other (set of typeso luxdbg unchanged. These could go directly from the
typg, = {integer, float, string, sequence, ..}). An GUI to luxdbg, avoiding Tcl overhead.

object’s type is an element ipg, typs, Unfortunately, the primitive function interface of luxdbg

A simple solution would be to design yet anotherin Figure 2 is not uniform. Direct GUI-to-primitive
primitive functional interface, this one for the domain function calls would entail detailed encoding, within the
framework. Each extension language would require a&GUI, of parameter type signatures of all luxdbg
language-primitive-to-domain convertetlyge, x typg, primitive functions. Ad hoc code for connecting specific
- tYP&omain: that would map its proprietary object GUI buttons, menus and text boxes to specific primitive
format into the domain object format, thereby functions and parameters would proliferate. Tcl strings
eliminating thetypg, dimension. One problem with this provide a uniform command medium that avoids this
approach is the need to desigwp&,main Another proliferation, albeit at the cost of interpretation
problem is the overhead of constructing an intermediateverhead.

copy of each object in this language-neutral format. nce again the simole solution proposed for dealin
Section 4 shows that Java incremental class loading ang. 9 b prop 9

reflection can support automateyfig, x type, — with multiple extension languages suggests itself. A

. GUI could encode a stereotyped command as a function

typey,) conversion, whergypey, represents Java classes . . .
¥ S y = . .- name and list of arguments using the common object
O Java primitive types, and can include domain-specific

classes. No intermediate format is necessary. format tYPomain and the do_mam framework would
complete the job by mappindyp&omain types to

3.2.3 Unnecessary interpretation overhead primitive parameter types. Section 4 shows an extension
language-neutral way to reuse any extension language’s

Every luxdbg command goes through extensioniyiemal types astypeyomsn thereby avoiding the
language interpretation, resulting in execution that isgreation of a framework-specifigneyorq
slower than necessary. omain

. 4. Java reflection supports an extension
In a scenario where a user enters commands directly language-to-domain bridge

into a terminal or commands come from an extension

language script, interpretation overhead is necessary anfhe limitations in the current implementation of luxdbg
acceptable. A user or program can supply any validas well as opportunities afforded by Java infrastructure
combination of commands, literal strings, control have set me on the path of rep|acing the upper, debugger
constructs (e.g., “if" statements), variable names andand profiler layers of luxdbg with a new design in Java.
nested procedure calls. The extension languag@ower processor modeling and hardware interface

interpreter must resolve control flow, variable |ayers remain in C++. Anticipated Java-enabled
substitutions and return values from nested calls beforgmprovements include the following:

calling domain primitive functions. . L .
« Better networking support for distributed debugging.

In luxdbg, however, typical interactive usage consists of
a user interacting with a graphical user interface (GUI).'
The GUI forwards command strings to Tcl and receivess Reflection-based extension language interface support.
result strings in reply. Tcl relays display update event

from luxdbg to the GUI. Interpretation overhead iSSThls section looks at ways in which Java’'s incremental

; L Itoading and reflection can help to overcome luxdbg'’s
necessary in some cases, but for many cases it is NOL isting limitations
Many of the commands coming from the GUI are g '
stereotyped commandshese commands do not entail

Dynamic configuration through incremental loading.

4.1 Java reflection and a naming convention properties at run time [12]. Figure 3 shows four major

eliminate ad hoc primitive interface code reflection classes — Class, Object, Method and Field —
along with their associations and several methods that

4.1.1 Java reflection are important for this discussion. There are many more

Reflectionis a mechanism whereby parts of a softwareClasses and methods in package java.lang.reflect.

system can query the system itself, in addition to theEvery Java object inherits from java.lang.Object. A
usual ability to query for application domain reflection-based tool or utility calls Object.getClass to
information. Whereas domain queries are the typicalget a domain object’s Class (java.lang.Class). With the
gueries of any query-supporting system, reflectiveobject's Class in hand, a utility can determine
gueries are meta-queries [11]. Meta-queries ask theonstructors, superclass, implemented interfaces, nested
guestion: “How does this system do some particularclasses, levels of protection, and most importantly for
thing?” this discussion, methods and fields. Class.getMethods
. . N returns an array of Method objects, Class.getField
Reflection provides support for self-configuring tools o ;

; . .~ returns a specific named Field, and
and utilities. A generic tool or utility can read reflection

Class.getComponentType returns the base type of an

information and adapt itself to its target system. .
. array. These are a few of the methods in class Class.
JavaBeans provide a popular example [6]. A Java class

that conforms to certain method naming conventionsA Method supplies its name as a String, its parameter
and that may provide additional compiled information types as an array of Class objects, and its return type as
that describes the class, makes itself available form Class object. Clients of java.lang.reflect can build an
manipulation by graphical design tools. JavaBeanarray of correctly-typed Object arguments, and then call
system developers can instantiate objects, set objedflethod.invoke to invoke a Method on those arguments.
properties and create inter-object communication path8/ethod.getParameterTypes provides the basis for
using tools that contain no encoding of the APIs orautomating the typg, x typg, — typey) conversion.
semantics of particular JavaBeans classes. Instead dfethod.invoke provides the basis for automating
hard coding target class dependencies, JavaBean toa#®main primitive invocation.
encode knowledge of the JavaBean reflection API. At, _. . L
. ; A Field supplies its name as a String, its type as a Class
system design time these tools read JavaBean class; .
e . s Object, and an assortment of get and set methods for
specific information through the API, giving customers _ "~ " P o
. L retrieving and modifying its value. Reflective field query
access to the unique capabilities of each JavaBean class _ : L) ,
) provides the basis for determining optional domain
in a set of beans. - .
primitive parameters as part of automating thg€, x
Java reflection allows Java code to query about availableypg, — typeyy) conversion.
Java classes, interfaces, methods, fields, and their

Class

getName

getMethods

getField

getComponentType

Method Field

getName Object getName
getParameterTypep getType
getReturnType getClass get
invoke set

Figure 3: Central Java reflection classes

i i extensionParser\\
«interface» < «interface» [target
Serializable extensionReturp extensionParser(——#{ Object

target : Object)
extobj parse getClass
extlist - app|y

«interface» /
extensionObjed

toObject
toString

getName

Field Class Method
Zr getName getName getName
. getType |~ |getMethods getParameterTypes
«mterface.» get getField getReturnType
extensionList set getComponentType invoke

toObjectList
toExtensionList|

Figure 4: ExtensionParser translates extension language primitive calls

4.1.2 Eliminating ad hoc interface code String command_stepi(int stepcount)

Figure 4 uses the Unified Modeling Language (UML) is atargeF method that implements the “stepi”_ command
[13] to illustrate the major classes fdype, x typg, ~ for stepping a processor “stepcount” machine cycles,
typey,) conversion and primitive method invocation. réturning processor status as a String upon completion.

Hollow arrows signify inheritance, pointing from a¢ construction time extensionParser uses

derived classes or interfaces to their parent classes hrget.getClass to get the domain object's class, then it
interfaces. Solid arrows are associations annotated fqfgag Class.getMethods to search the class for

navigability. Clients navigate to the classes that serve .gmmand * prefixed public methods. The constructor
them. stores these in a hash table that is keyed on method

Class extensionParser is the central, client class ofame (without the “command_" prefix). Java permits

Figure 41 ExtensionParser has three main methods: itgnethod name overloading, and a slot in the hash table
constructor its parse method, and its pr|\/atapp|y can hold multiple method references when that slot’s
method (“-” signifies private). The constructor takes amethod name is overloaded.

target Object as its parameter. The target is a domai_rbommand parsing relies on the interfaces on the left
object of any Java class type. Target makes domaiRjye of Figure 4. A Java interface defines public method
primitives available to extensionParser. Each of target’ssignatures, but it has no body. Another interface can
primitive methods adheres to the naming conventionyytend an interface’s set of methods, and a class can
‘command_NAME,"” where NAME is the command jmjjement the methods of any number of interfaces. In
name from an extension language’s perspective. FOgjgure 4 interface extensionObjectrepresents an
example in luxdbg, extension language objestich as arcl_Obj an ELK
Object or a PythonPyObject Interface extensionList
represents an ordered sequence of extensionObjects.
1. A working example of the code for Interface extensionReturnis a utility interface for
extensionParser will be available as part of the on- converting Java objects into extensionObjects and
line proceedings of this conference. extensionLists. ExtensionReturn is an inverse mapper

that formats return values when returning from a JavaA concrete extensionObject.toObject method is doing
primitive to an extension language caller. The fact thatmost of the work offypg, x typg, - type,) conversion.
these interfaces extend interface java.io.Serializabl@here is one such concrete method for each extension
means that extensionObjects, extensionLists andanguage inypg, and by operating behind the abstract
extensionReturns can be passed as value parametersartensionObject interface it eliminates its spedifipe,
networked method calls and stored as persistent objecteinguage from extensionParser's view. A concrete
. . thtensionObject.toObject method must be written once
Method extensionParser.parse receives an array q ; P
X ; . or each extension language. Its availability simplifies
extensionObjects as an input parameter from art .
typg x typg, — typeyy) conversion totypg, — typey)

extension language primitive call. The first array conversion at the time that parameter matching occurs.

element holds the command name, and the remainin he extension language internal type tybe, maps
elements hold its arguments. ExtensionParser.parse cafts guag yp % P

extensionObject.getName — all extensionObjects can izlsfi%ngsegto trg g'g.egge I\?Ifé)t/t?(%l; tr;?arlnaggr '? e
be converted to Strings — and matches the returne(‘Ja Ject.) P yp

command name to the method names stored iﬁargument.

extensionParser’s hash table. A hash slot gives a list oExtensionParser.apply uses some mechanisms in
candidate methods that match the command name. Paraddition to extensionObject.toObject. Apply checks
also receives an extensionReturn object from thewhether the target Method accepts an extensionObject at
extension language for formatting parse’s return value. the current position, passing an unaltered argument
The methods of extensionObject and extensionLis'ENhen ac_:ceptable. In this_case Fhe primitive must initiate
conversion of the extensionObject at a later time. When
% position match succeeds, apply advances to the next
extensionObject and Method parameter type. When a
position match fails, apply inspects a list of optional
parameter positions built by extensionParser’s
constructor. The constructor uses the target Object’s
Class.getField method to locate an integer array
“optional_NAME” for command method “NAME.” If

Apply is a recursive, backtracking match algorithm
inspired by the more powerful match algorithms of
PROLOG [14] and ML [15]. Apply takes as arguments
the command namea matchingcandidate Methodan
input array of extensionObject primitivarguments
another input array ofMethod parameter types

(obtained in parse via Method.getParameterTypes), ag, . . .
array ofdomain Object argumentiat apply populates e array exists, each of its elements gives the offset of a
arameter position that is optional for that command.

by translating the extensionObject array, and parse’ipply supplies a Java null reference for an optional

extensionReturn parameter position that cannot match the current extensionObject,
Each recursive call to apply attempts to match the nexthen it continues searching.

extensionObject argument to the next Method parameter. .

: . . If apply encounters an array Method parameter, it uses

type. Apply relies on an extension language-specific L : : .

4 : . . Java’s instanceofpredicate to determine whether its

class that implements interface extensionObject to da ; T L

. . . current extensionObject is in fact an extensionList, and

the hard part. ExtensionObject.toObject takes the . .

. . apply uses reflection to determine whether the

Method parameter type as its argument, and it attempts

to convert itself into a Java Object of that type, returningggmpgx:: iypg gff tt?"e; efg”;ggtls(toggf:desfrx
that Object as its return value. Conversion starts b P yp P

Y, .
matching basic extension language object types to basi%:lass.getComponentType). On a match, apply builds an
. array argument.
Java Method parameter types such as integers, booleans,
floats and strings. When simple conversion fails, applyFinally, if apply arrives at the last Method parameter
uses reflection to determine whether the Methodwith a sequence of unmatched extensionObjects, and if
parameter type has a class-statalueOf method that the last Method parameter is an array, apply attempts to
can convert an extensionObject into a domain Objectpopulate the array from these residual extensionObjects.
Target domain classes can provide customA final array of type extensionObject receives the
extensionObject-to-domain Object converters bytrailing arguments unaltered; apply invokes
defining valueOf. ExtensionObjects transform into extensionObject.toString for a final array of type String.
specialized domain-class objects without encodingI
domain awareness into extensionObject classes. Finall
if toObject cannot transform its extensionObject into the
required domain Object, toObject throws a

typeMismatchexception to apply.

f, at last, extensionParser.apply matches all parameters
nd consumes all extensionObject arguments, it uses
Method.invoke to invoke the primitive method on its
Java Object arguments. On success, apply uses
extensionReturn.extobj to return the primitive result to

the extension language. When an applied method failanatched its arguments [14].
apply and parse throw an exception back to the

extension language. In the first attempt for method “stop,” apply fails to

match string “myfunc” to an intlocation parameter.
Match failure, on the other hand, does not throw back taBacktracking determines that the first parameter is not
the extension language. Upon match failure, applyoptional, and so apply backtracks to parse, which calls
backtracks and attempts to use nulls for optionalapply with another “stop” method. In this attempt, apply
parameters; then it again works forward. If exhaustivematches “myfunc” to thefunction parameter and the
attempts to match a particular Method fail, and if thatcallback string to thexprparameter. Apply invokes the
Method name is overloaded, parse supplies anothesecond command_stop method. If the callback
Method to apply. Only when all possibilities have beenexpression had been missing, apply would have
examined does parse report a usage error to thbacktracked and inspected the optional parameter entry
extension language. derived from optional_stop_3, fillingxpr with a null

Consider the example of Figure 5. This example Showsreference.

two variants of a debuggestop command. Command Note that while the callback expression {puts “stopped
“stop at location ?expression?” sets a breakpoint at @ myfunc” ; resume} is a Tcl list, nothing in the match
numeric processor address. Command “stop in functioralgorithm encodes dependence on Tcl. The third
?expression?” sets a breakpoint within a namedextensionObject argument happens to be an
function. Both primitives specify an optional callback extensionList that happens to be a Tcl list, but the
expression to evaluate when the breakpoint fires. Theoncrete realization of this extensionObject as a Tcl list
callback is an interpreted extension language expressiois unknown to extensionParser. The syntax handling for
provided by a user. Tcl list construction occurs in the Tcl interpreter before
. . . - the primitive call begins. Domain object access to list
This example is useful in pointing out what o . .
O(—iglements can occur through extensionList.toObjectList

extensionParser both can and cannot do. It cann S 2 .
o . or extensionList.toExtensionList, converters that strip

distinguish a method on the basis of a textual keyword.oﬁ lanauage-specific list svntax and return an arrav of

Regardless of whether stop’s first argument is “at” or guage-sp y y

“in” matching will pair it with the “String keyword” domain objects or an array of extension language

parameter of either method and attempt to use it. A moreo.bjeCts respectively. In_thls _example the_ dO'T'a'” object
) . Simply stores the Tcl list without decoding its values.
complex extensionParser mechanism would allow]

keyword-method pairs to be listed in a target ObjectWhen a domain processor reaches a breakpoint it passes

field, and it would invoke a method only if its specified "¢ Callback to the extension language (without

L encoding its identity as a Tcl interpreter) for evaluation.
keywords are matched. It turns out that it is just as easy
to have a matched method check its keywords orrhis section has shown how Java reflection and a
invocation, throwing exceptiontypeMismatchon a naming convention on method names eliminates hand
keyword mismatch. ExtensionParser.apply treatxoded parameter conversion code for primitive methods.
typeMismatch as a mismatched method, and it continueExtensionParser aligns parameters and reports errors.
searching for another match. This approach is similar toThe next section shows how dynamic class loading

failure in the body of a PROLOG clause whose head hagombines with the reflective capabilities of

stop at location ?expression®®—®= String command_stop(String keyword, int location, String expr)

stop in function ?expression®®—®= String command_stop(String keyword,String function, String expr)
public static final int optional_stop_3[] = new int[1]; // 3 parameters
static { optional_stop_3[0] = 2 } ; // callback “expr” position

stop in myfunc {puts “stopped in myfunc” ; resume} stop in myfunc {puts “stopped in myfunc” ; resume}

at location ?expression? in function ?expression?

Figure 5: An example of automatic primitive method parameter alignment

extensionObject to support extension language selectioclasses that use extension languages encode dependence
at run time. only on the abstract interfaces of Figure 6.

The four classes Tclinterp, TclObject, TclList and

)))) TclReturn constitute aTcl software component
Figure 6 shows interfaces extensionObject (qiectively they implement the four interfaces needed
extensionListand extensionReturrof Figure 4, and it 5 jnstall an extension language in this Java framework.
also shows interfacextensionLanghat encapsulates an g rthermore, Java's ClassLoader.loadClass method
extension language interpreter. ExtensionlLang includegioys this Java framework to load a specific extension
public methods for interpreting expressions andjgngyage, by name, at run time. The luxdbg extension
applying functions. Figure 6 also shows Tcl jangage loader appends the string “Interp” to the
implementation classes that implement these foulyension language name (e.g., “Tclinterp”), loads that
mterfaces. The da,shed lines S|gn|fy_ Ul\/rballza'qon specific language class from the luxdbg package that
equivalent to Java'smplementsdirective. TclObject, o ses extension language components, and performs a
TcelList and TclReturn assist in converting Tcl objects to 4 time type check to ensure that the loaded class
Java Objects and in returning Java Objects t0 Tcl agmpjements the extensionLang interface. ExtensionLang
discussed in the last section. Tclinterp houses a TC|,geg the other interfaces of Figure 6, and loading an
interpreter that uses TclObjects, TclLists and TclRetumg,sansion language also loads the other concrete classes.
to communicate with Java primitive methods. Loading Tclinterp loads TclObject, TclList and

The Tcl classes of Figure 6 support Tcl by Wrapping theTcIReturn classes as well. The loader is similar to
C implementation of Tcl 8.1.1 with Java Native reflection in supporting a string-based approach to
Interface (JNI) proxy methods [16]. Each proxy methoddetermining available extension languages at run time.
calls its Tcl counterpart through JNI's C binding. Tcl A GUI could inspect available languages in luxdbg'’s
does not encode dependence on Java, and most Ja@§tension language package and allow a user to select

4.2 Extension language as a parameter

TclObject - Tclinterp
: TelList : TclReturn
toObject P> i i evalString
toString toObjectList evalFile extobj
getName toExtensionList applyFunc extlist
T T T T
w4 \V4 \V4 w4

AV

\Y%

AV

AV

«interface»

«interface»

«interface»

«interface»

extensionObjecI_|> extensionList extensionLang extensionRetur
toObject toObjectList evalString extobj

toString toExtensionList evalFile extlist
getName applyFunc

A

«interface» extensionParser

extensionPrimitivel

extensionParser(
target : Object)
parse

- apply

primitiveFunc

Figure 6: ExtensionLang encapsulates an extension language

the language of choice. All extensionObject classes can hold strings (string
representation is possible for all extension language
types), so mapping Strings type&jomain0bjects entails

no type conversion overhead.

ExtensionLang defines helper interface
extensionPrimitivehat specifies methogrimitiveFunc
ExtensionPrimitive.primitiveFunc has the same
signature as extensionParser.parse. For the Tclinter@oing back to Figure 1, a User Interface can bypass the
example, Tclinterp queries its extensionParser forExtension Language component and send all
“command_" primitive names at construction time, andstereotyped commands directly to the Domain
it registers each primitive command with its C-level Tcl Framework’s extensionParser interface. Two design
interpreter. Registration includes a pointer to a JNIpatterns from the Gang of Four book are conspicuous
function that, when called as a primitive from Tcl, calls here [17]. ExtensionParser implements tRacade
Tclinterp’s version of extensionPrimitive.primitiveFunc. Pattern ExtensionParser provides a unified,
Tcl delegates primitive commands to a C-level JNIhomogeneous interface to a set of heterogeneously
function, which in turn delegates to Tclinterp’'s typed primitive domain methods. Next,
extensionPrimitive.primitiveFunc, which in turn extensionParser.parse’s input array of extensionObjects
delegates to extensionParser, which then performs thenplements theCommand Pattern The first array
matching and method invocation discussed in the laselement is a command name and the remaining elements
section. Return values and exceptions come back thare its arguments. Command arrays can be stored,
delegation chain. TclReturn converts return objects toqueued, forwarded and ultimately executed via
Tcl objects, and the JNI function converts JavaextensionParser.parse.

exceptions to Tcl exceptions. The only potential drawback to bypassing the extension

Thus, four straightforward interface abstractions — anlanguage is the fact that users cannot extend or
extension language, its objects, object sequences, amtherwise redefine stereotyped commands in the
return values — suffice to encapsulate a complexextension language if those commands always bypass
language as a Java software component.typg term the extension language. Luxdbg avoids this problem by
has become a run-time parameter that users can set. registering primitives, including stereotyped command
. names, with the extension language, and then having the
4.3 Commands that bypass the interpreter extension language notify Ul components if any
Section 3.2.3 raised the issue of unnecessargtereotyped commands are redefined. Atthat point those
interpretation overhead. Stereotyped commands from §0mmands are no longer stereotyped. After redefinition,
GUI need not go through an extension languagel! components must send these commands through the
interpreter because the extension language does ngktension language component.
change _stereotyped command strings. The _alterna_nve 04{_4 Performance
connecting a GUI directly to domain object
implementation methods is undesirable because it overfFhe current Java implementation of luxdbg transforms
couples GUI code to primitive method signatures. GUIthe C++ implementation of Figures 1 and 2 into
code becomes ad hoc. Section 3.2.3 proposed that a Gdksociations of Ul and Domain Framework Java
could encode a stereotyped command as a functiooomponents interconnected by extensionLang,
name and list of arguments using the common objecextensionObject, extensionList, extensionReturn and
format typeyomain and the domain framework would their Tcl concrete counterparts. Ul-Domain
complete the job by mappindyp&omain types to communications ultimately pass through
primitive parameter types. extensionParser to luxdbg’s Domain Framework. How
ExtensionParser.parse is precisely the method needed EBUCh _does all this enCOdmg’ message passing, and
. . . reflection-based decoding cost?
provide a uniform command interface that bypasses the
extension language interpreter. Parse’s main inpufhe answer is that, compared to extension language
parameter is an array of extensionObjects to translate. Anterpretation costs, reflection-based command parsing
Java GUI can map user interface events (e.g., buttois cheap. Table 1 summarizes the results of sending
pushes, etc.)» arrays of Strings, then map Strings 250,000 command calls through each of three
typP&iomain Objects in the form of extensionObjects by interfaces:
calling extensionReturn.extobj, then send an array of direct Ul-to-Domain object method calls with no

extensionObjects to extensionParser.parse; parse then . : .
.) . extension language or extensionParser involvement
mapstyp&jomain ObjeCts as extensionObjects typey,

via extensionParser.apply and extensionObject.toObject.construction and passage of command objects (i.e.,

extensionObject arrays) from Ul strings to columns.
extensionParser as discussed in Section 4.3,

bypassing the extension language interpreter Average extension language interpretation runs about

10.6 times slower than command objects that bypass the

» evaluation of Ul command strings in the extension interpreter. Clearly overhead is eliminated. At 29 to 43
language interpreter, which uses extensionParser tomicroseconds of command overhead per GUI event,
decode primitive calls command objects that bypass the extension language are

clearly fast enough. There is no reason to over-couple

The target primitive method takes a single integer .
get p g g Ehe GUI to the Domain Framework for speed.

parameter and it returns a constant Java String. Th
machine is a lightly loaded Toshiba Tecra laptop with a378 to 417 microseconds of interpreter overhead

266 MHz Pentium processor, 96 Mbyte RAM and includes the call to extensionParser.parse on the Domain
32Kbyte internal cache, running Windows 95, Sun’s Framework side of the extension language. Roughly 400
Java Development Kit 1.2 and Tcl 8.1.1. The test drivermicroseconds per call is still not a lot of overhead. C++
invokes Java’s garbage collector immediately beforguxdbg has the additional problem that the extension
each of the three measured 250,000-call series. Table lAnguage extracts all Domain Framework-to-GUI

reports time-per-call in microseconds. update events and sends them to the GUI. Java luxdbg
will eliminate the extension language from stereotyped

Table 1: uSeconds-per-call for direct calls, GuI callbacks as well.

command objects and interpreted

. The first surprise comes with the fact that the second
expressions

row, working with a more heavily populated

The first two rows use Tcl's original string-based, char
**argv primitive interface. The last two rows use the
newer Tcl_Obj object interface that attempts to kee
objects in an appropriate primitive format (e.g., string,

P

extensionParser Method hash table than the first row, is
parsed nevertheless faster than the first row. This result was
. Tcl 8.1.1 . o
test directl command| . t ¢ consistent across tests, and it is repeated between rows
objects Interpreter three and four. The only conclusion is that Java hash
tables are marginally more efficient when populated
argv, 1 0 42 399 with a typical command set size.
method The next surprise comes with the fact that the first two
rows, last column, are marginally more efficient than
argv, 50 0 29 378 their counterparts in the last two rows. The char **argv
methods implementation of Tcl objects in the first two rows
. translates Tcl objects to Java strings immediately upon
Tcl_Obj, 0 43 417 leaving Tcl to invoke a primitive. The Tcl_Obj
1 method implementation of Tcl objects in the last two rows stores
. a reference to a C-level Tcl_Obj in each Java TclObject.
Tcl_Obj, 0 36 391 It does not translate a Tcl_Obj into a domain Object
50 until TclObject.toObject runs, and it converts it directly
methods to the integer needed by the test method. It skips the

intermediate format of a Java String. The benefit of
avoiding the intermediate String format appears to be
offset by the fact that TclObject.toObject must call
through the Java Native Interface to C in order to extract
the integer value by calling Tcl's Tcl_GetintFromObj

int or float) until the object is needed. The first and third library function. NI calls add overhead. The TclObject

rows define only 1 method, the test target method, in t
test domain object. The second and fourth rows defin
including 2 additional,

overloaded instances of the target method name wit

50 primitive methods,

different parameter types.

All rows show that 250,000 calls were not enough to
bring direct call overhead out of the noise. The 0 figure
does signify that communication and interpretation

h aches its value to avoid subsequent calls through JNI,

ut typical extensionObijects (e.g., TclObjects) require
only one toObject call, so caching is not much help.

H’cl's original char **argv is both simpler to program

and faster for this application.

ExtensionParser cost is roughly one tenth the cost of
extension language + extensionParser costs for calling a
stereotyped command that does nothing.

overhead accounts for all measurable delays in OtheFxtensmnParsers percentage contribution to overhead

diminishes as the extension interpreter is given reab.2 Conclusions

scripts to interpret, and as the Domain Framework is_)))
given real primitives to execute. Interpreter and domain! NiS Paper started out as an overview of using extension
costs go up while extensionParser costs remain constarj@n9uage ~ components with application ~ domain
Clearly performance is adequate for extension languagi@meworks. It looked at a particular framework,
primitive interfaces and Command design pattemluxdbg, and its coupling to the Tcl extension language.

objects. Integration of _Tcl into C++ luxdbg has bee_n a great
_ success, but it has suffered from a few limitations.
5. Related work and conclusions Interface code from Tcl to C++ primitives is often ad

hoc and annoying to program, tight coupling of the
5.1 Related work luxdbg framework to Tcl limits its ability to work with
Other existing Java-based implementations of Tclother extension languages, and putting the extension
include Jacl and TcIBlend [18]. Jacl is a partial language in the center of all Ul-to-Domain interactions
implementation of the Tcl interpreter in Java, while @dds unnecessary overhead.

TclBlend is a conventional C Tcl implementation With 54 reflection and dynamic loading have provided the
an interface to Java. The report on Jacl and TcIBIencbaSiS for a set of mechanisms that overcome these

states, “For the Java platform, we envision anjimitations. Reflection and a naming convention allow

architecture that includes Java as the ‘componentass extensionParser and interface extensionObject to
language used by component developers and Tcl as t

‘ : ey) ork together to eliminate ad hoc primitive interface
glue’ language used by application assemblers.” [18]cqqe The abstract extensionLang interface and

That perspective appears to make Tcl the center of thgy namic name-based class loading work together to
framewor.k.. Tcl is responsible for mterconnectmg and jake the specific extension language in a system a run-
synchronizing Java components. Jacl is purported t0 b§me parameter. Command pattern objects in the form of

slow [19] — Jacl interprets Tcl on top of a Java gyiensionObject arrays support stereotyped GUI-to-
bytecode interpreter — although a Jacl implementatioryomain interactions that are uniform and efficient.

that produces Java bytecodes is certainly possible. Clearly Java reflection and dynamic loading are very

Luxdbg’s use of Java and Tcl takes a different approachpowerful tools for enhancing the utility of extension
Luxdbg uses Tcl where extension languagelanguages.

mterpretatl_on makes.sense, but it d_oes not put extensmg_ References

language interpretation overhead in the middle of the

architecture. Luxdbg’'s extension language interpretetl. “The Extension Language Kit (ELK)", http://www-
has access to all primitives, and it is possible to rn.informatik.uni-bremen.de/software/elk/. ELK is an
coordinate all framework activities from Tcl, butitis not implementation of Scheme organized for use as an
mandatory. JavaBeans construction environments do aextension language.

reasonable job of generating “glue” code for stereotyped. Brent WelchPractical Programming in Tcl and Tk
component interactions, saving the extension language Second Edition. Upper Saddle River, NJ: Prentice Hall
for what it does best, extending the system at run time. pTR, 1997.

Given Tcl's inability to coordinate multiple Java threads 3 G ido van RossunExtending and embedding the

within a single Tcl interpreter [20], Tcl is not an ideal Python interpreterAmsterdam: Stichting
candidate for the center of any multi-threaded Java \jathematisch Centrum. 1995. also at http://

framework. www.python.org/doc/ext/ext.html.

Part of the impetus for creating the extension language4. John Ousterhout, “Scripting: Higher Level
neutral extensionLang interface was the desire to Programming for the 21st CenturfZEE Computer
experiment with JPython [21], a Java implementation of March, 1998, or Scriptics Corporation, http://
Python, within luxdbg. Interesting features of JPython www.scriptics.com/people/john.ousterhout/
include dynamic compilation to Java bytecodes for scripting.html.

performance, and the ability to extend existing Javas. John AllenAnatomy of LISPNew York: McGraw-
classes in JPython. JPython is tightly integrated into Hi|l, 1978.

Java, and implementing extensionLang and the related ropert EnglandeBeveloping Java Beans
interfaces should be straightforward. This is an area for Sebastopol, CA: O'Reilly, 1997.

future investigation. 7. LUXWORKS Debugger User Gujdexdbg Version
1.7.0, Lucent Technologies, December, 1998.

8. D. Parson, P. Beatty and B. Schlieder, “A Tcl-based 13. James Rumbaugh, Ivar Jacobson and Grady Booch,

Self-configuring Embedded System Debugger.” The Unified Modeling Language Reference Manual

Berkeley, CA: USENIX The Fifth Annual Tcl/Tk Reading, MA: Addison-Wesley, 1999.

Workshop ‘97 ProceedingBoston, MA, July 14-17, 14, W. F. Clocksin and C. S. MellisRrogramming in

1997, p. 131-138. PROLOG Second Edition. Berlin: Springer-Verlag,
9. D. Parson, P. Beatty, J. Glossner and B. Schlieder, “A 1984,

Framework for Simulating Heterogeneous Virtual 15. Jeffrey D. UllmanElements of ML Programming

Processors.” Los Alamitos, CA: IEEE Computer Englewood Cliffs, NJ: Prentice-Hall, 1994.

Society,Proceedings of the 32nd Annual Simulation 15 Rop GordonEssential INI: Java Native Interface

SymposiumlEEE Computer Society / Society for Upper Saddle River, NJ: Prentice Hall, 1998.

Computer Simulation International, San Diego, CA, 17. E. Gamma, R. Helm, R. Johnson and J. Vlissides,

April, 1999, p. 58-67. Design Patterns: Elements of Reusable Object-

10. Brian W. Kernighan and Dennis M. Ritchide C Oriented SoftwareReading, MA: Addison-Wesley,
Programming Languagesecond Edition. Englewood 1995.

Clifts, NJ: Prentice Hall, 1988. 18. Ray Johnson, “Tcl and Java Integration,” Sun

11. Frank Buschmann, “Reflection,” Hattern Microsystems Laboratories, February 3, 1998. See
Languages of Program Designed. J. Vlissides, J. http://www.scriptics.com/java/

Coplien and N. Kerth, Reading, MA: Addison-Wesley,
1996, p. 271-294.

12. Ken Arnold and James Goslifidie Java™
Programming Languagesecond Edition. Reading,
MA: Addison-Wesley, 1998.

19. Assorted discussions on comp.lang.tcl.
20. Tcl 8.1.1 documentation at http://www.scriptics.com
21 JPython home page at www.jpython.org

	Using Java Reflection to Automate Extension Language Parsing
	Dale Parson (dparson@lucent.com)
	Bell Laboratories, Lucent Technologies
	Abstract
	1. Introduction
	2. Extension Languages for domain-specific software systems
	3. Tcl and the LUxWORKS embedded system simulator and debugger
	3.1 Tcl-Luxdbg architecture
	3.2 Tcl-Luxdbg limitations
	3.2.1 Ad hoc primitive interface code
	3.2.2 Hard-coded dependence on Tcl
	3.2.3 Unnecessary interpretation overhead

	4. Java reflection supports an extension language-to-domain bridge
	4.1 Java reflection and a naming convention eliminate ad hoc primitive interface code
	4.1.1 Java reflection
	4.1.2 Eliminating ad hoc interface code

	4.2 Extension language as a parameter
	4.3 Commands that bypass the interpreter
	4.4 Performance
	Table 1: mSeconds-per-call for direct calls, command objects and interpreted expressions

	5. Related work and conclusions
	5.1 Related work
	5.2 Conclusions
	6. References

