
Proceedings of DSL'99: The 2nd Conference on Domain-Specific Languages
Austin, Texas, USA, October 3–6, 1999

J A R G O N S F O R D O M A I N E N G I N E E R I N G

Lloyd H. Nakatani, Mark A. Ardis, Robert G. Olsen, and Paul M. Pontrelli

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

-

n
f

s

t,
,
a
r

s.
)

s

t.
i-
 Jargons for Domain Engineering

Lloyd H. Nakatani, Mark A. Ardis,
Robert G. Olsen, Paul M. Pontrelli

Lucent Technologies USA

Abstract

In the Family-oriented Abstraction, Specification and
Translation (FAST) domain engineering process for
software production, a member of a software product
family is automatically generated from a model
expressed in a DSL. In practice, the time and skill
needed to make the DSLs proved to be bottlenecks.
FAST now relies on jargons, a kind of easy-to-make
DSL that domain engineers who are not language
experts can quickly make themselves. We report our
experiences with jargons in the FAST process, and
describe the benefits they provide above and beyond
conventional DSLs for software production and other
purposes.

1. Introduction
We report here our experience with jargons
[Nakatani97] for software engineering. Jargons are
DSLs that are unusually easy to make. We use jargons
within the framework of the Family-oriented Abstrac-
tion, Specification and Translation (FAST) domain engi-
neering process [Parnas76] [Cuka98] to automate
software production. Previous attempts with FAST had
foundered when the DSLs needed for domain modeling
took too long to make. Because jargons can be made
quickly and easily, they seemed a good alternative to
conventional DSLs.

Preliminary experiments made us optimistic that jargons
would work for FAST. We made jargon equivalents of
two existing DSLs that had each taken over a year to
make, even using language implementation tools such as
yacc [Johnson75]. The results were dramatic. Each
jargon took less than a week to make. The catch was that
the jargon maker in the experiments was the inventor of
jargons. Further work was needed to see if jargons could
be made as quickly by software developers who were
domain experts but were not experts in language design
and implementation, and had no prior experience with
jargons. We believe that jargons are most likely to suc-
ceed when developers can make their own.

Our effort was focused on getting answers to the follow
ing questions:
• Can jargons handle the complexity of real world

domains?
• Can domain experts make their own jargons?
• Do jargons avoid the major pitfalls of DSLs?

Of course, we were open to unexpected discoveries,
good and bad.

The FAST process is described in section 2, jargons i
section 3, the software domain in section 4, benefits o
jargons in section 5, potential pitfalls of DSLs in section
6, related work in section 7, and conclude with lesson
learned in section 8.

2. FAST Process for Domain Engineering
Many software products constitute a family consisting
of many variations of essentially the same thing. The
variations may be successive generations of a produc
or different versions of a product for different platforms
customers, or market segments. A familiar example of
hardware family is a car that comes in stripped-down o
luxury versions and in a choice of two- or four-door
models. We believe that software families are ubiqui-
tous. However, good examples are hard to come by,
because software is usually not described in those term
An example from telecommunications is the 5ESS(RM
electronic switch software [Martersteck85] that comes
in different versions customized for different customer
and hardware configurations.

FAST exploits the properties of software families to
make the production of family members more efficien
The FAST process is split into two phases: domain eng
neering, and application engineering. (See Figure 1.)

Figure 1. FAST process of domain engineering

Application Engineering
 Environment

Application Engineering

Applications

Domain Engineering

Create

Create

Use

Feedback

e

e
o

in

it-

s.

:

at
From the description below, one might get the impres-
sion that FAST is a serial process, but in fact it is an iter-
ative process in practice with much feedback between
the phases.

In thedomain engineering phase, family members are
analyzed to discover their commonalities—what is the
same about every member—and their variabilities—
what differentiates one member from another. A soft-
ware architecture reflecting the commonalities and vari-
abilities is then designed.

The parts constituting the commonalities are expected to
remain constant over family members. There is little
need to optimize their production, since they will only
be created once. On the other hand, integration of these
parts with other software is a concern. Some FAST
projects elect to automate the generation of commonali-
ties code in order to simplify later integration.

The variabilities are addressed in the domain engineer-
ing phase by making one or more jargons to model fam-
ily members solely in terms of their variabilities.
Translators are written to translate models into variabili-
ties code. The use of high-level modeling languages, of
which jargons are instances, distinguishes FAST from
other domain engineering processes.

In theapplication engineering phase, a model of a par-
ticular family member is written in terms of one or more
jargons, and then translated automatically into variabili-
ties code. Finally, the commonalities code and variabili-
ties code are integrated to produce the product. The
integration process, for instance, may be building a load
module incorporating the compiled commonalities and
variabilities codes.

Two aspects of FAST have important ramifications for
jargons. First, partitioning a product into its commonali-
ties and variabilities is key to making automation feasi-
ble. The commonalities usually represent the core of the
product and encapsulate most of its complexities. The
commonalities code and variabilities code are separated,
allowing for independent development. The variabilities
part is usually much smaller and simpler than the com-
monalities, so automating its production is easier than
automating the production of the entire product. Second,
the variabilities often represent distinctly different fea-
tures of the product, and may not lend themselves to
modeling with a single jargon. When this is the case,
several different jargons may be necessary to model the
distinct variabilities.

3. Jargons: Domain Engineered DSLs
In essence, jargons are domain engineered DSLs. Th
expected benefit is a production environment called
InfoWiz for making jargons efficiently. With InfoWiz,
we can make a jargon in a matter of days or weeks
instead of months or years for conventional DSLs. Som
unexpected benefits are: 1) jargon making simplified t
a Do-It-Yourself (DIY) activity; 2) composable jargons
(i.e., different jargons are compatible and can be used
combination); and 3) multipurpose models (i.e., multi-
ple products can be produced from a single model wr
ten in a jargon). So compared to conventional DSLs,
jargons provide more benefits at less cost.

Jargons comprise a family of custom-made DSLs with
the following commonalities:
• Abstract syntax: Every expression of every jargon

has the same abstract syntax.
• Generic interpreter: All jargons are processable

with the same generic interpreter specialized at
runtime with the semantics of the pertinent jargon

A jargon is distinguished from another by the following
variabilities:
• Concrete syntax: A set of concrete expressions
• Semantics: A set of actions corresponding to the

expressions that define a semantics of the jargon

InfoWiz, the application engineering environment for
making jargons, consists of the following components
• WizTalk abstract syntax
• InfoWiz generic interpreter
• Fit programming language for defining actions
• API functions for interfacing actions to the InfoWiz

interpreter

This section describes these components to show wh
jargons are like, and how they are designed, imple-
mented and used.

3.1. WizTalk Abstract Syntax

The WizTalk abstract syntax prescribed for every
expression of every jargon is

; term (note-1 | ...| note-N)[memo]

The; metacharacter is amarker that distinguishes jar-
gon expressions fromplaintext, which is any text that is
not a jargon expression. The marker makes possible
markup jargons with expressions embeddable in plain-
text; for example

The ;cb[;] metacharacter is a
;i[marker]

This is the beginning of this paragraph in the markup
jargon used to format a draft of this paper.

Theterm is the name of the expression. The jargon

n

a
c-
n

y

t
s-
nd
r.

-
u-

e

iz

he

in
designer is free to choose concrete terms that best reflect
the natural terminology of the domain. If care is taken to
make the concrete terms unique across all jargons that
might collaborate, the jargons are composable without
conflict. The term is case-sensitive, and . and _ can
be used interchangeably as separators between words of
a multi-word term.

Thememo is the information that is the focus of the
expression. WizTalk allows three syntactic variants of a
memo. When the memo fits on a single line, the pre-
ferred variant is an inline memo:

;author[Mark Twain]

The [and] metacharacters arememo delimiters.
When the memo consists of multiple lines, one variant is
ablock memo:

;address[
123 Main Street
Anyville, NJ 01234
]

where the memo and its closing] delimiter are aligned
with the margin established by the indentation of the
line containing the expression. An alternative variant for
a multi-line memo is aninset memo:

;address
123 Main Street

 Anyville, NJ 01234

where the memo is tab-indented one level deeper than
the indentation of the line beginning the expression.
Indentation is thus syntactically significant. Inset
memos make the hierarchical structure of complex mod-
els easy to see.

Thenotes are either attributes of the memo, or parame-
ters to control the processing of the expression. For
example, in

;state(END)
;exit

the note is the name of the state of a finite state machine.
The (and) metacharacters arenote delimiters, An
expression may have neither note nor memo; the
;exit expression above is an example.

The WizTalk abstract syntax has proven versatile
enough for markup jargons to model the format of docu-
ments, data jargons to model hierarchically structured
information, and programming jargons to model algo-
rithms.

3.2. InfoWiz Generic Interpreter

The InfoWiz generic interpreter can process any jargo
when customized with a semantics of the jargon. A
semantics of a jargon is defined by a set ofactions, one
for each expression of the jargon. An action, which is
function written in the Fit programming language, spe
ifies how the information associated with an expressio
should be processed. A file containing a set of action
definitions is called awizer. The InfoWiz interpreter,
which is also written in Fit, customizes itself by incre-
mentally loading one or more wizers, and automaticall
integrating the actions they contain.

Once customized, the InfoWiz interpreter processes a
model written in the jargon by parsing the model; tra-
versing the parse tree in top-down, left-right, depth-firs
order; executing the action corresponding to the expre
sion at each node of the parse tree in traversal order, a
appending the expression’s product to an output buffe
Plaintext is a degenerate expression whose product is
the verbatim text. A scalar product for a parent expres
sion is produced by concatenating the products accum
lated in the output buffer for the child expressions in th
memo of the parent expression.

Actions are described in more detail later, but a tiny
example is presented here to illustrate how the InfoW
interpreter is used. This jargon document in file
greet.doc

;greet[InfoWiz]

consists entirely of the ;greet expression. This
action in the wizer filehello.w

A_greet
 WizOut “Hello, “ GetWizMemo

is a Fit function that defines a semantics for the
;greet expression. The action name consists of the
A_ prefix followed by the expression’s term. The
GetWizMemo API function processes the memo of the
expression, and returns the product, which for this
example is the plaintextInfoWiz . The WizOut API
function splices together its arguments and appends t
result to the output buffer. Thewiz command

$ wiz -w hello.w greet.doc
Hello, InfoWiz

runs the InfoWiz interpreter that integrates the actions
the hello.w wizer, processes the document in
greet.doc , and writes the product to the standard
output. The-w command option identifieshello.w
as the wizer.

er-

m

r-
of
le

is

at
3.3. Fit Programming Language and API
Function Library

The Fit programming language makes it possible to
write actions quickly with the support of the API func-
tion library. Fit is a high-level, general-purpose, inter-
preted programming language developed at Lucent and
AT&T. It is beyond the scope of this paper to explain
Fit. Suffice it to say that Fit has excellent facilities for
text processing, supports multiple programming para-
digms including object-oriented, and has a source code
debugger integrated into its interpreter.

The API functions, which are written in Fit, enable
actions to interface with the InfoWiz interpreter. The
API library consists of less than 50 functions. Of these,
about a dozen are frequently used.

3.4. Multipurpose Models

Because actions are easy to write and their integration
into the InfoWiz interpreter is automated, it has proved
practical for a jargon to have multiple semantics. The
consequence has been multipurpose models capable of
producing many different products. If yet another prod-
uct is needed from a model, it can be produced simply
by writing a new wizer and processing the model with
the wizer.

We use this greeting model from before
;greet[InfoWiz]

to illustrate how multipurpose models work in practice,
We define another semantics for the;greet expres-
sion with this action:

Macro HELLO ~[
main()
{
printf(“%s”, \
 “Hello, <greetee>\n”);
}
]~

A_greet
WizOut Change “<greetee>”

(GetWizMemo) HELLO

When the greeting model is processed with this new
semantics, the result is a C program that printsHello,
InfoWiz :

$wiz -w Chello.w greet.doc
main()
{
 printf(“%s”, “Hello,
InfoWiz\n”);
}

Multipurpose models ensure that all the products gen
ated from a model are consistent with each other. For
example, if the greeting model is changed to

;greet[World]

this change is reflected in all the products obtained fro
the model.

3.5. Composability of Jargons

Because all jargons have a common abstract syntax,
multiple jargons can be processed by the InfoWiz inte
preter simultaneously customized with the semantics
the jargons. In effect, this makes all jargons composab
and able to collaborate with each other to solve prob-
lems beyond their individual reach.

To illustrate jargon composition in practice, we use th
finite state machine model of an interactive dialogue:

;state(START)
 ;next.state[INPUT]
;state(INPUT)
 ;=x[;input[Type name:]]
 ;if(;.x == q)

;next.state[GOOD BYE]
 ;else
 ;next.state[HELLO]
;state(HELLO)
 ;output
 ;frame

;star[Hello, ;.x]
 ;next.state[INPUT]
;state(GOOD BYE)
 ;output[Good bye]
 ;next.state[END]
;state(END)
 ;exit

This model is composed of four jargons: theFSM, Base,
Flow, andBanner jargons: TheFSM jargon for model-
ing finite state machines consists of the ;state,
;next.state, and ;exit expressions. TheBase
jargon, which comes standard with the InfoWiz inter-
preter, includes the;=x[InfoWiz] expression to set
variable x to InfoWiz , and the ;.x expression to
get its value, among others of similar generic nature th
are likely to be useful for many domains. TheFlow jar-
gon for modeling algorithms includes flow control
expressions such as ;if and ;else , the ;input
and ;output expressions, and relational predicates
using infix notation such as;.x == q to test whether
variable x has valueq. TheBanner jargon for model-
ing “banners” such as

============================
| *** Hello, InfoWiz *** |
============================

es

p
r

ion

-
s,

-

de
t-
-

ra-

n
tor

c-

le
r-
s

r
s.

el
od-
e

g-
includes the;frame expression to put a frame around
a message, and the ;star expression to bracket a
message with *** .

Because the model is composed of multiple jargons,
multiple wizers are needed for its execution:

$ wiz -w flow -w fsm.w \
 -w banner.w hello.doc
Type name: InfoWiz
============================
| *** Hello, InfoWiz *** |
============================
Type name: q
Good bye
$

The results of the execution is an interactive dialogue
shown above.

To illustrate how easy wizers are to write, shown below
are the wizers for two of the jargons. This is the wizer
for theFSM jargon

A_state label
Local fsm
Set fsm[label] GetWizTree

A_next_state
Local fsm state
Set state fsm[GetWizMemo]

A_exit
Local state
Set state nil

WizAfter out
Local fsm state
Set state fsm[“START”]
While state

WizMemo state

This is the wizer for theBanner jargon
A_star

WizOut “*** ” \
 (GetWizMemo) “ ***”

A_frame
Set message Splice “| ” \

 (GetWizMemo) “ |”
 Set edge<Thru 1 $message> \
 “=”

WizOut |“\n”| edge message \
 edge

For the lack of space, we provide no further explanation
of the wizers.

4. Configuration Control in the 5ESS
The 5ESS is a highly reliable telecommunications
switch. The reliability stems in part from redundant
hardware and automatic reconfiguration software that
removes faulty hardware units from service and replac
them with their spares. The Configuration Control
domain, which includes this reconfiguration software,
was re-engineered with the FAST process to speed u
software production. Our report is based mostly on ou
experience with jargons in the Configuration Control
domain.

An analysis of the Configuration Control domain
resulted in a clean separation between the configurat
and the algorithms that change the configuration. The
configuration is a variability of the domain since differ
ent switches are composed of different hardware unit
and the units can be in different conditions (e.g.,ready
or working). The reconfiguration algorithms are opera-
tions that change the configuration. They are the com
monalities of the domain, since the algorithms are the
same for all units.

Per the FAST process, a Configuration jargon was ma
to model a configuration. A configuration was represen
able as a graph with nodes corresponding to the hard
ware units, and edges representing the relationship
between the units. A wizer was written to translate a
configuration model into declarations of populated C
data structures that represented the hardware configu
tion of a switch in a form suitable for the reconfiguration
algorithms. To facilitate the translation, a Cstruct jargo
was made to model the C data structures. The transla
was modeled by the composition of both models: the
configuration model for the source, and the C data stru
ture model for the target.

In order to separate the common parts from the variab
parts of the reconfiguration algorithms, a Controller ja
gon was made. In addition to separating commonalitie
from variabilities, this jargon made it possible for othe
domain experts to check the accuracy of the algorithm
Each algorithm was modeled in the jargon, translated
into a finite state machine, and from there to C code.
When a bug was found in the algorithm code, its mod
was fixed, and new code regenerated. From jargon m
els totalling about 500 lines, over 50,000 lines of C cod
were generated.

In the final integration process, the codes for the confi
uration data structures and the reconfiguration algo-
rithms were compiled together along with handwritten
code that handled the interface between the two, and
also between the Configuration Control domain and
other domains.

n-
-

st
,
te
ls
re

)
-

e-
al

ns-

ith
the

a-
s
d
ith

nd

es
s

s

s,
 a

e
in-
5. Benefits of Jargons in Domain Engineer-
ing
Jargons provide many benefits to the FAST domain
engineering process. In this section we describe
attributes of jargons that we believe were key to their
success in our environment.

5.1. Domain Decomposition and Modeling

Jargons fostered a decomposition (divide-and-conquer)
strategy for coping with the complexity of a domain. For
the Configuration Control domain, the first decomposi-
tion divided the domain into its commonalities (recon-
figuration algorithms) and its variabilities
(configuration) per the FAST process. The configuration
subdomain further divided into the configuration itself
and the C data structures into which the configuration
had to be translated. Three jargons were made in accor-
dance with this decomposition: the Controller jargon for
modeling the reconfiguration algorithms; the Configura-
tion jargon for modeling the configuration; and the
Cstruct jargon for modeling C data structures. The Con-
figuration jargon was a natural by-product of the domain
analysis, and bears a strong resemblance to a section of
the analysis document. Very little effort was required to
design this language. Similarly, the Cstruct language
was modeled on existing data structure facilities of the C
language, so it was easy to design.

Two other domains—the Call Billing and Measurements
domains—re-engineered with the FAST process also
decomposed naturally into multiple subdomains. The
Call Billing domain produces software that generates
accounting records for billing calls. This domain
decomposed into four subdomains: 1) algorithms that
determine the kind of record to be generated for a call,
2) the format and contents of the fields comprising a
record, 3) the concrete values of abstract variables that
could populate a field, and 4) the attributes of the
abstract variables. A separate jargon was made for mod-
eling the artifacts of each subdomain. The Measure-
ments domain produces the software that reports on the
performance of equipment in a telephone office. The
domain has already decomposed into four subdomains,
with more expected. Three of the subdomains have their
own jargons, and the fourth was further decomposed
into three subdomains with their own jargons. So alto-
gether, there are six tiny jargons for modeling the subdo-
mains of the Measurements domain.

Decomposition works only if the solutions for the parts
can be composed into a solution for the whole. For our
approach, this means that the subdomain models
expressed in different jargons must be composable into
larger models for the entire domain. Model composition

was the rule in every domain. In the Configuration Co
trol domain, the configuration and reconfiguration algo
rithm models were composed to build a simulator to te
the algorithms on real data. In the Call Billing domain
all the models had to be composed in order to genera
the records. And in the Measurements domain, mode
of the measurement, report content, and report structu
had to be composed to generate the reports.

5.2. Do-It-Yourself Jargons

With InfoWiz, a jargon is so easy to make that domain
experts can make their own. Such Do-It-Yourself (DIY
jargons can be expected to provide the following bene
fits:
• Better jargons
• Lower risk
• Easier maintenance

A DIY jargon made by a domain expert is likely to turn
out better than one made by a language expert who is
not a domain expert for several reasons. First and for
most, the domain expert knows the domain: the “natur
jargon” spoken among experts, the subdomains of the
domain, what has to be modeled in each subdomain,
how the models should be composed, what products
have to be generated, the assumptions needed to tra
late models into products, the legacy languages of the
products, and how the generated products integrate w
other code, such as the commonalities code. Second,
domain expert and the end-users of the jargon usually
belong to the same organization. The easy communic
tion between the jargon maker and jargon users make
for an ideal rapid prototyping environment. Jargons len
themselves to rapid prototyping because of the ease w
which they can be made and modified. The domain
expert can take good advantage of the environment a
rapid prototyping to make a “user friendly” jargon.

A DIY jargon is less risky. When the organization
makes and supports its own jargons, the risk that com
from depending on outside experts is eliminated. Bug
can be fixed immediately, and new features added as
needed, no matter how minor. In event of a crisis year
down the road when the outside expert is no longer
available, the organization will have the wherewithal to
cope.

Compared to general-purpose programming language
jargons can be expected to evolve rapidly, which puts
premium on easy evolution. A jargon is custom-made
for modeling a particular domain, so as the domain
evolves to meet changing needs, its jargon must evolv
to keep up. It follows that jargons must be easy to ma
tain if they are not to become quickly obsolete
[VanDuersen97] [Spinellis97].

s

if
r-

-
-
d
t,

ns
at
er-

-

.

n
at

z.
u-

-

o-
elf
r

-
-

a
.

e
c-
as
Jargon making is indeed simple enough to be a DIY
activity. In the Configuration Control domain, the jar-
gons were created by a team of three domain experts
and one InfoWiz expert. The domain experts produced
and maintain all of the jargons. Three completely differ-
ent versions of one jargon were prototyped in a month.
In the Call Billing domain, the jargons and translators
were the result of collaboration between an InfoWiz
expert and a domain expert. However, another domain
expert added major new capabilities to one of the jar-
gons. In the Measurements domain, all of the jargons
were made by domain experts with an InfoWiz expert
serving as a reviewer only. None of the domain experts
had any previous experience in making languages.

DIY jargons are possible because most of the hard work
is already done. Skill in the art and science of syntax
design and grammar specification is unnecessary
because WizTalk prescribes a ready-made abstract syn-
tax for all jargons. Skill in the art and science of build-
ing a parser and interpreter is unnecessary because the
ready-made, generic InfoWiz interpreter works for all
jargons. Defining the semantics of a jargon is reduced to
writing a set of actions in a high-level, interpreted pro-
gramming language. No work is necessary to integrate
the actions into the interpreter because the integration is
automatic. In the Configuration Control domain, the
domain experts mastered jargon technology within a
few days.

5.3. Raising Software Quality

Jargons go beyond conventional DSLs to improve the
quality of software products. Jargons share with conven-
tional DSLs the benefits of specialization, high-level
abstractions, and automatic generation to eliminate acci-
dental errors. Jargons go beyond these conventional
techniques to improve software quality by the following
means:
• Simplification through decomposition of a complex

domain into subdomains
• Generation of related subproducts from a single

source to ensure their consistency
• Transformation of models into more readable forms

for review
• Automatic model checking with user-defined types

The decomposition of a complex domain into simpler
subdomains, and modeling each in its own jargon,
improves quality indirectly. The simpler the domain, the
simpler their jargons, and the simpler the jargons, the
more likely are their designs and translators to be cor-
rect. Moreover, simple models expressed in simple jar-
gons are shorter and easier to write, review, and debug.
In all of the domains we’ve worked on, decomposition

has resulted in simplifications that most likely improved
the quality of the final product. However, without met-
rics of complexity or simplicity, it’s hard to attribute any
improvement in quality to the simplification that come
from decomposition.

One measure of the quality of a product is the consis-
tency between its subproducts. Consistency is ensured
all the subproducts are produced from a single multipu
pose model. Multipurpose models were used to good
effect in the reconfiguration subdomain of the Configu
ration Control domain. Two human-friendly representa
tions of each reconfiguration algorithm were generate
from its model: a pictorial representation as a flow char
and a stylized English representation. Reviewers pre-
ferred the pictorial and natural language representatio
because they were easier to comprehend. The fact th
the review representations and the software were gen
ated from the same model ensured that the product
approved by the reviewers was what was actually pro
duced. In addition, the graphical tool used by applica-
tion engineers was enhanced with a simulator that
showed the behavior of the reconfiguration algorithms
The original models of the algorithms were translated
by a wizer into an internal finite state machine model i
the language of the graphical tool. This guaranteed th
the behavior of the simulator would remain consistent
with the generated code.

A specification of a jargon can be written in a ready-
made Checker jargon that comes standard with InfoWi
Such a specification expressed is the analog of a Doc
ment Type Description in SGML [Goldfarb90]. A speci
fication is translated into a wizer that defines a self-
checking semantics for the jargon. When a model is pr
cessed with this semantics, each expression checks its
against its specification. No specification was written fo
the jargons of the Configuration Control domain
because the Checker jargon was not available at the
time. In retrospect, specifications of the Configuration
Control jargons would have been of limited use. Config
uration models are now being generated by an interac
tive tool with a graphical user interface (GUI) that
prevents the kinds of mistakes that would be caught by
model checker. The tool makes a checker of little value
Algorithm models require analysis and checks of its
dynamic behavior. A specification would only do a
static analysis and checks that would be of limited valu
in detecting bugs in the algorithms. The value of a spe
ification goes beyond checking because it also serves
documentation for users of a jargon.

r
-

s
of-
za-
t-

-

y
es

n

re
e
e
i-

-

g
n-

y

t
is
y
m-
6. Avoiding DSL Pitfalls with Jargons
Some pitfalls lie in the path leading to the widespread
use of DSLs. Unless these pitfalls are successfully
avoided, we feel that the use of DSLs will prove
counter-productive in the long run. Jargons avoid these
pitfalls.

6.1. Pitfall: Balkanized Domains

Conventional DSLs are not composable. As a conse-
quence, different DSLs cannot work together just as
Lisp, C, and Java cannot. DSLs make problems in their
respective domains easy to solve, but their incompos-
ability will make problems involving multiple domains
even harder to solve by preventing collaboration
between domains that are each part of the solution. It is
critical to avoid this pitfall if DSLs are to be a step for-
ward rather than backward.

Composability distinguishes jargons from conventional
DSLs. Jargons are composable because their common
syntax makes all jargons processable with a common
interpreter, and because the interpreter is customizable
with the semantics of multiple jargons simultaneously.
With composable jargons, we can prevent the Bal-
kanization of domains.

6.2. Pitfall: Cost

The cost of DSLs is a potential pitfall. A large company
that embraces DSLs may end up with hundreds of DSLs
instead of just a few general-purpose languages. Gen-
eral-purpose languages are supported by their vendors,
but DSLs will most likely be supported by their users.
As DSLs proliferate, their aggregate support costs can
get out of hand.

Compared to a conventional DSL, a jargon is inexpen-
sive to make, because much of the work is already done.
The syntax is already designed, and the interpreter is
already written. Making a jargon is reduced to designing
its concrete expressions, and writing the actions for the
expressions in a high-level programming language with
excellent debugging facilities.

Compared to a conventional DSL, a jargon is also inex-
pensive to maintain. Any jargon can be extended with-
out changing its abstract syntax, which means that the
interpreter doesn’t have to be changed to accommodate
the extensions. Only one interpreter and one API library
need be maintained for all jargons. The commonalities
among jargons also help to reduce other support costs,
such as for training and documentation.

The composability of jargons has ramifications for their
cost and timeliness. If a problem involving multiple

domains must be solved, and jargons already exist fo
the domains, then it may be possible to solve the prob
lem by composing the existing jargons, thereby elimi-
nating entirely the cost and time of making yet more
jargons.

7. Related Work
Jargons are instances of little languages [Bentley86]. A
such, they share the attributes of simplicity and ease-
use that are the hallmarks of domain-specific speciali
tion. Unlike making a jargon, making a conventional li
tle language entails all the steps of making a “big”
language: syntax design, grammar specification, pars
ing, and execution. These differences loom large in
practice. We have found that developers who cannot
make a little language can easily make a jargon in a da
or two. And once made, jargons provide the advantag
of composability and multipurpose models that little
languages do not.

XML is closest in spirit to jargons. Languages based o
XML could be used for domain engineering, but their
implementations are biased toward document markup
languages with their style sheets and style sheet lan-
guages for defining their semantics. This bias is not
well matched to the needs of domain engineering whe
models are typically not documentation. Moreover, th
back-end of interpreters for XML-based languages ar
harder to construct than for jargons. That said, the sim
larity between jargons and XML demands that we dis
tinguish the InfoWiz concept from its implementation.
The InfoWiz concept is founded on the following
notions:
• A constant abstract syntax for all jargons
• A multiplicity of easily defined computational

semantics for a given jargon
• A generic interpreter that is easily customizable

with the computational semantics of multiple jar-
gons simultaneously

The InfoWiz concept could be implemented with XML
instead of WizTalk for the jargon syntax, and Perl or
Java or Python instead of Fit for the host programmin
language. It would be good to have different impleme
tations of the InfoWiz concept to suit different needs
and tastes.

Spinellis and Guruprasad [Spinellis97] describe by wa
of numerous examples how software engineering is
facilitated with DSLs. Despite their success, we feel tha
the use of conventional DSLs of the sort they advocate
ill-advised. A conventional DSL is hard to make, costl
to maintain, and becomes yet another obstacle to tea
work among domains.

s

d

r

o
-
d
l-

-
t

a,

t-

-

Faith et al. [Faith97] describe the Khepera system for
making DSLs. Khepera gives the maker of a DSL the
freedom to design its syntax. But our developers, who
were not language experts, considered syntax design,
grammar specification, and tools such as yacc as
obstacles, not opportunities. Moreover, DSLs with dif-
ferent syntax are guaranteed to be incomposable. Also,
the transformation approach of Khepera requires more
understanding of abstract syntax trees, tree traversal and
manipulation, and the inner workings of an interpreter
than our developers had.

A domain-specific embedded language [Hudak96] is
another approach to speed up software production. But
this approach works only for languages that support rich
abstraction mechanisms that make it possible to extend
the base language with domain-specific extensions.
Unfortunately, for reasons of legacy, our applications
must be written in C. Since C does not support the
abstractions needed to realize domain-specific embed-
ded languages, we are unable to use this approach. We
find such legacy constraints more the rule than the
exception.

8. Lessons Learned
Jargons are up to the challenges of real-world domains.
The following divide-and-conquer strategy fostered by
easy-to-make jargons worked for each domain:
• Decompose the domain into subdomains
• Make a jargon for each subdomain
• Model each subdomain in its jargon
• Compose the subdomain models to model the entire

domain

Although every jargon has the same abstract syntax, we
found the syntax versatile enough to meet the expressive
demands of their subdomains.

Domain experts can make their own jargons. In fact, we
believe that domain experts make the best jargons
because they have the necessary knowledge, and
because they are in an environment that is conducive to
rapid prototyping.

Jargons improve the quality of software. The decompo-
sition of domains leads to higher quality software
because simple models expressed in simple jargons are
easier to get right. And when the simple models are
composed, the resulting whole is more likely to be cor-
rect because it is built of proven components. Multipur-
pose models can generate multiple subproducts from a
single source to ensure their consistency. Models can be
translated into more comprehensible representations for
review. This makes flaws in the models easier to catch.
And because both the review representation and final
product are generated from a single source, what is

approved is what will be produced.

Jargons avoid the key pitfalls of conventional DSLs. A
jargons proliferate, their aggregate cost is minimized
because they are easy to make, and only one InfoWiz
interpreter and API function library need be maintaine
for all jargons. The composability of jargons prevents
the Balkanization of domains, and leverages the powe
of specialization through teamwork.

9. Acknowledgments
We thank the many domain experts who contributed t
the success of the Configuration Control domain engi
neering project. In particular, we thank Paul Iverson an
Andy Kranenborg for their help during the domain ana
ysis phase. We thank Mehry Moukhtar, Dan Johnson,
Michelle Homer, Tom Denton, Lynn Pautler, and Carl
Amport for their support and encouragement. For con
tributions to the Call Billing domain engineering projec
we thank Mike Moy, Christine Fischer, Lyn Cole, and
Steve Powell. For contributions to the Measurements
domain engineering project we thank Roman Biesiad
Przemyslaw Marciniak, Hanna Weber, Yanti Miao, and
Diane Kruto. We thank David Cuka for his pioneering
work with InfoWiz and FAST on several projects.
Finally, we thank David Weiss for creating and suppor
ing the FAST process at Bell Labs.

10. Availability
InfoWiz and the jargons described here are the propri
etary property of Lucent Technologies. The program-
ming language Fit is in the public domain. It is available
by sending email tolwr@research.att.com .
Contact PaceLine Technologies (www.pace-
linetech.com) about obtaining InfoWiz.

11. References

[Bentley86] Bentley, J. Little Languages,
Communications of the ACM29 (8), August
1986, 711-721.

[Cuka98] Cuka, D.A. and Weiss, D.M. Engi-
neering Domains: Executable Commands as an
Example, Proceedings 5th International Con-
ference on Software Reuse, Victoria, Canada,
June 2-5, 1998, 26-34.

[Faith97] Faith, E.R., Nyland, L.S. and Prins,
J.F. Khepera: A System for Rapid Implementa-
tion of Domain-Specific Languages, Proceed-
ings of the Conference on Domain-Specific
Languages, Santa Barbara, CA, October 15-17,
1997, 243-255.

[Goldfarb90] Goldfarb, Charles F. The SGML
Handbook, Clarendon Press, Oxford, England,
1990.

[Hudak96] Hudak, P. Building Domain-Spe-
cific Embedded Languages,ACM Computing
Surveys28 (4), December 1996.

[Johnson75] Johnson, S.C. Yacc --- Yet
Another Compiler-Compiler, Computer Sci-
ence Technical Report 32, Bell Laboratories,
July 1975.

[Martersteck85] Martersteck, K.E. and Spen-
cer, A.E. Introduction to the 5ESS(RM)
Switching System,AT&T Technical Journal64
(6), July-August 1985, 1305-1314.

[Nakatani97] Nakatani, L.H. and Jones, M.A.
Jargons and Infocentrism, Proceedings of DSL
‘97 (First ACM SIGPLAN Workshop on
Domain-Specific Languages)Paris, January 18,
1997, 59-74. Published as University of Illinois
Computer Science Report, http://www-
sal.cs.uiuc.edu/~kamin/dsl .

[Parnas76] Parnas, D. L. On the Design and
Development of Program Families, IEEE
Transactions on Software Engineering2, 1976,
1-9.

[Spinellis97] Spinellis, D. and Guruprasad, V.
Lightweight Languages as Software Engineer-
ing Tools, Proceedings of the Conference on
Domain-Specific Languages, Santa Barbara,
CA, October 15-17, 1997, 67-76.

[VanDuersen97] Van Duersen, A. and Klint, P.
Little Language, Little Maintenance? Proceed-
ings of DSL ‘97 (First ACM SIGPLAN Work-
shop on Domain-Specific Languages), Paris,
January 18, 1997, 109-127. Published as Uni-
versity of Illinois Computer Science Report,
http://www-sal.cs.uiuc.edu/
~kamin/dsl .

[XML] Anonymous. The XML Information
Site, http://www.xmlinfo.com

	Jargons for Domain Engineering
	Lloyd H. Nakatani, Mark A. Ardis, Robert G. Olsen, Paul M. Pontrelli Lucent Technologies USA
	1. Introduction
	2. FAST Process for Domain Engineering
	3. Jargons: Domain Engineered DSLs
	3.1. WizTalk Abstract Syntax
	3.2. InfoWiz Generic Interpreter
	3.3. Fit Programming Language and API Function Library
	3.4. Multipurpose Models
	3.5. Composability of Jargons

	4. Configuration Control in the 5ESS
	5. Benefits of Jargons in Domain Engineering
	5.1. Domain Decomposition and Modeling
	5.2. Do-It-Yourself Jargons
	5.3. Raising Software Quality

	6. Avoiding DSL Pitfalls with Jargons
	6.1. Pitfall: Balkanized Domains
	6.2. Pitfall: Cost

	7. Related Work
	8. Lessons Learned
	9. Acknowledgments
	10. Availability
	11. References

