
1

SEER: A Security Experimentation EnviRonment for DETER

Stephen Schwab Brett Wilson Calvin Ko Alefiya Hussain

SPARTA, Inc.
El Segundo, CA

Abstract

Configuring a security experiment can be tedious,
involving many low level and repetitive configuration
tasks. In order to make DETER’s capabilites accessible to
users at all skill levels, we have designed and implemented
a Security Experimentation EnviRonment (SEER) that
provides security researchers the ability to create, plan, and
iterate through a large range of experimental scenarios
with relative ease. SEER integrates various tools for
configuring and executing experiments and provides a
user-friendly interface for experimenters to use the tools.
SEER aims to support a wide range of experimentation
requirements such that many researchers will prefer to
interact with DETER through it, fostering collaboration
within the security research community.

1 Introduction

Over the years, we have been facing increasingly serious
Internet security threats such as worms, spyware,
Distributed Denial-of-Service (DDoS) attacks, botnets, etc.
In order to effectively counter these emerging Internet
threats, a thorough understanding of these threats and
systematic evaluation of the potential defense in a realistic
testing environment is required. Moreover, it is important
that the scale of these network tests be sufficiently large to
inform our understanding of how cyber attacks and
defenses will evolve at Internet scale. In security research,
repeatable experimentation is crucial in understanding the
behavior of large-scale threats, validating conclusions of
studies, and in evaluating and comparing different
potential solutions. Similar to the networking and
operating system communities, repeated research in cyber
security is vital to the scientific advancement of the field.

The DETER testbed [1] aims to facilitate network security
experimentation by providing an environment for
researchers to perform experiments within, in a secure,
isolated fashion. DETER runs a tailored configuration of
the Emulab software developed at Utah [2]. It allows a
security researcher to obtain exclusive use of a subset of
the testbed machines, configure them into a specified
topology, and access them through a firewall from across
the Internet.

Nevertheless, even with the availability of large-scale
testbeds such as DETER, performing a security experiment
is cumbersome. The process involves configuration of a
complex environment to support a relevant network
topology and infrastructure services (e.g., DNS),
generation of attack and background traffic, deployment of
defense mechanisms, instrumentation of the network for
data collection, and finally data analysis and visualization.
Typically, an experimenter needs to repeat the
configuration for a wide set of experiments in order to
systematically evaluate a defense.

In this paper we describe SEER – A Security
Experimentation EnviRonment – that enables an
experimenter to configure security experiments offline and
provides fine-grain control and monitoring support during
experiment execution. SEER is the on-going evolution of
the technology that originated as the DDoS security
experimenter's workbench [3]. SEER consists of a Java-
based front-end GUI and a set of services that collectively
give researchers the ability to create, plan, and execute
their experiments. SEER interacts with the DETER control
plane to identify and (if required) request the resources for
the experiment. It then integrates a set of tools within the
experiment context through which researchers create,
configure, and control their experiments. Further, it
enables repeatability by facilitating experimenters to rerun
experiments with minimum effort, either verbatim or with
controlled variation of parameters when exploring several
dimensions of the evaluation space.

SEER evolved from our experience in developing an
experiment methodology [4,5] for evaluating DDoS
defense systems. SEER builds on the facilities in DETER
and greatly enhances an experimenter’s efficiency in
performing security research. We expect many, and
perhaps most researchers, will interact with DETER
through SEER while DETER will continue to provide
direct lower-level interfaces for use by the testbed
community. SEER will foster innovation and collaboration
at a higher level of abstraction, while supporting advanced
users that wish to extend SEER with custom agents that
directly control tools running on, or features of, DETER.

2

The rest of the paper is organized as follows. Section 2
provides an overview of SEER and the approach taken to
assist security experimenters. Section 3 describes the
implementation of SEER. In Section 4 we illustrate the
use of SEER by describing an example of how SEER
configures a simple experiment. Section 5 discusses future
work and our conclusions.

2 Overview

Setting up and running a security experiment requires
substantial configuration effort. For instance, just running
a worm and observing its behavior demands setting up
some real network services (e.g., a mail worm requires real
mail servers). In addition, many network infrastructure
services (e.g., DNS) have to be set up. For some worms
that spread via user activities (e.g., users clicking on a
website), we need to simulate activities of real users. In
addition, some nodes may need to mimic one or more
subnets or an autonomous system in the Internet. In
simulating a Distributed Denial-of-Service attack, the
experimenters also need to control the timing (e.g., when
does the attack start and end).

Our goal is to provide security experimenters with an easy-
to-use integrated environment to perform large-scale
repeatable experiments with cyber attacks and defenses.
The following summarizes the design objectives and how
SEER achieves them.

Ease of use. Making security experimentation easy to
conduct is important because security researchers can then
focus their attention on the unique, core aspects of the
security research problem at hand. In particular, security
researchers should be able to create and run experiments
without performing low level configuration (e.g., editing
configuration files on the experiment nodes, initializing
routing tables) of the network. SEER provides a click-and-
choose GUI for an experimenter to set up and run
experiments. For instance, SEER allows a user to describe
at a high level the configuration of the network and its
infrastructure services and performs all the necessary low-
level configurations automatically. In addition, SEER
includes a visualization tool for researchers to observe the
execution of the experiments, which is valuable in
managing and debugging the experiments.

Support for automated repeatable experiments. In
performing security research, one often needs to repeat the
experiment with systematically varying parameters, such
as using different background traffic, or a different type of
attack or defense. SEER provides an intuitive scripting
interface for advanced users to write scripts to run and
control multiple experiments in a batch mode. It also
automates the collection of data and provides common

analysis tools for comparison of results between
experimenters.

Support for collaboration and reuse. DETER is intended
for the security research community to help each other in
developing and evaluating cyber security defenses. SEER
facilitates collaboration by allowing security researchers to
share and reuse their components within and across
experiments. In addition, an experiment configuration can
be saved and readily reused by other researchers.

Extensible. It is impossible to anticipate all possible
components required by future experiments. Therefore,
SEER provides a systematic way for security researchers
to add new components (e.g., new attack tools, new
background traffic generators) to the framework as new
agent types. Our vision is that a researcher will choose to
use SEER because of its wide range of supported features,
and will add their own novel components to SEER because
they find it convenient and productive to do so. This will
lead, we hope, to a virtuous cycle in which the growing set
of community developed features attracts even more users
to the testbed.

Security. As SEER and the DETER testbed are used for
experimentation with attacks or malicious code, it is
important to mitigate the potential risk and assure that the
attacking code will not be accidentally released to the
Internet. In particular, experiment nodes cannot exchange
IP packets directly with the Internet. A DETER user must
logon to the DETER control plane server (users) in order
to logon to an experiment node. SEER employs secure
communication between the users’ desktop machine and
the DETER server. In performing experiments with
malware, security measures are needed to contain the
malware on the experiment nodes, verifying that no
residual malware remains after the experiment is
terminated, and ensuring that potentially infected files are
cleaned or encrypted before being released to the
experimenter.

Tool Integration
Over time, many different tools (e.g., attack tools, traffic
generation tools, network configuration tools) for
supporting various security and network experiments have
been developed. As these tools are developed by different
researchers for their experiments, it will take significant
effort for other researchers to utilize them. SEER aims to
integrate a wide range of existing and future tools, tying
them to a unified framework and providing common
interfaces for the user to conduct experiments using the
tools.

In particular, we identify the following building blocks of
a security experiment.

3

• Network infrastructure configuration
• Generation of background traffic and activity in the

test network
• Simulation of attacks
• Deployment and management of defense mechanisms
• Instrumentation and data collection
• Data analysis and visualization

A security experiment may need some or all of these
building blocks. Currently SEER contains a library of
traffic generation tools, attack tools, network configuration
tools, and data collection and presentation tools. In the
next section, we will describe the implementation of SEER
in detail.

3 Implementation Detail

SEER is implemented using a variety of technologies.
Figure 1 describes the high level structure of SEER. It
contains three layers of software that interact with each
other.

Figure 1: The 3-tier Structure of SEER

The top presentation layer consists of interface tools for
users to interact with the experiment. Currently, it has a
Java-based GUI and a Perl-based scripting interface. The
SEER GUI provides a click-and-choose interface for users
to configure various components in the experiment, either
in real-time or capture and written to a script for later use.

The bottom layer consists of software agents running on
every experiment node. The agent is responsible for
performing the configuration required at the node on
which it runs. The functionality of an agent can be
extended through the loading of modules. We classify
modules into the following types: traffic generation
modules, attack modules, defense system modules, data
collection & analysis modules, and network service
modules.

The middle layer runs on a special control node in the
experiment. It listens for high-level commands received
from the presentation layer and sends low-level commands
to the agents. This logic could be run on a testbed server
such as users, but an extra control node in each experiment
is used instead to offload the processing, storage, and
network traffic. It is also necessary to run within the
confines of the experiment if containment is required.

Figure 2: Runtime Architecture

Figure 2 depicts the runtime architecture of SEER. When
the experiment starts in DETER, every node in the
network will run an agent, which listens to commands
from the control layer. The control node communicates
with the agents using the Emulab event system.

An agent’s state is represented as a set of variables that can
be set, changed, or deleted. In addition, an agent performs
actions in response to an event. Agents are categorized
based on their object type and their group name. Each
node in the experiment maintains the same agent state.
When an action is to be performed on an agent group,
every node belonging to that group will perform the action.
Variables such as NODES, CLIENTS, and SERVERS instruct

XML RPC

Control Node

Java
GUI

Executed
Scripts

Event
State

Agent

Agent

Agent

Agents running
on experiment
nodes

Emulab
Event
System

Presentation Layer

Java GUI Scripting
Interface

Agents HTTP
 Module

FTP
 Module

ICMP
 Module

IRC
 Module

VOIP
 Module

DWARD
 Module

TCPdump
 Module

Route
 Module

Agents Agents Agents

 Control Layer

Event State Logic

Backend

4

an agent as to its role in the group, and what the necessary
operations are to be performed. For example, a node that
is not listed as a client or a server in a HTTP background
traffic generation group will simply perform a no-op. If
the client or server variables change, the new clients or
servers will already be aware of any other variables that
were set previously.

The SEER GUI can run on the end user’s desktop
anywhere in the Internet. It employs XMLRPC to allow
the GUI running on a remote host to communicate with the
control node in the experiment. In the DETER environ-
ment, a SSH connection is used as the XMLRPC transport
to the DETER control plane by logging in to the
users.isi.deterlab.net server. From users.isi.deterlab.net,
the XMLRPC is proxied to the internal DETER XMLRPC
server or the SEER experiment control node, depending on
the function called.

Currently SEER consists of a library of background traffic
modules, a suite of network service modules, and a library
of DDoS attack tools. The background traffic generation
module supports generation of various traffic types
including ICMP Echo, DNS, HTTP, FTP, SSH, IRC, and
VOIP traffic. The frequency of the client service requests,
the data sizes of the requests and the replies, and duration
of the connection can be specified using common
statistical distributions including the Pareto, Gamma, or
Exponential distributions. In addition, the suite includes
Harpoon, an Internet traffic generation tool that can
produce background traffic. The replay agent allows a
captured traffic dump, when available, to be replayed
within the experimental network.

Each node in the experiment may play the role of an entire
subnet, defined by network address and mask. The traffic
generation tools will automatically recognize the subnet
address ranges, and use them as the source and destination
for their traffic, selecting addresses in the subnet at random.
Other methods for selecting addresses from the subnet
range will also be supported in future versions.

SEER contains a library of DDoS attack tools that can
reproduce a repertoire of DDoS attacks commonly
occurring on the Internet. In the future, we will augment
these tools with a spyware and adware library, as well as a
collection of botnet code for conducting experiments with
spyware, adware, and botnets.

3.1 Scripting Support

The agent framework provides a very simple abstraction to
the event transmission and agent groups in Perl. Using this
abstraction, the experimenter can specify an experiment in

a Perl script using any of the language constructs available.
The experimenter creates a reference to an agent group
using the idiom:

$var=Agent::New($txobject,group_type,group_name);

The returned variable can be used to set variables and send
events to the given group of agents with the Set(hash)
and Event(string) functions. Shortcut functions
Start(), Stop() and SetLocation() are also
available. The experimenter is responsible for under-
standing what variables can be set and what they do. This
information is available at http://seer.isi.deterlab.net.

Scripts are executed in the experiment environment and
simply inject events into the event system. Therefore any
application or script that is capable of injecting events
could potentially be used. Future work may include other
language interfaces as well as additional pre-defined
interfaces specific to each agent type.

4 Example

This section illustrates how a security researcher
configures and runs a simple DDoS experiment using
SEER. The experiment has a simple topology consisting of
four nodes connected to each other.

Figure 3 presents a DETER topology definition that
specifies the network topology as well as the necessary
initialization for SEER. The syntax and semantics of the
definitions are based on the topology definition in ns2.
Lines 6-13 describes the nodes (V, R, A1, A2, and control),
including the name of the node, the machine type, the
operating system the node will run, and the DETER group
they belong too. Control is the control node that runs the
SEER control software. It is only connected to the control
plane. Line 10 instructs DETER to load the SEER agent
software on every node. Lines 15-17 define the links
between the nodes. Lines 22-24 instruct DETER to start
the SEER agent when the node boots up.

5

Figure 3: A DETER Experiment Topology Definition

A user can access the nodes by swapping in the experiment.
After that, the nodes are reserved and links between them
are properly set up, and SEER agents are started on every
node.

A user can start the SEER GUI to further configure the
experiment. Figure 4 depicts the SEER GUI startup
window. It shows the current available functions grouped
in several categories. A user can attach to the experiment
which was just swapped in using the attach command. The
user needs to supply his username and account on the
DETER server so that the SEER GUI can connect to the
DETER server using SSH and execute XMLRPC functions.

Figure 4: SEER GUI Main Window Frame

The SEER GUI allows the user to view the topology by
clicking on the topology tab (See Figure 5). In addition, it
allows the user to simply click on an interface of any node
in the topology to visualize the incoming and outgoing
packet and data transfer rates. The traffic is color-coded so
that legitimate and attack traffic can be visually
distinguished from each other.

Figure 5: SEER GUI Topology Frame

For nodes that attempt to drop or limit forwarded attack
traffic, the forward graph will also display legitimate and
attack traffic that has been dropped. This significantly
reduces the barrier to experimentation for a novice user.

Figure 6: Configuration of the Harpoon Traffic
Generation Group

1. set ns [new Simulator]
2. source tb_compat.tcl
3.
4. #Create the topology nodes
5. set proggroup [$ns event-group]
6. foreach node { V R A1 A2 control } {
7. set $node [$ns node]
8. tb-set-node-os $node FC4-STD
9. tb-set-hardware $node pc3060
10. tb-set-node-tarfiles $node
 /share/workbench/wb-fc4-20070522-dev.tgz
11. set $node-prog [$node program-agent]
12. $proggroup add $node-prog
13.}
14.#Create the topology links
15.set linkRV [$ns duplex-link $V $R 100Mb 3ms DropTail]
16.set linkRA1 [$ns duplex-link $R $A1 50Mb 3ms DropTail]
17.set linkRA2 [$ns duplex-link $R $A2 50Mb 3ms DropTail]
18.$ns rtproto Static
19.
20. #Start the workbench backend on each node
21. set setupseq [$ns event-sequence {
22. $proggroup run -command "sudo
 /usr/wb/bin/experiment-setup.pl"
23. }]
24. $ns at 0 "$setupseq start"
25. $ns run

6

A researcher can generate background traffic, deploy and
start the defense, and start and stop the attacks at
appropriate times. Figure 6 depicts the configuration
screen for a group (Har1) of background traffic generators
using the Harpoon module. The SEER GUI allows the user
to select the parameters, including the node participating in
the traffic generation, the time between each web request,
the size of the reply, etc. The user can start or stop the
harpoon traffic using the start and stop button. Similarly,
the user can create a Flooder attack group (a synthetic
attack tool developed by SPARTA) to generate attack
traffic. Finally, Figure 7 presents a typical graphical
display in which an experimenter can monitor the status of
several measurements simultaneously as the experiment
scenario unfolds on the emulated topology.

Figure 7: SEER GUI Graphical Display of Traffic

5 Discussion and Future Work
Several efforts are closely related to SEER. The Emulab
Experimentation Workbench [6] is designed for generic
networking experimentation. It provides storage, recording,
replay, and versioning. The complementary nature of
SEER and the Emulab workbench provide the potential for
synergy as DETER users can leverage some of the Emulab
workbench facilities from within the SEER framework,
rather than develop their own variants. The DDoS
Benchmarking [3] effort aims at establishing benchmark
experiments for evaluating and comparing DDoS defenses.
The Benchmarking effort employs SEER to configure
DDoS experiments.

SEER eases the process of conducting security
experiments so that researchers can focus their attention on
the core aspect of the research. Our ultimate goal is to
support a wide range of security experiments. Currently,

SEER consists of tools for DDoS experimentation. In the
future, we will incorporate support for performing
experiments with malware such as spyware, adware, and
botnets. In particular, additional precautions are required to
conduct experiments with malware that might propagate to
other hosts. Under a related effort, DETER researchers are
developing a Malware Containment capability to enable
users across the Internet to access a controlled, isolated
Malware experiment. SEER will be extended and tailored
to support this class of experiments. A wiki located at
http://seer.isi.deterlab.net contains directions for down-
loading and using SEER on the DETER testbed.

6 Acknowledgements
This material is based upon work supported by the
Department of Homeland Security, and Space and Naval
Warfare Systems Center, San Diego, under Contract No.
N66001-07-C-2001. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the Department of Homeland Security for the
Space and Naval Warfare Systems Center, San Diego.

7 References
[1] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K.

Sklower, R. Ostrenga, and S. Schwab. Experience with
DETER: A Testbed for Security Research. In Proceedings
of the 2nd IEEE Conference on Testbeds and Research
Infrastructures for the Development of Networks and
Communities (TridentCom 2006), Barcelona, SPAIN, March
2006.

[2] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M.
Newbold, M. Hibler, C. Barb, and A. Joglekar. An
Integratede Experimental Environment for Distributed
Systems and Networks. In Proceedings of the Fifth
Symposium on Operating Systems Design and
Implementation (ODSI), pp. 255-270, Boston, MA, Dec.
2007.

[3] J. Mirkovic, S. Wei, A. Hussain, B. Wilson, R. Thomas, S.
Schwab, S. Fahmy, R. Chertov, and P. Reiher. DDoS
Benchmarks and Experimentation Workbench for the
DETER Testbed. In Proceedings of the 3rd IEEE
Conference on Testbeds and Research Infrastructures for
the Development of Networks and Communities
(TridentCom 2007), Orlando, FL, May 2007.

[4] A. Hussain, S. Schwab, R. Thomas, S. Fahmy, and J.
Mirkovic. DDoS Experiment Methodology. In Proceedings
of the DETER Community Workshop on Cyber Security
Experimentation, Arlington, VA, June 2006.

[5] S. Schwab, B. Wilson, and R. Thomas. Methodologies and
Metrics for the Testing and Analysis of Distributed Denial
of Service Attacks and Defenses. In Proceedings of IEEE
MILCOM, Atlantic City, NJ, 2005.

[6] E. Eide, L Stoller, and J. Lepreau. An Experimentation
Workbench for Replayable Networking Research. In
Proceedings of the Fourth USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
Cambridge, MA, Apr. 2007.

