
1

A Plan for Malware Containment in the DETER Testbed

Ron Ostrenga and Stephen Schwab
SPARTA, Inc.

Robert Braden
USC Information Sciences Institute

Abstract

The DETER testbed provides a shared Internet-accessible
environment where security researchers can safely run
experiments and companies can test their security products.
Experimentation with malware in DETER has so far been
limited to simulated worms, which only simulate the
spreading action without actually infecting any computer
systems. This paper outlines a set of architectural and
procedural changes that should allow safe experimentation
with a class of moderately risky, real malware in the
DETER testbed.

1 Introduction
The DETER testbed laboratory [1,9] which runs a tailored
version of Utah’s Emulab software [2], provides a shared
Internet-accessible environment where security researchers
can run experiments and companies can test their security
products, without threatening the Internet. DETER was
initially funded in 2003 by the National Science Foundation
(NSF) and the U.S. Department of Homeland Security
Advanced Research Projects Agency (HSARPA); it is
currently funded by HSARPA. This paper assumes some
general knowledge of the design of Emulab.

As a security testbed, DETER is designed to provide
containment and isolation for all experiments. For example,
there is no direct IP path from a DETER experimental node
to the Internet. A wide range of cyber security-related
experiments have been performed on DETER, including
DDoS attacks, worm propagation, and BGP attacks.

However, DETER malware experimentation to date has
been primarily focused on simulated worms that did not
actually exploit operating system vulnerabilities; instead,
they simulated the spreading action without actually
infecting systems. Real malware experiments have required
the testbed to be disconnected from the Internet, and testbed
operators to be extensively involved in executing an
experiment. This paper outlines a set of extensions to the
DETER testbed architecture, policies, and procedures to
enforce strengthened containment to enable controlled
experimentation with real malware that is moderately risky,
and furthermore, to enable experimenters from remote sites
to interact with and run these experiments without excessive

support from the local testbed operations staff. We use the
term malware containment for the stronger containment
discussed in this paper.

The Anti-Virus (AV) research community, including
individual security vulnerability researchers as well as
billion dollar corporations, has built up a modus operandi
over many years of tracking malware. The results are a set
of practices that enable sample sharing, safe handling,
participant vetting, and control of information dissemination
within the community [3]. One of the overall goals in
creating a malware containment capability for DETER is to
support collaboration and interactions between DETER
users, academic researchers, and the existing AV research
community. To facilitate these on-going interactions, we
intentionally adopt a malware containment strategy that
aims to be substantially compatible with the practices of the
AV research community, as described below.

1.1 “Moderately Risky” Malware
Specifically, we wish to provide safe containment for real
malware that infects widely deployed general purpose
operating systems, such as Windows, Linux and FreeBSD,
and that is currently detectable by anti-virus (AV) software
or by intrusion detection systems (IDS). Our goals include
supporting experiments with worms, viruses, botnets, email
mass-mailers, adware, and spyware that chronically infect
systems attached to the Internet.

We can classify malware as follows, loosely in order of
increasing risk. We acknowledge that these classes are
tentative, not necessarily objectively defined, and that
experts may disagree as to the class and relative risk of
specific malware samples:

 Class 1: Malware that is known not to mutate from
generation to generation and that is recognized by
AV scanners or IDSs with current signature files.

 Class 2: Malware that is polymorphic, i.e., may
mutate into several distinct forms, but each
presents a known signature from a decrypted body.

 Class 3A: Malware that is metamorphic and does
not present known signatures in all its forms.

 Class 3B: Malware that tampers with the
“hardware”, i.e., infects BIOS or nonvolatile
storage (RAM/EEPROMs/Flash) other than the
primary file system stored on hard drives.

 2

 Class 4: Unknown malware, including newly
discovered wild samples.

The selection of numerical classes 1-4 is meant to loosely
correspond to bio-safety levels [4] for infectious agents.
Innocuous agents belong to class 1; lethal viruses such as
Marburg and Ebola belong to class 4.

We are proposing to fully support only classes 1 and 2, i.e.,
our approach will depend upon the ability to recognize the
malware using commercial AV scanners with current
signature files. With some limitations and additional
restrictions, the same techniques may be applicable to some
members of class 3, on a case-by-case basis. We expect that
class 4 will continue to require the complete system
isolation (“clean room”) techniques that have been used for
all classes in the past.

1.2 Requirements
Current best practices within the AV research community
for handling malware involve isolating the machines and
networks where malware will be loaded and studied. Only
trained and trusted individuals are permitted to work with
malware in these controlled environments. Most
organizations accomplish this by physically locating the
machines in a secured room without external network
connectivity, and imposing a restriction that no media
entering the room be allowed to leave. Certain exceptions
are made for sharing or exchanging malware samples
between collaborating organizations, with the malware
traditionally being transported via media such as floppy
disks, not over the Internet.

The primary requirement for DETER’s malware
containment mechanism is to provide a similar level of
assurance by isolating the environment in which malware
can run, while permitting remote experimenter’s to control
or interact with the environment over the Internet. Like the
AV research community, we assume evil intent in the
malware but not in the experimenters running the malware
(although human errors must be accommodated); any
security can be thwarted by compromised personnel.

This top-level requirement is driven partly by technical
need, but mainly to promote a strategy of long-term
interoperability and sample sharing with the AV research
community. A key tenet of our plan will be to design to fit
with current best practices, adopting the same policies,
procedures, and technical mechanisms where feasible. For
example, we will initially require that malware be imported
to DETER on shippable media -- optical disk (CD-R/DVD-
R) or an external hard drive -- not over the Internet. While a
design employing FTP of encrypted archives might provide
a similar degree of protection, the AV research community
has generally adopted a best practice of not transmitting
malware, in any form, over the Internet, to prevent

accidental release. Clearly, this community believes that
using physical media is less likely to result in accidental
release when compared to the risks of sending data archives,
even encrypted ones, over the Internet. (More recently,
some members of the AV research community have shifted
to using password-protected archive formats to contain
malware samples while being transferred over the Internet.
Once we have gained experience with safe handling and
transfer of malware, DETER may also introduce similar
password-protected archives modeled on these best
practices.)

On the other hand, safe containment of malware
experiments in DETER requires a set of policies and
operational procedures as well as specific technical
mechanisms to ensure containment. We wish to break with
the AV research community practice of complete isolation,
because we must meet a DETER objective of allowing
researchers to access the testbed without physically
traveling to the testbed cluster sites. Our plan controls how
and where malware may be introduced within the testbed,
and recognizes the following requirements.

 Malware Transport: As described earlier, any
malware must be transported to or from the testbed
on physical media, clearly marked. Ideally,
documentation of the malware contained on the
optical disk or external hard drive will accompany
it. It may also be encrypted.

 Isolation: Live malware must only be introduced
into experiments that are isolated, by means
described below, from the DETER control plane
and the rest of the Internet.

 Sterilization: All live malware must be removed
from DETER experimental nodes before isolation
is broken and the nodes are made available for use
by other experiments.

 Cleaning: Experimental results, including logfiles
or other data from a malware experiment, must be
AV scanned and cleaned before they are released
from the DETER containment facility to a general
DETER user account. This is the principle reason
that our plan supports only classes 1 and 2, i.e.,
malware with recognized AV signatures. In the
absence of a known signature, it is very difficult to
automate the release of experiment results while
assuring containment.

 Control: Media containing malware must be
secured when not in use. The DETER clusters are
physically secured, and malware loaded on and
controlled by DETER meets this standard of
physical security.

 Defense in Depth: We should avoid depending
upon any single mechanism for containment.

 3

Additionally, we note that all DETER experiment
applications are reviewed by an executive committee, and
security risks posed by each proposed experiment are
assessed prior to granting approval. Malware experiments
are closely scrutinized, and operations staff will be tasked to
ensure that new malware experimenters are aware of safe
malware handling procedures and to ensure compliance with
DETER malware policies and procedures.

In our experience with the DETER testbed, the only
occasions of loss of isolation/containment were caused by
experimental modifications to the testbed control plane
software, e.g., adding new features. During the time that one
or more malware experiments is running, the operational
staff must ensure stability of the testbed control software.

2 High Level Design

2.1 Overview
The primary features of an approach to malware
containment, which will meet the above requirements, are as
follows:

1. An enhanced isolation mechanism, using firewalls
and VLANS, that will prevent any unauthorized
data, including possible exploits or self-
propagating code, from leaking out to affect other
experiments, the DETER control plane, or the
Internet.

2. Mechanisms and procedures for safely introducing
malware into a contained malware experiment.

3. Mechanisms to allow the experimenter to remotely
control and monitor the experimental nodes. Of a
contained malware experiment. Specifically, the
experiment can access a contained malware
experiment only via a carefully-limited Virtual
Network Console (VNC) [5] session. This is
discussed more fully below.

4. Procedures to safely AV scan, clean, and extract
results such as logs and traces from the experiment.
This may additionally include quarantining
malware samples, using encrypted archives for
example, to provide persistent storage between
runs of the same malware experiment.

5. A mechanism to zero-wipe all components
involved in the experiment upon termination. An
exception will be made for components that are
dedicated exclusively to supporting malware
experimentation, which will alternately be isolated
when not in use. (By removing power, or
physically disconnecting network cables, for
example.)

When the malware is stored at the testbed site and
introduced into an experiment or when data is extracted
from the experiment, it is necessary to provide some

technical means of rendering the malware harmless. We
consider two possible mechanisms for accomplishing this:
(1) encrypting the files that may contain the malware, or (2)
storing the malware on an external hard disk that can be
powered down independently of the host system to which it
is attached. We need more experience to understand the
tradeoffs between these two mechanisms, and we currently
plan to use one or both in each contained experiment, while
evaluating their long-term costs and risks.

We plan to integrate the malware containment mechanisms
into Emulab’s control software, taking advantage of
Emulab’s recursive self-hosting feature known as “Emulab-
in-Emulab” (“EinE”) [6], in conjunction with augmenting
the Emulab per-experiment firewall configured and
deployed automatically at the boundary between the
DETER control plane and the experiment itself. This
approach will provide a layer of defense to protect the
“outer” control plane of the DETER testbed, while imposing
modest limits on the experimenter.

2.2 Phases of a Malware
Experiment

A malware experiment will be conducted in phases,
described below and illustrated in Figure 1. The phases are
controlled by state kept outside the contained experiment1.

The malware containment control state prevents violation of
the containment policies. However, manually following the
sequence of steps shown in the figure and described in detail
below will be complex, especially for novice users. To aid
users, reduce errors, and reduce support calls to testbed
operations, we plan to incorporate malware containment
controller agents into DETER’s Security Experimenter’s
Environment (SEER) [7]. SEER provides an experiment
control node within an experimental. This node is
controlled by the user through the SEER GUI.

In a non-malware experiment, the SEER GUI (a Java
executable) can execute on the user’s desktop, and contact
nodes in the experiment via a proxy running on
users.deterlab.net (the outer users host on the left side of
figure 1.) In a malware experiment, the SEER GUI is
executed on a node within the experiment, preferably the
control node, and may display its frame on a virtual VNC
server display. The DETER experiment’s desktop will
connect through a path including VNC port forwarding on
users.deterlab.net and a VNC application proxy on the per-
experiment firewall. All the flexibility and automation of
SEER will be available to malware experiments because the
project and per-experimenter file systems are cloned from
the outer users to the inner users machine when the
experiment is created, along with a cloned set of databases

1 In the “outer” DETER control plane

 4

and other state from the outer boss to the inner boss
machine.

We expect to extend SEER with node agents and convenient
PERL scripts for invoking the malware containment
machinery in accordance with the rules described here.
However, steps that require the user to interact with the
outer DETER control plane will not be available from the
SEER GUI after the containment firewall is activated.
Instead, an experimenter would use a separate web browser
connected to the outer boss to control those aspects of the
experiment. The malware containment lifecycle includes six
phases (see figure 2) as described in detail in the remainder
of this subsection.

2.2.1 Preliminary Configuration
Phase S0: To run an experiment with real malware, the
experimenter’s ns2 script must specify a firewalled EinE
configuration to the DETER control plane. It must also

designate a Malware Archive (M/A) node. The DETER
control plane is configured to make the M/A node a special
class of DETER node that cannot be allocated to an
experiment unless it is specified as a part of a firewalled
EinE type experiment. Testbed operations staff will load the
physical media containing the (possibly encrypted) malware
into this node in advance of the first run of the malware
containment experiment. Subsequent runs of the
experiment may use the malware previously loaded, without
requiring manual intervention.

An experimenter creates a firewalled Emulab-in-Emulab
(“firewalled EinE”) experiment within their project, swaps it
in, configures it, and tests it without malware. Using
Emulab software, the topology may be specified directly by
an ns2 script or may be created using the GUI tool located
on the create-experiment page. During this phase, the
experiment does not need malware containment.

S0: SWAP-IN

USERS

BOSS
Node N

Node 1

Experimenter’s
Desktop Computer

SSH
Tunnel

VNC Port
fowarding

Permitted
VNC
Session

S1: Blocked Traffic

VNC
Server

Controlled
Malware
Release

S2

S3Contained Experiment Lifecycle:
S0. Swap-in and Configure Experiment
S1. Containment
S2. Unlock Malware (Decrypt Archive)
S3. Release and Observe
S4. Power cycle and Zero Disks
S5. Data Extraction with AV Scan

Malware/
Archive
Server

CD/R
DVD/R

Inner
USERS

Inner
BOSS

S5

CD/R

DVD/R

Control
Node

External
USB

Hard Drive

Containment
Firewall

VNC
Application

Proxy

Node 2
Node 2

Node 2

Figure 1. The DETER Architecture for Malware Containment.

 5

2.2.2 Containment Establishment Phase

In Phase S1, the user requests that malware containment be
established for the experiment. It is created by allocating a
special malware archive node that causes the Emulab
swapin process to configure and instantiate a per-
experiment firewall (“Containment Firewall” in Figure 1) to
severely restrict traffic into and out of the experiment. The
only IP traffic permitted across the firewall is a carefully
controlled VNC (Virtual Network Console) [5] session,
which is used by the experimenter to interact with the
contained experiment. Of course, the malware being tested
must be known not to be able to infect the firewall.

2.2.3 Malware Introduction Phase
Phase S2: After the firewall is in place to provide malware
containment, the DETER control plane powers up the
external disk drive on the Malware Archive (M/A) node,
containing the malware, or signals the M/A node to unlock
(decrypt) the malware for the experiment. Note that only
DETER’s (outer) Boss server has direct access to the
power controller for the M/A node and its external hard
drive, and hence determines when the malware is provided
within the experiment.

2.2.4 Experiment Execution Phase
Phase S3: The user controls and monitors the experiment
over the VNC session. Within the containment boundary
(shown by the dashed red line in Figure 1), the “inner
Users” and “inner Boss” nodes implement the normal
Emulab control plane functions for the set of nodes
allocated to the experiment, and isolated from all other
experiments. For example, the Firewalled EinE mechanism
allows the contained experiment to have NSF access to a
local copy of the project’s file space.2 However, this data
(and all other data in the experimental run) will be wiped at
experiment termination unless steps are taken to preserve it.

The experiment nodes can create files (e.g., log or trace
files) to be made available after experiment termination by
encrypting them and writing them on an optical CD/R or an
external hard drive (XHD). Such a disk can later be
removed by the operations staff and sent offsite to the
experimenter’s home location for decryption and analysis.
It is also possible to have files persist across multiple
invocations of the experiment by storing them on an
external hard drive associated with this experiment. In this
case, the DETER control plane associates the external hard

2 Emulab stages the project files to the “inner” User node,
copying from the “outer” Users node.

drive with this malware experiment, and ensures that power
up of the hard drive only happens during containment.

2.2.5 Data Extraction Phase
Phase S4: The experimenter terminates the experiment by
requesting “swapout” from the outer DETER control plane.
All experiment nodes (except the M/A node) are power
cycled and their disks zeroed before the experiment is
swapped out and nodes reused. It is still useful to perform a
swap out operation on a zeroed experiment, as the nodes
will be re-imaged with their initial pristine operating system
images upon a future swap in. The M/A node will not be
zeroed, but rather powered down at this point.

2.2.6 Experiment Termination Phase
Phase S5: The M/A node will be powered up and rebooted
with a contained experiment extraction image, to clean it up
and retrieve results after a malware containment
experiment. The same malware containment mechanisms
will be reused, but the “experiment” will consist solely of
the Malware Archive node and its attached external hard
drive. Once contained, the Malware Archive node will
perform an AV scan and clean specific files or archives,
moving them off the external hard drive and onto the
Malware Archive’s own hard disk. Upon completion, the
external hard drive will be powered down again, and the
firewall will permit the transfer of the specific clean files
from the Malware Archive node to the experimenter’s file
system in the outer Users node.

Additional degrees of protection can be tailored for specific
malware experiments, such as using more than one external
hard drive or introducing additional reboot and zero disk
cycles, on a case-by-case basis.

 6

Figure 2 Phases of the Experiment

2.3 Discussion
Normally a DETER experiment can be swapped out and
later swapped back in to continue. However, since a
malware containment experiment is zeroed upon swap out
and has no access to the normal NFS file system used to
record intermediate experimental progress, an alternate
mechanism, the dedicated USB- or Firewire-attached
external hard drive (XHD), is proposed. The external drive
will be designated in the DETER database as being
dedicated to a single malware project. It should also be
marked as a device that is “dirty”, i.e., possibly infected.

Minimally, these drives will need to be zeroed, AV-scanned
and cleaned before they can be reused by a different
experimenter. During the experiment swap-out process, the
external hard drive will be powered-off prior to the
containment firewall being disabled. If necessary, it can be
disconnected from the machine to which it was attached and
put in a place for safe keeping until the experimenter
requests that the drive be re-attached to another Malware
Archive node within a firewalled EinE experiment for
subsequent experimentation. The drive can also be sent to
the experimenter’s home site for further analysis. While
these steps may not be relevant to all experiments, they are
options that are available, and easy to perform when
persistent storage is restricted to external hard drives, as
opposed to the internal hard drives within experiment nodes.

3 Implementation Details

3.1 Malware Procedures

Malware for a particular project will be kept as an encrypted
archive file (encrypted tar files or zip files are appropriate
formats.) This file can be sent to the testbed operation staff
on removable media, a CD/R or DVD/R disk, or on an
external hard drive (XHD).

 Before introduction into the experiment, the

operation staff, working on an isolated system, will
decrypt the archive file and scan the contents with
an AV scanner. The scanner should detect the
malware; if it does not, the experiment fails the
assumptions given above and it must not go
forward. The scanner will be configured not to
delete the malware from the archive for this test.

 The operations staff will load the disk containing
the encrypted malware archive file into a drive on
an experimental node that is dedicated to the
project running the malware experiment. This
node, called a Malware/Archive (M/A) Server,
must be allocated to the malware experiment and

 7

must be within the containment provided by the
per-experiment firewall.

 The decryption key for the malware archive will be

maintained in the primary testbed control database
(i.e., on the outer Boss.) The key will be copied
and made available to the experimenter on the
inner Users machine, by being stored in a
predetermined location in the project’s directory.
After the firewalled EinE experiment swaps in and
containment is established and verified, the
experimenter will be granted access to the Malware
Archive server. Using the key, files from the
encrypted archive may be decrypted and released,
allowing subsequent behavior to be observed on
one or more nodes in the experiment.

3.2 Running the Experiment

 Malware experiments must be constructed to use a specific
type of experiment that is known as a firewalled Emulab-in-
Emulab experiment. This type of experiment creates copies
of the users machine and the boss machine and isolates
them from the real DETER by means of a firewall and vlan
separation.

 A standard feature of a firewalled Emulab-in

Emulab experiment is the panic button. In case of
an unexpected malware leakage this button can be
pressed via the external DETER web interface.
This will disconnect the malware experiment from
the rest of the DETER testbed.

 The firewall for containment will be highly

restrictive, allowing only VNC traffic to pass on
the control “network” (VLAN) between the
experiment and the main (“outer”) DETER control
plane. “Inner” experimental nodes will have no
control network interface connection to the “outer”
common control network VLAN for all of DETER.
It will also guarantee that all experimental network
traffic is limited to VLANs with connections to
other inner experimental nodes, or to the single
firewall node.

 Specifically, the firewall will implement an

application-layer proxy that inspects VNC protocol
traffic in both directions. Only screen bitblts (pixel
output) and cursor updates will be delivered in the
outbound direction, and the outbound stream will
be carefully monitored to prevent buffer overflow
types of attacks. Input events (keyboard, mouse

movement, mouse clicks) will similarly be checked
in the inbound direction.

The use of the VNC virtual network console to allow safe
experimenter interaction with a contained experiment is a
central feature of our design.

 The user will use the VNC session to invoke the

malware-extract command, which will cause a
malware agent inside the firewall to decrypt and
extract the malware binaries or other files from the
malware archives and place them in the designated
directories.

 AV scanners will run in the main DETER control

plane, scanning the testbed control nodes and the
firewall during the malware experiment. An
intrusion detection system (IDS) box will also be
scanning the control network interfaces for
malware.

3.3 Ending an Experiment

Normally, a DETER experiment can be “swapped out” and
saved to be later “swapped in” again. This is not possible
for a malware experiment; the last step before containment
is removed will be to zero-wipe all experiment nodes and
power off all internal hard drives. Therefore a malware
experiment cannot save its state between experimental runs.
After all experiment nodes, including the firewall, are zero-
wiped, the experiment will swap out. An AV scan will be
done on the nodes that were allocated to the experiment and
if they are clean then they will be returned the DETER
available nodes pool.

3.4 Extracting Data and Results
It will be possible to explicitly save logs and data from one
run to the next of the same malware experiment, by writing
the data on an external hard drive (XHD) or by burning a
CD/R. The XHD will be powered down individually before
containment is removed, and powered up only after
containment is re-established. It may also be encrypted,
using a key that will be printed to the screen via VNC and
must be copied out by hand.

 As an additional precaution, the XHD will be

scanned with an AV scanner to remove any copies
of the self-propagating malware, before it is
powered down. Once the XHD drive is certified to
be clean of malware, it may be powered-on in a
non-contained experiment to retrieve data and files.

 Alternatively, the testbed OS image used for AV

scanning may be used to transfer an explicit list of

 8

files and archives from the XHD to an accessible
file system on users or the experimenter’s home
network. The selection between these two options
is a per project policy choice, to be made on a case
by case basis when the experiment is approved or
its secure requirements change.

4 Future Steps
The next step for the DETER testbed is to finalize the
implementation and deployment options within the
framework outlined in this paper, and begin coding up the
primitive functions as modifications to existing Emulab
software. In parallel with this development effort, a red
team effort will be conducted to assess the overall residual
risks, and to help improve the assurance of the malware
containment software prior to roll-out as a production
feature of DETER.

5 Acknowledgements
This material is based upon work supported by the
Department of Homeland Security, and Space and Naval
Warfare Systems Center, San Diego, under Contract No.
N66001-07-C-2001. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the Department of Homeland Security for the
Space and Naval Warfare Systems Center, San Diego.

6 References

[1] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K.

Sklower, R. Ostrenga, and S. Schwab. Experience with
DETER: a testbed for security research. In Proceedings of the
2nd IEEE Conference on Testbeds and Research
Infrastructures for the Development of Networks and
Communities (TridentCom 2006), Barcelona, SPAIN, March
2006.

[2] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M.
Newbold, M. Hibler, C. Barb and A. Joglekar. An integrated
experimental environment for distributed systems and
networks. In Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation (ODSI), pp
255-270, Boston, MA, Dec. 2007.

[3] R. Hicks, Déjà vu all over again, Virus Bulletin, Jan 1, 2007,
http: //www.virusbtn.com/virusbulletin/archive/2007/01/
vb200701-comment .

[4] J. Y. Richmond and R. W. McKinney (editors), Biosafety in
microbiological and biomedical laboratories, 4th ed, ISBN 0-
7881-8513-6. http: //www.cdc.gov /od /ohs /biosfty/ bmbl4
/bmbl4toc.htm .

[5] T. Richardson. The RFB Protocol, RealVNC Ltd., Version
3.8, June 18, 2007. http: //www.realvnc.com/docs
/rfbproto.pdf .

[6] J. Lepreau. Emulab: recent work, ongoing work. DETER
Community Meeting, January 31, 2006. http: //www.cs.utah.
edu/flux/testbed-docs/emulab-dev-jan06.pdf .

[7] S. Schwab, B. Wilson, C. Ko, and A. Hussain. SEER: a
security experimentation environment. In Proceedings of the
DETER Community Workshop on Cyber Security
Experimentation and Test 2007, USENIX, Boston, MA,
August, 2007.

[8] W. A. Arbaugh, J. D. Farber, and J. M. Smith. A secure and
reliable bootstrap architecture. In Proceedings of the 1997
IEEE Symposium on Security and Privacy, May 4-7, 1997,
IEEE Computer Society, Washington, D.C.

[9] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K.
 Sklower, R. Ostrenga, and S. Schwab. Design, deployment,
 and use of the DETER testbed. In Proceedings of the DETER

Community Workshop on Cyber Security Experimentation
and Test 2007, USENIX, Boston, MA, August, 2007.

