
Design and Implementation of an Isolated Sandbox
with Mimetic Internet used to Analyze Malwares

Shinsuke MIWA†,§ Toshiyuki MIYACHI‡,§ Masashi ETO†

Masashi YOSHIZUMI¶,‡ Yoichi SHINODA†,‡,§

†Information Security Research Center, National Institute of Information and Communications Technology, Japan
‡Hokuriku Research Center, National Institute of Information and Communications Technology, Japan

§Internet Research Center, Japan Advanced Institute of Science and Technology
¶School of Information Science, Japan Advanced Institute of Science and Technology

Abstract

Recent viruses, worms, and bots, called malwares, of-
ten have anti-analysis functions such as mechanisms that
confirm connectivity to certain Internet hosts and detect
virtualized environments. We discuss how malwares can
be kept alive in an analyzing environment by disabling
their anti-analyzing mechanisms. To avoid any impacts
to/from the Internet, we conclude that analyzing envi-
ronments should be disconnected from the Internet but
must be able to make malwares believe that they are
connected to the real Internet. We also conclude that,
for executing environments to analyze anti-virtualization
malwares, they should not be virtualized but must be as
easily re-constructable as a virtualized environment. To
reconcile these cross-purposes, we designed an isolated
sandbox that consists of a mimetic Internet and renew-
able actual nodes. We implemented a prototype system
and conducted an experiment to test the efficiency of our
sandbox.

1 Introduction

Malwares[1], such as viruses, worms, and bots, are daily
becoming more sophisticated. To confront the malwares
threat, it is necessary to observe their behavior, analyze
their mechanisms, and identify issues. Isolated sand-
boxes are good analyzing environments for carrying out
such observations because they have tolerance to attacks
and infections from the outside.

Isolated sandboxes are now easy to build because of
improvements in technologies such as OS and hardware
virtualizations. Since malwares often damage analyzing
environments, the environments must frequently be re-
built. Because of this, virtualization technologies have
been widely used because analyzing environments intro-
duced to a virtualization technology are easy to rebuild.
We had developed a isolated sandbox based on a VMM
(Virtual Machine Monitor) that called VM Nebula.[2]

Unfortunately, some recent malwares have anti-
analysis mechanisms for examining the environment in
which they are being executed. Therefore, such mal-
wares cannot be efficiently analyzed in isolated sand-
boxes and virtualized environments because they are ca-
pable of detecting analyzing environments. Our devel-
oped VM Nebula could not clearly avoid these issues.

We discuss how malwares that have anti-analysis
mechanisms can be safely live observed, analyzed, and
identified in analyzing environments. On the basis of the
discussion, we propose two approaches. The first is the
mimetic Internet, which cannot be recognized as an iso-
lated environment by these malwares. The second is an
executing environment that is based on renewable actual
(not virtualized) nodes for easy reconstruction. We also
designed and implemented a prototype system that incor-
porates our approaches and used it to conduct an experi-
ment to test its efficiency.

In this paper, we will use the following terminology:
an experimental environment for analyzing malwares is
called an analyzing environment, a malware on an exe-
cutable format is called an executable instance, and an
environment for executing a malware is called an execut-
ing environment. A mechanism designed to avoid any
impacts to/from the outside, i.e., the Internet, from/to the
analysis in an isolated analyzing environment is called
an isolated sandbox. The term actual node is used to
mean an actual computer that is not virtualized. Finally,
a virtualized computing environment with OS virtualiza-
tion technologies or hardware virtualization technologies
is called a virtualized environment.

2 Anti-analysis on Malwares

As mentioned above, mechanisms to disrupt analysis
have been introduced on the latest malwares. In this sec-
tion, we describe these anti-analysis mechanisms.

Anti-analysis mechanisms can be classified into two
types: obfuscate executable instances, and restrict exe-

1

cuting environments. We describe these briefly below.

2.1 Obfuscating executable instances
The purpose of obfuscating executable instances is to
disrupt static code analysis with offline reversing tools
such as disassemblers and debuggers. The two major
techniques for disrupting static analysis[3] are:

• Program code obfuscation

• Binary code transformation

These techniques have often been combined to enhance
anti-analysis capability. In this paper, we will not elabo-
rate on them because the static analysis is not our target.

2.2 Restricting executing environments
The purpose of restricting executing environments is to
disturb live code analysis by analyzing environments
such as isolated sandboxes and virtualized environments.
The two major steps are:

Detecting executing environment When a malware
detects an executing environment as an analyzing
environment, it decides whether to execute itself or
not. The malware checks whether it is stepping on
debuggers or executing itself in isolated sandboxes
or in virtualized environments. Then, it carries
out a controlling execution of itself and a hiding
instance of itself based on the result of its decision
to prevent live code analysis.

Controlling execution and hiding instance A mal-
ware controls its execution and hides its instance by
disturbing the live code analysis when it detects a
poorly executed environment, such as an analyzing
environment that may be able to analyze it, or an
environment too insignificant for its execution.
Common techniques for malwares to control their
execution are changing their behavior to non-native
behavior or halting their execution. And also, some
malwares hide their executable instances to disrupt
collection of the unpacked instance, which could
be used to analyze them.

These steps are usually used sequentially, with the first
being used to determine whether or not the second must
be implemented.

3 Related Work

Honeypot technologies such as the Honeynet project[4]
are major technologies for mimicking sites and hosts on

the Internet. Honeypots mimic an analyzing environ-
ment as generic hosts and local sites to intruders. The
Honeynet project has been developing mimicking tech-
nologies with virtualization technologies and mimicking
techniques for large-scale sites, which have been using
them to analyze actual incidents. Our approach is related
to Honeypot technologies, but has some differences. Our
current target is automatic intrusions by malwares, and
our interest is mimicking parts of the Internet.

Virtualization technologies[5] build a virtualized com-
puter in an actual computer. Therefore, they should
provide the following functions: 1) a single computer
should perform as well as multiple computers. 2) a vir-
tualized environment, which is generally called a guest
environment, should be easily managed by a virtualiza-
tion technology’s executing environment, which is gen-
erally called a host environment. 3) the host environ-
ment should be easily concealed from the guest environ-
ment.

Because of these functions, virtualization technologies
have been widely used on high-availability server tech-
nologies and testbeds for testing and experimenting with
systems.

In the recent years, support mechanisms for virtual-
ization technologies have been introduced on some pro-
cessors for personal computers. In response to this, mal-
ware techniques that conceal themselves using proces-
sor virtualization technologies[6] have been developed.
These techniques cannot always be detected by a host OS
because host OSs sometimes execute in ultra thin host
environments[7] prepared by the malware. To counter
these techniques, techniques for detecting a virtualized
environment using specific processor instructions have
been proposed[8]. Different results are returned by these
counter techniques when they are running in a virtualized
environment. Techniques for avoiding[9] detection have
also been discussed. In other words, a cat-and-mouse
game is developing into a vicious spiral.

Strider HoneyMonkeys[10] is capable of exploit de-
tection with virtualization technologies. To detect ex-
ploitation, it drives the Internet Explorer browser and
some programs in a way that mimics a human user’s op-
eration, and analyzes behaviors of the drived programs.
Many web sites that exploit browser vulnerabilities could
be found with it. Although the HoneyMonkeys seems to
be efficient to detect exploitation, yet it seems to have
issues of anti-virtualization malwares as mentioned the
above.

Potemkin Virtual Honyefarm[11] is a honeyfarm with
XEN[12] virtual machine monitor which modified to
support their virtual honeyfarm architecture. Potemkin
goal is high-fidelity honeypots over a large number
of IP address, and prototype Potemkin implementation
achived high-fidelity host emulation, based on the par-

2

avirtualization of modified XEN, for hundreds of thou-
sands of IP address while using only tens of physical
servers. Although the Potemkin seems to provide real
Internet connectivity and high-fidelity emulated hosts to
execute specimens, yet it seems to have issues of anti-
virtualization malwares as same as the HoneyMonkeys.

4 Our Method

To account for the anti-analysis mechanisms in the mal-
wares mentioned above, we focused on techniques of de-
tecting executing environments. In this section, we will
discuss how we can fool the detection, and describe the
design of the prototype system.

This paper focuses on developing analyzing environ-
ments. Methodologies of static and live code analysis,
such as using debuggers, are outside the focus of this pa-
per.

4.1 Requirements
There are two kind of requirements to construct a sand-
box for analyzing live codes of malwares, which have
the detecting executing environment mechanisms. First
is for analyzing malwares, and second is for fooling the
detecting mechanisms. Both requirements must be satis-
fied in the sandbox.

4.1.1 For Analyzing Malwares

Live malware codes might attempt to infect and attack
other hosts and sites based on the malware’s purposes.
Therefore, when there are live codes in a sandbox, the
sandbox helps the infections and attacks.If an analyzing
environment is directly connected to the Internet, it will
suffer from impacts from the Internet because the Inter-
net enables attacks. Therefore, environments for analyz-
ing live malware codes must be isolated from the Internet
to avoid impact to/from the Internet.

Since malwares often damage analyzing environ-
ments, to observe malware behavior, the analyzing envi-
ronment must be rebuilt to recover from damages caused
by the malware. Therefore, analyzing environments must
be easy to rebuild.

In these view, virtualized analyzing environments have
the advantages of:

• making it easy to construct an isolated sandbox be-
cause a virtualized environment usually has a closed
executing environment,

• making it easy to rebuild an environment using
snapshoting itself, and rolling back previous states
which are provided in many implementations of the
virtualization technology.

Even if an analyzing environment would be constructed
based on actual nodes instead of virtualized environ-
ments, these advantages must be kept or alternative
methods for isolation and easy to rebuild must be pro-
vided.

4.1.2 For Fooling the Detecting Mechanisms

They must also be constructed so that they are able to
fool the detecting mechanisms of malwares:

(1) Check whether or not specific targeted hosts and
services are reachable

(2) Detect virtualized environments

There is no simple approach to the reachability check
(1) technique because providing reachability from the
isolated sandbox causes a troublesome conflict between
isolating requirement, which was mentioned the above
subsection. Two common approaches are capable of rec-
onciling the conflict. The first, called the online ap-
proach, provides reachability to specific hosts and ser-
vices on demand. In this approach, curious and intel-
ligent traffic filters must be provided because attacking
and infecting traffic from malware must not be able to
pass through to the Internet. The second, called the of-
fline approach, provides counterfeit reachability. In this
approach, counterfeit hosts and services must be pre-
pared based on the malware’s targets.

In approaches against the virtualized environment de-
tection (2) technique, the advantages of virtualized envi-
ronments, which were mentioned the above subsection,
must be kept, or alternative methods must be provided.
There are also two fundamental approaches. The first
is making virtualized environments seem not virtualized.
The second is providing the same functions as virtualized
environments provide in non-virtualized environments.

Based on these issues, we discuss below how to make
an isolated sandbox appear to be connected to the real
Internet and how to retain the advantages of virtualized
environments in an executing environment based on ac-
tual nodes.

4.2 Our Approaches and Functions
In response to the reachability check technique men-
tioned in the above, we use the offline approach using a
function that enables an analyzing environment to pass
a malware’s reachability check even though it is exe-
cuted in an isolated sandbox is called the mimetic In-
ternet. This kind of function must mimetically provide
targeted hosts, services, and network environments. We
chose this approach because, with the online approach,
it is difficult to eliminate the risk of violating isolation

3

Injecting
Specimems

 Collecting
 Logs

(Trafc)

 Capturing
 Packets

Management
Terminal

Mimetic
Internet

Mimetic
Target Hosts

Emulated
Routes

Dispatched
Specimens

Malware
Incubator

Renewable
Node

Captured
Dumps

Control
Messages

Sensor
Node

Collected
Logs

Control
Messages

Collected
Data

Security
Gateway

Injector/
Collector

Node

Dispatcher
Node

Isolated Sandbox

C
ontroller

Figure 1: Functional Image of Proposed Environment

because traffic filters not only pass through traffic for the
reachability check but may also pass attack and infection
traffic.

For the virtualized environment detection technique,
we use an executing environment based on actual nodes
instead of in virtualized environments, which is called
the malware incubator, that is also capable of provid-
ing the same functionality as a virtualized environment.
This is because techniques for concealing virtualizations
probably interact with techniques for detecting concealed
virtualizations, causing a vicious circle (cf. section 3).
We attempt to avoid the vicious circle.

Figure 1 shows a functional image of our proposed en-
vironment. We discuss these functions in detail below.

4.3 Isolated Sandbox and Controller nodes
An isolated sandbox based on actual nodes can easily be
built to function as a strictly disconnected analyzing en-
vironment. However, in this disconnected environment,
management of the environment through actions such as
introducing and executing specimens, and observations
such as capturing packet dumps and collecting related
logs must be carried out without network connections to
the environment.

Our proposed system provides the isolated sandbox
with separated VLANs, a security gateway and controller
nodes. The analyzing environment is separated on spec-
ified VLANs, which are disconnected from other envi-
ronments, and the security gateway, which is built up
between the isolated sandbox and a management ter-
minal, provides communication channels for controlling
and observing the isolated sandbox.

Figure 2: End-Host View of Internet

According to control messages from the management
terminal, controller nodes control the mimetic Internet
and the malware incubator, and collect related data.
A sensor node provides captured packet dumps with a
packet capture software and collects related IDS logs.
An injector node injects specimens to the malware in-
cubator and issues commands to executing specimens. A
collector node collects related logs from the malware in-
cubator.A dispatcher node dispatchs a specimen to the
injector node and collects related data from the sensor
node and the collector node.

4.4 Mimetic Internet

To construct a mimetic Internet, what is important is
whether or not malwares mistake the mimetic Internet
for the real Internet. This may amount to what could be
observed in the real Internet from an end-host and how
our mimetic Internet mimics the real Internet to the end-
host.

We conclude that the end-host view of the Internet
could be modeled as a collection of behavior of target
hosts involving some services, a count of gateways, and
link qualities such as bandwidths and RTTs, for each tar-
get host and gateway. Figure 2 shows this model. In the
sections below, we use the term target host to mean the
targeted host of malwares checking reachability.

According to the model of the end-host view of the
Internet, if we could emulate the behavior, number of
gateways, and link qualities of each target host and gate-
way, malwares would misidentify as themselves on the
real Internet. Therefore, our proposed mimetic Internet
will be composed of:

• Mimetic target hosts

• Emulated routes

4

We must regard that the mimetic Internet can be con-
structed on virtualized environments because detect vir-
tualized environment techniques on malwares could only
perform to its executing host.

4.4.1 Mimicking Target Hosts

If a malware has information about all the hosts on the
Internet and can check them all, the same number of
hosts must be mimicked on the mimetic Internet. The
malware, however, cannot inspect all the hosts on the
Internet because there is far too much information in-
volved. Therefore, the malware should be able to choose
target hosts from the following classes and combinations
of them:

(1) hosts that are easy to inspect,

(2) principal or fundamental hosts that are always
present,

(3) and hosts specific to the malware.

Accordingly, the proposed system uses mimetic tar-
get hosts from each class. For the easy-to-inspect (1)
class, neighboring hosts on the same network segment
and server hosts for major local services such as SMTP,
POP, Web, and DNS, which are provided on generic
sites, were prepared. For the principal or fundamen-
tal (2) class, global DNS services such as root DNSs,
time.windows.com, which is a default NTP server for
Microsoft Windows XP hosts, famous search engines Ya-
hoo!1 and Google2, and Microsoft Web site3 and Win-
dows Update4 site were prepared. A dynamic configu-
ration of specific target hosts based on the results of a
pre-experiment that executes the malware and collects
communication history were discussed as examples of
the class (3) specific to the malware.

4.4.2 Emulating Routes

On the real Internet, an observed route would perhaps be
changed for each observation because the route would
be chosen by routing mechanisms from many possible
routes. However, the observed route usually has only a
single gateway count because there usually is no other
route to the target host, and the route should be stably
chosen.

The proposed method emulates a route to a target host
using the route emulator and the link quality emulator.
The route emulator emulates as each target host transits
a fixed count of gateways, and the link quality emulator
emulates bandwidths and delays to each gateway using a
network emulation software.

4.5 Actual Nodes Instead of Virtualized
Environment

An actual node usually takes more time and work to re-
build. To solve these problems, our malware incubator
was designed as discussed below.

4.5.1 Malware Incubator with Renewable Node

In live code analysis of malwares, an executing environ-
ment must frequently be rebuilt to recover from dam-
age caused by malwares. This is time consuming and
requires much works.

The proposed method will use a renewable node tech-
nique to reduce the amount of work required. In this
technique, an installed executing environment would be
previously recorded into a disk-image. Then an actual
node can be rebuilt from the disk-image of the same exe-
cuting environment when the executing environment sus-
tains damage.

And note that disk-images must be separated from
a executing environment to avoid damages effect disk-
images. Furthermore, to provide clean environment after
renewing, the executing environment must be rebooted
forcedly because some specimens would often disrupt re-
booting its environment.

4.5.2 Parallel Sandboxing

The renewable node technique should reduce the amount
of work required. However, the time required cannot eas-
ily be reduced.

Therefore, in our method, the environment would be
built up on large-scale practical estimation testbeds, such
as StarBED[13], to solve these problems. The testbed
is composed of an enormous number of the same kind
of actual nodes. The proposed method will use a paral-
lel sandboxing technique. In this technique, the time re-
quired to rebuild, which naturally involves stopping the
analysis, could be reduced because many isolated sand-
boxes would be constructed on the large scale testbed,
and then many specimens can be executed on each sand-
box in parallel.

5 Implementation

A prototype system of our analyzing environment was
implemented on StarBED. In this section, we describe
the implementation of our prototype system. Figure 3
shows an overview of the implementation.

5.1 Isolated Sandbox and Controller nodes
An isolated sandbox must be disconnected from the In-
ternet. In the implementation, it was isolated using sep-

5

Figure 3: Overview of Implementation

arated VLANs. We verified its separateness with a pene-
tration test using nmap[14]. A security gateway is imple-
mented as a simple firewall router. The isolated sandbox
can be managed with controller nodes via the security
gateway.

Controller nodes are:

• A sensor node using tcpdump and snort[15],
which was in bridge mode, for capturing packets

• An injector/collector node is constructed on the
malware incubator

• A dispatcher node using ssh and scp for control-
ling the sensor and the injector/collector

The injector/collector node is implemented on same
node of a malware incubator as a second boot OS
(Linux). The dispatcher selects the malware incubator or
the injector/collector which will be booting. When boot
up as the injector/collector, the injector/collector collects
related logs from a hard disk area of the malware incu-
bator, renews the malware incubator using a clear disk-
image, and injects a specimen to the hard disk area.

5.2 Mimetic Internet
The implementation of mimetic Internet included:

• Mimetic local site with four actual nodes that were
installed in fully patched Windows for local hosts,

SMTP/POP/Web/DNS local servers, and a firewall
router

• Four simple link quality emulators with qdisc

(netem)[16] to emulate routes to mimetic global
servers and sites

• Mimetic time.windows.com, which is a default NTP
server for Windows XP, as an NTP server on the
mimetic global server

• Mimetic Microsoft.com, Google, and Yahoo! as
web servers on the mimetic major sites

And note that there are no support mechanism for spe-
cific mimetic hosts for each malware because no mech-
anism for dynamic configuration of specific targets was
implemented.

Many mimetic Internets can be easily built up with a
shell script and image files of mimetic environments for
XEN because all of the above except fully patched Win-
dows for local hosts (shown in figure 3 as “on XEN”)
are constructed on a XEN host as virtualized hosts in the
implementation.

5.3 Malware Incubator
A malware incubator was installed in non-patched Mi-
crosoft Windows XP professional for executing spec-
imens with system monitoring tools for Microsoft
Windows[17](FileMon, RegMon, TCPview, and Process
Explorer). According to the dispatcher’s selection, when
boot up as the malware incubator, the malware incuba-
tor starts up some logging tools and executes a specimen
which was set up by the injector.

Firstly, the dispatcher boots up the injector/collector.
After collecting related logs, injecting the specimen and
cleaning the malware incubator, the dispatcher reboots
as the malware incubator. And after 5 minutes wait
for executing the specimen, the dispatcher forcedly re-
boots the malware incubator as the injector/collector us-
ing IPMI[18]. Then, next specimen will set up, and re-
peats the above steps.

At present, our malware incubator was implemented
with an injector/collector on a single node. The reason
for dual role on a single node is for collecting logs from
the malware incubator and cleaning them, because it may
not be able to controll by the dispatcher when it was in-
fected which means it was controlled under a malware.
To solve this problem, the dispatcher forcedly reboots the
malware incubator using IPMI.

5.4 Parallel Sandboxing
Many isolated sandboxes can easily be prepared for par-
allel sandboxing because the mimetic Internets were con-

6

Figure 4: Parallel Sandboxing

structed on a XEN host as virtualized hosts and large
number of the same kind of actual nodes were prepared
on StarBED.

The management terminal manages multiple isolated
sandboxes, such as dispatching specimens to each sand-
box. Figure 4 shows a concept of the parallel sandbox-
ing.

6 Evaluation

We conducted an experiment to test the efficiency of our
method. In this section, we describe the experiment and
its results.

6.1 Experiment
The purposes of the experiment were to determine what
kinds of malwares the mimetic Internet could fool. We
experimented each specimen without the mimetic Inter-
net and with the mimetic Internet, because differences of
observed behaviors show that our mimetic Internet could
effect to specimen’s behaviors.

To determine the things, we executed some specimens
which had been collected in Nepenthes[19] and were fil-
tered out by ClamAV[20] environment on our sandbox
implementation mentioned in the above section. Then,
we observed the behavior of their live codes in the envi-
ronment with tcpdump, snort, and system monitoring
tools and the screen capture tool for Microsoft Windows.

Table 1 shows classification of collected specimens.
We had been collecting 581 specimens, which included
73 unknown specimens, on Nepenthes from November
10, 2006 to March 2, 2007. We analyzed all of 581 spec-
imens, all of which are Windows or MS-DOS executa-
bles.

Table 1: Classification of Specimens
Classifications Counts
Collected specimens (unified by MD5) 581
Windows (or MS-DOS) executables 581
Known specimens (scanned by ClamAV) 508
(Known variants) 168
Unknown specimens (filtered out by ClamAV) 73

Table 2: Observed Behavior
Behavior # (Unknown)
HTTP access to Google 14 5
HTTP access to Microsoft.com 7 3
HTTP access to Yahoo! 0 0
NTP access to time.windows.com 0 0
DNS retrieve specific hosts 351 37

of specimens

We should note that this experiment did not focus
to the renewable actual nodes for reducing required re-
experiment time interval.

6.2 Results

Table 2 shows observed behaviors of specimens. We ob-
served that 21 specimens, which included 8 unknown
specimens filtered out by ClamAV, fooled by our mimetic
global sites and global servers, accessed our mimetic In-
ternet. In the observations, the expected behaviors, ac-
cessing Google or Microsoft.com via HTTP, were ob-
served in some specimens. In another behavior, which
was expected and observed but not addressed, 349 speci-
mens, which included 36 unknown specimens, attempted
to retrieve DNS each specific target. This shows that
our mimetic Internet can fool malwares and that dynam-
ically introducing targets is an important issue. And
some expected behaviors, accessing Yahoo! via HTTP
or time.windows.com via NTP, were not observed from
all specimens. Furthermore, we should notice that an
another expected behavior, attempts to probe network
routes, did not analyzed whether did or not on this ex-
periment.

Table 3 shows a number of specimens, which were ob-
served different behavior between without the mimetic
Internet and with the mimetic Internet, about a number
of packets by each protocol. The column “Increase#”
shows a number of specimens, which a number of pack-
ets increased in observing with the mimetic Internet,
“Decrease#” shows decreased with the mimetic Internet,
and “Same#” mean same number of packets. This result
shows that almost malwares, except only one specimen5,
would change behavior according to result of checking

7

Table 3: Without vs. with Mimetic Internet (differences
in # of packets)

Protocol Increase# Same# Decrease#
ARP 508 56 17
ICMP 103 441 37
UDP 578 1 2
TCP 215 366 0
(Total) 569 1 11

of specimens

Table 4: Without vs. with Mimetic Internet (# of re-
trieved domains)

Specimens w/o w/
unknown 6 (12) 37 (102)
Microsoft.com 0 (0) 7 (26)
www.google.com 0 (0) 14 (28)
Total 107 (123) 351 (658)

of specimens (# of retrieved DNS domains)

connectivity to the Internet, and our mimetic Internet can
fool them.

Finally, Table 4 shows a number of specimens, which
were observed retrieve DNS without/with the mimetic
Internet. The line “unknown” shows unknown specimens
which filtered out by ClamAV, “Microsoft.com” shows
specimens which attempt accessing Microsoft.com web
site, and “www.google.com” shows specimens which at-
tempt accessing Google web site. The column “w/o”
shows a number of specimens which retrieve DNS with-
out the mimetic Internet, and “w/” shows them with
the mimetic Internet. Numbers into a couple of bracket
shows a number of retrieved DNS domains. This result
shows would change behavior about retrieving DNS ac-
cording to result of checking connectivity to the Internet,
and our mimetic Internet can fool them.

Thus, we can conclude that the mimetic Internet is ca-
pable of changing behaviors of some malwares, which
have mechanisms of checking connectivity to the begin.
However, to insure that these changes of behaviors equal
being fooled, we have to analyze in detail behaviors of
each malware. We also aware that this experiment and
results could be confirmed our concept is whether effec-
tive or not, but also did not be confirmed it could be sat-
isfied or not.

7 Conclusion and Future Work

We focused on anti-analysis mechanisms of malwares
and discussed how we can fool these mechanisms in an
isolated sandbox. We used the mimetic Internet and the
malware incubator with a renewable actual node. We

also conducted an experiment on StarBED to test our
prototype system. The results of the experiment show
that the mimetic Internet is effective, although some im-
provements must be made.

In the future we plan to:

• Demonstrate that malwares that contain counter-
measures against virtualized environments can be
executed in our sandbox

• Design the dynamic introduction of specific target
hosts for each malware to the mimetic Internet

• Design the mimetic dynamic contents generation on
mimetic servers

• Enable specimens to access cryptographic services
such as SSL

• Enable specimens to download files and join com-
mand through real networks from the isolated sand-
box

• Propose applications of the mimetic Internet such as
experimenting with IP trace-back on routing parts
of the mimetic Internet and generating synthetic
traffic patterns from the mimetic Internet.

We hope that by using our methods, malwares, which
have anti-analysis mechanisms, such as the ability to
detect isolated sandboxes and virtualized environments,
will be analyzed correctly.

Acknowledgements

The authors give special thanks to Takashi UENO, a mas-
ter’s degree candidate at the Japan Advanced Institute
of Science and Technology (JAIST) for his assistance in
building, operating, and collecting specimens on a ne-
penthes environment.

References

[1] E. Skoudis with L. Zeltser, “MALWARE – Fighting Ma-
licious Code –”, Prentice Hall PTR, ISBN 0-13-101405-
6, Pearson Education Inc., 2004.

[2] S. MIWA and H. OHNO, “A Development of Experi-
mental Environments ”SIOS” and ”VM Nebula” for Re-
producing Internet Security Incidents”, Journal of the
National Institute of Information and Communications
Technology, Vol.52 Numbers 1/2 (pp.23-34) 2005, ISSN
1349-3205, Oct. 2005.

[3] E. Eilam, “Reversing: Secrets of Reverse Engineering”,
ISBN 0-7645-7481-7, Wiley Publishing, Inc., 2005.

8

[4] The Honeynet Project, “Know Your Enemy — Reveal-
ing the Security Tools, Tactics and Motives of the Black-
hat Community”, Addison Wesley, ISBN 0-201-74613-1,
Pearson Education Corp., 2002.

[5] J. E. Smith and R. Nair, “Virtual Machines — Versa-
tile Platforms for Systems and Processes”, Morgan Kauf-
mann, ISBN 1-55860-910-5, Elsevier Inc., 2005.

[6] S. T. King, P. M. Chen, Y. Wang, C. Verbowski,
H. J. Wang, and J. R. Lorch, “SubVirt: Implementing
malware with virtual machines”, In Proceeding of IEEE
Symposium on Security and Privacy, May 2006.

[7] “Introducing Blue Pill”, 〈URL: http:
//theinvisiblethings.blogspot.com/
2006/06/introducing-blue-pill.html〉.

[8] “Red Pill... or how to detect VMM us-
ing (almost) one CPU instruction”, 〈URL:
http://invisiblethings.org/papers/
redpill.html〉.

[9] “Blue Pill Detection!”, 〈URL: http://
theinvisiblethings.blogspot.com/2006/
08/blue-pill-detection.html〉.

[10] Y. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski,
S. Chen, and S. King, “Automated Web Patrol with
Strider HoneyMonkeys: Finding Web Sites That Ex-
ploit Browser Vulnerabilities”, In Proceedings of the Net-
work and Distributed System Security Symposium, NDSS
2006, Internet Society 2006, Feb. 2006.

[11] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft,
A. C. Snoeren, G. M. Voelker, and S. Savage, “Scala-
bility, Fidelity, and Containment in the Potemkin Virtual
Honeyfarm”, In Proceedings of 20th ACM Symposium on
Operating Systems Principles, SOSP 2005, Oct. 2005.

[12] S. Crosby, D. E. Williams and J. Garcia, “Virtualiza-
tion With Xen: Including XenEnterprise, XenServer, and
XenExpress”, Syngress Media Inc.,ISBN 1-597-49167-
5, 2007.

[13] T. Miyachi, K. Chinen, and Y. Shinoda, “StarBED
and SpringOS: Large-scale General Purpose Network
Testbed and Supporting Software”, Valuetools2006,
ACM Press, Oct. 2006.

[14] INSECURE.ORG, “Nmap - Free Security Scanner For
Network Exploration & Security Audits”, 〈URL: http:
//insecure.org/nmap/〉.

[15] B. Caswall, J. Beale, J. C. Foster and J. Faircloth, “Snort
2.0 Intrusion Detection”, ISBN 1-9318-3674-4, Syngress
Publishing, 2003.

[16] S. Hemminger, “Network Emulation with NetEm”, In
Proceedings of Linux Conf Au 2005, Apr. 2005.

[17] Microsoft TechNet, “Sysinternals Utilities: Sys-
tem Information”, 〈URL: http://www.
microsoft.com/technet/sysinternals/
systeminformationutilities.mspx〉.

[18] Intel Corporation, “IPMI v2.0 specifications Document
Revision 1.0”, 2004.

[19] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and
F. Freiling, “The Nepenthes Platform: An Efficient
Approach to Collect Malware”, 9th International Sym-
posium On Recent Advances In Intrusion Detection,
RAID06, LNCS 4219, Springer, Sept. 2006.

[20] T. Kojm, “Clam AntiVirus”, 〈URL: http://www.

clamav.net/〉.

Notes
1http://www.yahoo.com/
2http://www.google.com/
3http://www.microsoft.com/
4http://windowsupdate.microsoft.com/
5It seems that the specimen is an incomplete part of executable in-

stance. The specimen was not taken any communications.

9

