Evaluation of collaborative worm containment on the DETER testbed

L. Li, P. Liu, Y.C. Jhi, G. Kesidis

College of Information Sciences & Technology

Computer Science and Engineering and Electrical Engineering Depts

Pennsylvania State University, University Park, PA 16802

1li,pliu@ist.psu.edu,jhi @cse.psu.edu,kesidis @engr.psu.edu

Abstract

The advantage of collaborative containment over indepen-
dent block or address blacklisting on worm defense has been
advocated in previous worm studies. In this work, we will
evaluate two collaborative worm containment proposals and
present some of the results of our DETER emulation experi-
ments. In the first one, proactive worm containment (PWC),
security agents block all suspicious hosts on the network on
receiving alerts of a worm and run “relaxation analysis” on
those blocked hosts afterwards. Emulation experiments will
evaluate PWC’s ability to stop the propagation of fast lo-
cal worms and to reduce scan traffic of fast global scanning
worms. The second proposal, which detects and contains a
scanning worm based on the concept of dark port, focuses
on stealthy worms that target only specific local networks
or enterprise networks. Emulation experiments run on the
DETER testbed demonstrate the efficiency of local scanning
worms and their elevated threat to enterprise networks. The
effectiveness of a collaborative containment strategy based
on dark port detection is evaluated using DETER emulation
and compared with that of individual address blacklisting.

1. Introduction

While most conventional worm containment proposals
depend much on novel detection technique or containment
strategy, we believe that a collaborative approach in which
end-hosts or sub-networks share security alerts and act
proactively could be superior, especially in those contexts
where the priority of network security is put higher than
those of temporary availability loss. Works in [18] and [3]
have demonstrated the advantage of group defense over in-
dependent containment. In this study, we will run emulation
experiments to evaluate the effectiveness of two worm con-
tainment schemes we proposed that champion a collabora-
tive approach. The first one, Proactive Worm Containment,
or PWC [8], is based on two key concepts: early blocking
and post-hoc relaxation. In abstract terms, the PWC sys-
tem contains a suspicious host after an early-but-immature

worm alert is raised by a worm agent running on the host.
A potentially false alert is to be repaired by the subsequent
relaxation phase. To be more proactive, the worm alert is
propagated to all other worm agents in the network once it
is raised. Upon receiving a propagated worm alert, an agent
proactively blocks its host and starts the relaxation phase.
Early containment reduces the number of outbound scans,
which otherwise could infect another victim in the local net-
work or somewhere in the Internet.

The second proposal, dark port detection and contain-
ment, takes aim at a new kind of worms that target specif-
ically local or enterprise networks. For the defense against
this new threat, we have proposed a new dark port detec-
tion scheme that can effectively monitor all suspicious scans
within an enterprise network as soon as those scans arrive at
the local routers that are supposed to deliver those packets to
their intended final targets. A selective or full block action
then can be taken to block dark-port-scan originating hosts,
cells, or the full network on specific port numbers. We will
run evaluation experiments to compare the new dark port
proposal with the individual blacklisting containment with
various detection latencies.

This paper is organized as follows. Section 2 reviews the
related work on the worm detection, worm containment, and
enterprise worms. The procedure of running a worm experi-
ment on the DETER testbed and related tools are briefly dis-
cussed in section 3. In section 4, we introduce the PWC sys-
tem and present evaluation results of PWC. In section 5.2,
we show the threat of a new class of local-only scanning
worms and introduce our new dark port detection frame-
work. A cooperative containment strategy based on the new
dark port detection is presented in section 6, together with
results of its DETER evaluation. In the final section, we
conclude the paper and list some future research topics.

2. Related work

Existing worm containment techniques can be roughly
broken down into following classes: Rate limiting [25, 4]
is to limit the sending rate of scan-like traffic at an infected
host, which may introduce longer delays for normal traffic;

Signature-based worm filtering [21, 17, 15, 9, 22, 26] relies
on worm signatures to prevent scans from entering/leaving
a LAN/host, which may be evaded by a proper use of poly-
morphism [7]. PWC can effectively slow down or even stop
the propagation of a fast scanning worm before a reliable
worm signature is generated and applied. The idea of early
response before having enough evidence for worm contain-
ment also appeared in the dynamic quarantine scheme in
[27]. But unlike PWC, dynamic quarantine is not a collab-
orative approach and it cancels containment on a suspicious
host after a period of time without any further analysis.

In many cases, worm signature generation is helped by
a worm detector. Honeypot or honeynet [5] can detect sus-
picious worm activities by monitoring scans that are target-
ing at unused or dark network addresses. For detection and
defense in local or enterprise networks, a double honeypot
can be used to collect worm samples for signature gener-
ation [22]. In [6], an enhanced honeypot based detection,
HoneyStat, combines network security alerts with computer
OS alerts to improve the detection accuracy and reduce false
positives.

Another type of worm detection scheme, failed scan de-
tection, is also taking advantage of worms’ blind scanning
behavior. While the early version of failed scan detector
used to rely on the returned ICMP packets from the des-
tination host or network [16], most recent proposals detect
failed scans by keeping logs of all connection requests on the
sender site and singling out these requests that have not re-
ceived response after a pre-defined period of time [20, 24].
Compared with these failed scan detection proposals, our
dark port detection can detect a failed local scan much faster
since the security agent at the destination site can report a
failed scan right after its arrival and there is no need to wait
for a connection to go time-out at the sending site.

Recently, network testbeds are becoming available and
researchers began to use them to simulate and emulate
worms and study their behavior in the Internet [23] or in
enterprise networks [13]. The advantage of cooperative or
group defense over independent firewalls has been evaluated
by simulation experiments such as [18].

3. DETER worm emulation with virtualization

Network testbeds such as DETER provide a simulation
and emulation platform with the highest level of flexibility
and fidelity in term of hardware and network configurations,
code compatibility, and network metrics. In [13], we re-
ported our virtual node approach to leverage limited testbed
resources to emulate worm propagation in a large enterprise
network. The general method and steps of running a DETER
emulation experiment are briefly reviewed here.

3.1. Setup an Experiment Using the ESVT Tool

The ESVT GUI tool provides an integrated environment
to conduct an interactive worm or other network experi-
ment on a testbed. It is a component based topology editor,
NS2/TCL script generator, worm experiment designer, and a
visualization tool of experimental results. At the first step, it
can be used to draw the topology based on a prototype net-
work. The toolbox of programs includes network compo-
nents such as computer/host node, switch/router node, net-
work/Internet interface, and link. Computer nodes can be
defined as susceptible or non-susceptible. To request net-
work resources from the testbed and apply network topology
on the testbed, a NS (network simulator) style TCL script
file needs to be submitted to the testbed control plane. The
ESVT GUI has a TCL script generation function that can
output and convert a network topology into a DETER TCL
script to simplify this task.

3.2. Our Virtual Node Design

Employing a one-to-one emulation approach entails sub-
stantial resources that a normal testbed cannot support. In
[13], we compared our virtual node design with other kinds
of virtualization methods such as VMWare and Emulab VM
and concluded that the performance of the virtual node de-
sign in realistic LAN simulation is comparable with the all-
real-node scenario, while consuming much fewer resources
than other virtualization approaches.

In our virtualization approach, one switched LAN in the
real topology is emulated by one virtual-node application
running on a testbed host. The virtual node program con-
sists of a number of virtual end-systems, each representing
one real host and having a unique virtual IP address. Inside
the program, each virtual end-system is implemented by a
thread which simultaneously executes a user-defined proce-
dure (such as worm traffic generator) and a background traf-
fic generator. The parameters of background traffic of each
virtual node that can be configured include the maximum
sending rate, the number of simultaneous sessions, packet
inter-arrival distribution, and port number/protocol distribu-
tion.

We adopted a similar design for the timing of incom-
ing worm scans from the Internet interface as reported in
[13, 12]. The Internet interface node recreates and injects
scanning traffic into the enterprise network under test. The
speed and pattern of worm traffic were based on simulation
results from our extended KMSim model [1, 10]. KMSim
worm model, an extension of Kermack-McKendrick epi-
demic model, takes enterprise networks as the unit of analy-
sis so that various distributions of worm susceptibles and
network topology characteristics can be accounted for. Sup-
pose that the total scan rate, S(¢), of a worm is obtained us-
ing the KMSim simulation, under the assumption of a uni-

form distribution, the scan-rate from the Internet directed at
the enterprise under simulation could be approximated as
(A/232)S(t), where A is the size of the address space of the
enterprise network. The data source for the background traf-
fic was mainly from the enterprise traffic report in [11].

4. PWC evaluation on DETER

PWC is a proactive worm containment solution for en-
terprises. Motivated by the observation that a worm uses a
sustained outgoing packet rate, PWC gains infection aware-
ness seconds before a signature or filter can be generated
[8] and broadcast worm alerts to all worm agents. To
overcome denial-of-service possibly caused by containment
based on received worm alerts, PWC performs relaxation
analysis that detects and releases contained-but-uninfected
hosts. PWC has following features: minimal denial-of-
service; signature-free; lightweight; and evasion resilience.

4.1. PWC Algorithm

Each host in an enterprise network protected by PWC
runs a worm agent, or a PWC agent, that performs detec-
tion and suppression of worm scans released from its host.
The PWC agents are coordinated by a PWC manager that
has two roles: first, it distributes authenticated worm alerts
reported by the PWC agents to all the PWC agents in the
enterprise network; second, it is a certificate authority in au-
thentication between each PWC agent and the PWC man-
ager and vice versa. PWC can handle multiple simultaneous
worm alerts raised by different worms in one contain/relax
procedure.

Similarly to other worm detection techniques such as
virus throttle [25], a PWC agent calculates the rate of most
recent outbound connection attempts' sent to unique IP ad-
dresses in order to gain awareness of worm infection on its
host. When the rate exceeds A connections per second, it
raises an alert and reports it to the PWC manager. The PWC
manager then propagates the alert to the rest of PWC agents
in the enterprise network. When a PWC agent receives an
alert from the PWC manager, the PWC agent properly au-
thenticates it before accepting it.

A PWC agent starts containing its host either on raising
or on accepting an alert propagated from the PWC manager.
When a PWC agent is containing its host, it buffers TCP
SYN and UDP packets sent to new destination addresses,
allowing traffic through existing TCP connections and pack-
ets to known destinations. On initiating containment, the
PWC agent also starts relaxation analysis for limited du-
ration T seconds, to check if the outbound connection rate
is sustained. If the relaxation analysis detects a sustained
connection rate, the PWC agent silently discards buffered

Youtbound connection attempts include outgoing TCP SYN and UDP
packets.

Figure 1. Enterprise network with 10000 nodes

connection attempts and performs relaxation analysis again;
otherwise, the containment is relaxed and buffered connec-
tion attempts are forwarded.

To test the effect of PWC on containing fast scanning
worms, we conducted two enterprise network emulation ex-
periments on a network testbed, DETER [2]. The first exper-
iment is to test whether PWC can effectively contain a fast
local-scanning worm, while the second is to study how PWC
limits high volume scanning traffic originated from suspi-
cious hosts.

4.2. Experiment topology

To conduct a detailed worm propagation experiment us-
ing emulation and simulation method, the scale of the net-
work has to be large enough to capture the interplay between
the worm and defense, and the configuration of the network
has to be typical of enterprise networks. For this purpose,
we utilized our ESVT toolkit [14] to design a hypothetical
enterprise network, which included one Internet stub-link,
22 internal routers, 66 switched LANSs, 7 servers, and more
than 10000 end-hosts. Of the hosts, 110 hosts (about 1%)
are susceptible to the worm that we intentionally injected
into the network. Thanks to the virtualization, emulation of
this enterprise network on the DETER testbed only took 93
physical nodes.

4.3. Emulation results

The prototype for the PWC evaluation implements three
components: worm detection based on unique destination
addresses, worm alert broadcast, and proactive containment
upon receiving a worm alert. The parameters of PWC for the
emulation experiments are as follows: sending rate threshold
20 scans/second; vulnerability window 1 second. We imple-
mented worm alert ‘broadcast’ by building a list of LAN

40

Infection Comparison--Histogram

oPWC ——
With PWC -+

50 -

30

100%

80%

60%

1 40%

Packet Count

3000

2500

2000

1500

PWC Malicious Traffic Containment

No PW
With PWG -]\

100%

|
V

- 60%

Number of Infected Hosts

20 -+
B o
F 20
L L

Time (Second)

Figure 2. Testbed Emulation Results: the effect of
PWC on containing a local scanning worm

gateways (virtual node program) and sending a message to
all addresses on this list sequentially.

The first experiment tested the effect of PWC on contain-
ing a local scanning worm. An Internet node injected infec-
tious worm packets into the enterprise at rates following our
Blaster simulation[12]. Inside the enterprise, the worm ran-
domly chose an initial IP address and began to scan sequen-
tially from that address. Without PWC, the infection ratio
was high (72 out of 110 after 120 seconds) and the speed of
infection was rapid (about 10 seconds to reach the peak) as
shown in Figure 4.3. While with PWC enabled, we saw a
marked difference in the same 120-second experiment: the
number of infected hosts was reduced to 18 and the speed
of infection was much slower, suggesting that the fast local
infection was contained and most infection was caused by
the incoming scan from the Internet node.

The second experiment was to study the effect of PWC on
reducing high volume scanning traffic. In this experiment,
infected hosts scanned randomly to global addresses. Be-
cause of its random-scanning nature, most of worm scanning
traffic was directed to the Internet interface where worm traf-
fic may congest and impact normal traffic. From Figure 4.3,
we see that in the case without PWC, there were several
peak traffic periods caused by worm scanning and traffic as a
whole suffered increased delay after. In the case with PWC,
there was no abnormally high traffic volume and the aggre-
gate traffic rate was smooth.

It is worth noting that relaxation analysis was not imple-
mented and there was no additional signature-based worm
defense (such as EarlyBird) deployed in the emulation. For
this reason, the blocked hosts were kept blocked through the
120-second experiment. The maximum number of hosts that
were blocked was about four hundred out of ten thousand.
We believe there would be an significant improvement in

1000

1 20%

500

Time (Second)

Figure 3. Testbed Emulation Results PWC'’s effect on
containing high volume traffic

terms of infection rate, availability recovery, and traffic fil-
tering if those methods were deployed.

S. Dark port detection for locally scanning
worms

Most scanning worms chose the whole IPv4 address seg-
ment as their target scanning space, though the scanning
strategies may vary. As a result of this vast scanning space,
even a very fast scanning worm could not finish scanning
the whole space efficiently by just one infected host. Take
the example of the Slammer worm, it will take one Slammer
infected host 232/10,000 = 429496.7 seconds to scan the
whole space with a speed of 10,000 scans per second. Luck-
ily, there are many concurrent active worm infectives that
can work together to jointly scan the space so the total scan
and infection time can be reduced. The efficiency of worms
to reach full infection or scan the whole address space will
be greatly increased when a worm is particularly designed
to target an enterprise network whose address space is much
more limited. For a /16 network with 256 /24 subnets, a
worm can adopt pure enterprise-wide random scanning, hy-
brid or preferential local random scanning, or enterprise-
wide sequential scanning. We will first run testbed emula-
tion experiments to explore the efficiency of local scanning
in an enterprise network environment and the danger such
local scanning worms pose to the network.

5.1. Test-bed emulation of local worm propagation

The topology we used for emulation is the same network
we used for PWC evaluation in section 4. We configured
959 hosts to be vulnerable to the worm attack and they were
randomly distributed among 66 sub-networks. We ran three

Enterprise Worm Propagation Chart

1000 1000

900

800 |- :] 800

700 g
600 - ; /, - 600
500 :]

400

- 400

Number of Infected Hosts

300 -

-1 200

Random scanning
Sequential scanning
H

brid scanning -------

L
300
Time (Second)

Figure 4. Comparison of local scanning strategies

experiments on this topology with different scanning strate-
gies: the first with a pure enterprise-wide random scanning
at a rate of 2 scans per second; the second with a pure
enterprise-wide sequential scanning starting from a random
address at a rate of 2 scans per second; and the third with
a hybrid strategy at a combination of one enterprise-wide
random scan per second and one sequential scan per second
starting from a sub-network address. There was one initial
seed infective in all three experiments. The results are de-
picted in Figure 4.

Thus, we found that the pure random scanning was more
efficient than the pure sequential scanning. The hybrid scan-
ning strategy was the fastest among three strategies and it
took less than 200 seconds to infect the majority of suscepti-
ble hosts. For such a fast locally scanning worm, there is an
urgent need for an effective early-warning detection scheme.

5.2. Dark port scan detection

The danger of worms targeting enterprise networks has
been demonstrated through emulation experiments. While
there have been some discussions on the topic of enterprise
worms and their detection and defense in the literature, none
has specifically looked at a pure enterprise-targeting local
worm. For this reason, we propose a dark port worm de-
tection scheme and go over the main ideas of this scheme
briefly here.

A dark port detection system is comprised of a central
security console and a series of soft firewalls. The soft fire-
walls are installed on the network components connecting
a sub-network or cell and the enterprise backbone network,
normally a router or a switch which has the ability to monitor
all inbound and outgoing packets and can block any one of
them. Instead of looking at outgoing packets or connection
attempts at the sender site, the soft firewall only inspects in-
coming connection attempts for the worm detection. The de-

Security

\ Console

Enterprise

‘ Backbone '

Figure 5. Soft firewall for enterprise networks

tection is rather simple in that any connection attempt whose
tuple of (destinationIP:protocol:portnumber) is not on a safe
list of the soft firewall could be deemed suspicious. The real
task of detection is so on the creation and maintenance of
the safe list, or white list of services that are running on the
hosts protected by the firewall. Figure 5 is an illustration
of proposed soft firewalls in an enterprise network. When
firewall A detects a suspicious scan that tries to sneak into
cell A by checking its safe list of running services, it will
send alerts to the central security console. The security con-
sole will issue containment orders to relevant firewalls when
some threshold has been reached. Firewall B can then block
the corresponding host, or particular service port number, or
all hosts in the cell.

Real world traces collected on our lab computers showed
that most intra-network sessions involved only a limited set
of servers and port numbers. Traces in Table 1 were col-
lected on two normal Windows user hosts and one Linux
file server. We removed all packets related to L2R (local to
remote) sessions and only kept unicast intra-enterprise ses-
sions. Even the busiest host (trace 1) only contacted 14 dis-
tinct local IPs in a period of more than six hours and these
local sessions were focusing on 13 TCP and UDP services.
A blind scanner will be detected efficiently using the pro-
posed dark port detection.

5.3. Detection of worm propagation

The universal deployment of a dark port detector on sub-
network firewalls facilitates the detection of single random
scanners. Detection of single scanner, however, is not the
sole purpose of dark port detection system and cannot be
used as the evidence and rationale for a collaborative con-
tainment action. Only when the system detects an increas-
ing number of hosts participating in scanning and/or timing
information indicates actual worm propagation, the IDS will
detect the existence of an ongoing worm in the network. For
this purpose, we need a sensitive detector for the propaga-

Table 1. Real world intra-enterprise traces

Traces Length | Distinct Dest IPs | Distinct Destination Ports

Windows Host 1 | 21951s | 14 13 (22,53,88,123,135,137,138,139,389,445,
995,1026,2967)

Windows Host2 | 14101s | 6 4(22,53,137,443)

Linux Trace 59633s | 2 2 (53,514)

tion of worm infections.

Counting the number of distinct scanning hosts is a
straight-forward method for worm detection, but only count-
ing the number of scanning hosts does not consider infection
timing information which is an important indicator of threat
severity. The inter-arrival time of successive worm scanners
may be a good measure to detect the existence and urgency
of worm propagation. For a pure random- scanning worm in
a /16 network, the expected time for a new infection can be
calculated using a formula similar to equation (4) in [19]:

1
. log(1 = y=p=)
lefllog(l —2716)

ey

Here N is the total number of susceptible hosts, I is the
number of infected hosts at current time, and 7, is the ex-
pected wait time for the next infection. The formula can

be further simplified as 7 = m, where N is the

amount of local network address space (2'® for a /16 net-
work). It is easy to find that when the number of infected
hosts increases, the expected time for the next infection de-
creases. This phenomenon of decreasing inter-arrival times
can be contrasted with the behavior of other background
scan noise where no consistent trend in inter-arrival times of
distinct scanners is expected. Using data collected by hon-
eypot computers deployed in an actual enterprise network,
we plotted the curve of inter-arrival times of background
scanners together with the inter-arrival times of a random
scanning worm in a /16 network in Figure 6. For the gen-
eration of worm inter-arrival times, we set the total num-
ber of susceptible hosts to be 1,000 and the scan rate per
worm victim to 2. From the figure, we can see though the
inter-arrival times of background scanners sometime fell to
a rather low value, and there is no consistent trend among
them over a long period of time, compared to the strong de-
creasing trend in the early stages of worm propagation. This
feature was the basis for our worm propagation detection in
our emulation experiment.

6. Dark port Containment and DETER evalu-
ation

When the aggregated level of suspicious scan activities is
above some pre-defined threshold, the central security con-
sole will decide appropriate actions to deter possible worm

1e+06 T T 6
100000 |- 45

10000 1 4

Inter-arrival time

Background scanner inter-arr
lorm victim inter-arrival time_-------
T T

T
40 60 80 100
Index of scanner

o
N
S

Figure 6. Comparison of inter-arrival time among dis-
tinct scanners between a random scanning worm and
background noise

propagation. The set of actions could include doing nothing,
blocking individual hosts from initiating any new connec-
tion attempt, blocking particular service port numbers from
accepting new connections, or blocking all new service re-
quests. Implication of blocking all new service requests or
on some specific port numbers could be severe since it may
disrupt important network transactions within the enterprise
boundary. To avoid taking such drastic block action, some
simple intuitive or rule-of-thumb decision rules can be used.
For example, when security alert analysis indicates that there
are rather widespread scanning activities within the network
and the majority of scans are focusing on one service port
number, the decision should be sending commands to all se-
curity agents to block any new connection requests targeting
that particular port number.

We built a prototype defense system which implemented
only selective block actions and ran emulation experiments
to test the effectiveness of it on containing a hypothetical
local-only scanning worm. Network configuration and den-
sity of susceptible population were the same as we used for
propagation experiments in section 5.1. Each infected host
sent out a combination of one enterprise-wide random scan
and one sub-network random scan per second. We assumed
zero false negative in dark port detection, which means that
each scan on a non-existent service port was reported to the

Effectiveness of Dark Service Collaborative Containment

1000

100 |

Number of Infected Hosts

fthout Any Containment

Individual Block 10 Secs Delay -------

H H Dark Service C C I e

0 100 200 300 400 500 600
Time (Second)

Figure 7. Effectiveness of Dark port Containment

central security console right after it arrived at the receiving
soft firewall. The central security console maintained the
following records: the number of dark port alerts per service
port, the times of new distinct IPs sending the first scan, and
the number of distinct cells that had been reported sending
scans per service port. The method for propagation detection
we used in the emulation was based on the fact of decreasing
inter-arrival infection times we introduced in the last section.
The actual algorithm is in the form of sequential likelihood
ratio test and the details and its evaluation are presented in
a separate paper. When the worm propagation measurement
is above the threshold, the central security console would is-
sue a selective block command on the related port(s) to all
soft firewalls. The thresholds on the rate of new infections
and distinct scan-sending cells should be adjusted according
to the local network traffic to have a satisfactory detection
performance in real world application. Figure 7 shows the
effect of our containment.

Collaborative containment performed well and outper-
formed individual block or address-blacklisting, one of few
workable containment strategy for this local scanning worm,
as shown in the figure. The dark port collaborative contain-
ment activated selective port block on all hosts after a few
hosts were infected and none was infected after the contain-
ment. Independent individual containment with a delay of
10 seconds resulted a final size of about 60 infected hosts.
The detection based on failed scans only is also less prone to
counter-detection by forged benign scans by a ‘smart’ worm.
The drawback of selective block on all cells is the potential
service disruption on normal hosts. To fully account for the
loss of network service by worm containment actions and
find an optimal defense strategy, we will need a quantita-
tive evaluation framework to run the cost-benefit analysis of
different containment strategies.

7. Summary and future work

Testbed emulation experiments demonstrated the effi-
ciency of locally scanning worms with advanced scanning
strategies. The defense to this threat entails early detection
and collaborative containment. Selective block containment
based on a new dark port detection scheme showed promise
in this regard through experiments run on the DETER test-
bed. Also in this article, we presented the evaluation re-
sults of another collaborative containment scheme that tar-
gets fast scanning worms. The experimental results clearly
demonstrated the effectiveness of collaborative containment
on worm propagation.

Our future work includes fine-tuning of selective block
strategy to reduce service disruption. Improving the com-
munication security between collaborating security agents
is another important task. Also, we will explore related is-
sues of botnet emulation and defense evaluation in our future
work.

References

[1] EMIST project. http://emist.ist.psu.edu.

[2] T. Benzel, B. Braden, D. Kim, C. Neuman, A. Joseph,
K. Sklower, R. Ostrenga, and S. Schwab. Experience with
DETER: A testbed for security research. In Proc. 2nd Inter-
national IEEE/Create-Net Conference on Testbeds and Re-
search Infrastructures for the Development of Networks and
Communities (TridentCOM’06), Barcelona, Spain, March,
2006.

[3] L. Briesemeister, P. Porras, and A. Tiwari. Model checking
of worm quarantine and counter-quarantine under a group de-
fense. Technical Report SRI-CSL-05-03, Computer Science
Laboratory, SRI, 1992.

[4] Shigang Chen and Yong Tang. Slowing down Internet worms.
In ICDCS ’04: Proceedings of the 24th International Confer-
ence on Distributed Computing Systems (ICDCS’04), pages
312-319. IEEE Computer Society, 2004.

[5] Evan Cooke, Michael Bailey, Z. Morley Mao, David Wat-
son, Farnam Jahanian, and Danny McPherson. Toward un-
derstanding distributed blackhole placement. In WORM ’04:
Proceedings of the 2004 ACM workshop on Rapid malcode,
pages 54-64, New York, NY, 2004. ACM Press.

[6] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levin, and
H. Owen. Honeystat: Local worm detection using honey-
pots. In Proceedings of The 7th International Symposium on
Recent Advances in Intrusion Detection (RAID 2004), Sophia
Antipolis, France, September 2004.

[7] Prahlad Fogla, Monirul Sharif, Roberto Perdisci, Oleg
Kolesnikov, and Wenke Lee. Polymorphic blending attacks.
In Proc. 15th USENIX Security Symposium, 2006.

[8] Y. Jhi, P. Liu, L. Li, Q. Gu, J. Jing, and G. Kesidis. Proactive
containment of fast scanning worms through white detection.
In Proceedings of 3rd International Conference on Security
and Privacy in Communication Networks, September 2007.

[9] G. Kc, A. Keromytis, and V. Prevelakis. Countering code-
injection attacks with instruction-set randomization. In Pro-

[10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]

ceedings of the 10th ACM conference on Computer and com-
munications security, pages 272 — 280, October 2003.

G. Kesidis, I. Hamadeh, and S. Jiwasurat. Coupled Kermack-
Mckendrick models for randomly scanning and bandwidth
saturating Internet worms. ACM TOMACS, 2007.

S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and R. Som-
mer. Building a time machine for efficient recording and re-
trieval of high-volume network traffic. In Proc. Internet Mea-
surement Conference 2005, Berkeley, CA, Oct, 2005.

L. Li, S. Jiwasurat, I. Hamadeh, P. Liu, G. Kesidis, and
C. Neuman. Emulation of sequential scanning worms in large
enterprises. In Proc. 2nd International IEEE/Create-Net Con-
ference on Testbeds and Research Infrastructures for the De-
velopment of Networks and Communities (TridentCOM’06),
Barcelona, Spain, March, 2006.

L.Li, S. Jiwasurat, P. Liu, and G. Kesidis. Emulation of single
packet UDP scanning worms in large enterprises. In Proc. 19
International Teletraffic Congress (ITC19), Beijing, China,
August, 2005.

L. Li, P. Liu, and G. Kesidis. Visual toolkit for network se-
curity experiment specification and data analysis. In VizSEC
’06: Proceedings of the 3rd international workshop on Visu-
alization for computer security, pages 7-14, New York, NY,
USA, 2006. ACM Press.

Z.Li, M. Sanghi, Y. Chen, M. Y. Kao, and B. Chavez. Hamsa:
Fast signature generation for zero-day polymorphic worms
with provable attack resilience. In Proceedings of IEEE Sym-
posium on Security and Privacy, 2006.

M. Liljenstam, D. Nicol, V. Berk, and R. Gray. Simulating re-
alistic network worm traffic for worm warning system design
and testing. In Proc. ACM WORM, Washington, DC, 2003.
J. Newsome, B. Karp, and D. Song. Polygraph: Automatic
signature generation for polymorphic worms. In IEEE Secu-
rity and Privacy Symposium, May 2005.

P. Porras, L. Biesemeister, K. Levitt, J. Rowe, K. Skinner, and
A. Ting. A hybrid quarantine defense. In Proc. ACM WORM,
Washington, DC, Oct. 29, 2004.

Moheeb Abu Rajab, Fabian Monrose, and Andreas Terzis.
Worm evolution tracking via timing analysis. In WORM ’05:
Proceedings of the 2005 ACM workshop on Rapid malcode,
pages 52-59, New York, NY, USA, 2005. ACM Press.

S. Schechter, J. Jung, and A. Berger. Fast detection of scan-
ning worm infections. In Proceedings of the 7th Interna-
tional Symposium on Recent Advances in Intrusion Detection
(RAID), September, 2004.

Sumeet Singh, Cristian Estan, George Varghese, and Stefan
Savage. Automated worm fingerprinting. In OSDI, pages
45-60, 2004.

Y. Tang and S. Chen. Defending against Internet worms: A
signature-based approach. In Proc. of IEEE INFOCOM’05,
Miami, Florida, May 2005.

N. Weaver, I. Hamadeh, G. Kesidis, and V. Paxson. Prelimi-
nary results using scale-down to explore worm dynamics. In
Proc. ACM WORM, Washington, DC, Oct. 2004.

N. Weaver, S. Staniford, and V. Paxson. Very fast contain-
ment of scanning worms. In Proc. 13th USENIX Security
Symposium, 2004.
Matthew M. Williamson.
propagation to defeat malicious mobile code.

Throttling viruses: Restricting
In ACSAC,

[26]

(27]

pages 61-68. IEEE Computer Society, 2002.

V. Yegneswaran, J. Giffin, P. Barford, and S. Jha. An architec-
ture for generating semantic-aware signatures. In Proc. 14th
USENIX Security Symposium, 2005.

Cliff Changchun Zou, Weibo Gong, and Don Towsley. Worm
propagation modeling and analysis under dynamic quarantine
defense. In WORM ’03: Proceedings of the 2003 ACM work-
shop on Rapid malcode, pages 51-60, New York, NY, 2003.
ACM Press.

