Active Learning with the CyberCIEGE Video Game

Michael F. Thompson and Dr. Cynthia E. Irvine
Department of Computer Science
Naval Postgraduate School
Monterey, CA USA

The CyberCIEGE Educational Video Game

- Educational tool for teaching cyber security
 - Developed by NPS via several government sponsors
 - Used by universities, community colleges, & government
- Players construct and defend computer networks
 - 3D "construction & management simulation" video game
 - Many scenarios illustrating a range of security topics
- Custom-built game engine manages attacks and economy
 - Enterprise assets and users who need to access assets

- Attacks driven by motive: malware; flaws; insiders; etc.

Educational Goals

- Broad audience
 - Cover a wide variety of computer security concepts
 - Relatively low barrier to entry beyond basic game mechanics
- Let students approach the game on their terms
 - Try "wrong" choices, experiment, fail, reflect
 - Stand alone game hosted on standard platform (windows)
 - Game available in computer labs and for use on own laptops

Primarily a teaching (vice testing) tool

CyberCIEGE Components

- Domain-specific simulation engine packaged as a game
 - Network topology and security assessment
 - Game economy and motive-driven attacks
- Scenario definition language
 - Express a range of scenarios
 - Simple training & awareness through cyber-warfare
- Video-enhanced encyclopedia
 - Animated tutorial videos
 - Player help and lab manuals
- Student assessment tool
 - Detailed game logs reflecting student choices

- Summary reports showing student progress

Network Simulation

- Illustrate fundamental computer security concepts
 - Configurable components; meaningful player choices
 - Experience consequences of choices
- Not a high fidelity vulnerability analysis tool
 - Abstract representation of security products and features
 - Avoids much of the configuration minutia; focus on function
- Attack engine
 - Network topology and configuration assessment
 - Insiders; trap doors; wiretaps; physical security; etc.

Hands on Experimentation with Security Concepts

- Scenario-specific Policies: Users and Information (assets)
 - User (character) goals to access assets
 - Attacker motives to compromise assets
- Things the player can change:
 - Physical Security: guards; locks; biometrics; access lists
 - Component configuration (e.g., ACLs; filters; VPNs; etc.)
 - Procedures (user behavior depends on policy/training)
 - Patch management; configuration management; etc.
 - Network topology: air gaps; vulnerable network links
 - PKI used for VPNs, email and SSL/TLS
 - Personnel security: background checks; malicious insiders

Game Engine Attacks: Motives Determine Strength

- Direct and indirect access by outside attackers
 - May require entering a physical zone
 - Trojan horses; trap doors; flaws; configuration errors
 - Procedures (external software, user training, CM, etc.)
 - Separate Internet attacks
- Insiders
 - Like outsiders, but based on trust (background checks)
 - May be bribed to disclose / modify assets directly
- Wiretaps (viewing & modifying bits on the wire)
- Other
 - Compromises of PKI elements (e.g., subverted CA)
 - Smart cards as a medium for data flow

Workstation and Server Components

- Operating Systems
 - Access control lists
 - Label based mandatory access controls
 - Authentication, password policies; auth servers, biometrics
- Configure application based security
 - SSL / TLS on servers (web servers; SSH servers)
 - Email encryption; browsers; SSH clients; VPN clients
- Varying assurance and patch requirements
 - High motive attacks require high assurance platforms

Networking Components

Routers

- Simple interconnection of networks. No network addressing
- Configurable application service filters (firewall).
- VPN Gateways (clients are similar)
 - Symmetric key or public key (PKI)
 - "Connection Profiles" define traffic protection types
 - Illustrates risks, e.g., "island hopping"
 - Clients configurable for "measured boot" (like a TPM)

• Link Encryptors

- Manual key management vs software-based
- Won't work through routers

Sample Game Play

CyberCIEGE Network Filters scenario

NPS Experience with CyberCIEGE

- Scenarios assigned as labs for Intro to Computer Security
 - Students receive full period of introduction and group play
 - Included in course for nineteen quarters
- No formal NPS research, pilot studies at two institutions
- Based on informal feedback and observations of logs:
 - Most students enjoy the game and have learned from it
 - Students approach games in a variety of different ways
- Key adaptations based on our experience
 - Feedback for a broader set of player choices: MORE HELP

In-game formative assessment (e.g., multiple choice)

Time Spent on the Filters Scenario (149 students)

Filters Scenario Sessions Started (149 students)

Current and Future Work

- NPS is working with NSF to adapt CyberCIEGE
 - Further align with standard computer security textbooks
 - Additional focus on network parameter, e.g., packet analysis
 - Ultimate objective: to use in formal education settings
- A need for formal education research
 - Are games an effective way to teach?
 - In the class room; in the lab; as homework?
 - Is there a measurable difference from other techniques?

- Seeking education research collaborators

Conclusion

- Hands-on exercises promote active learning
- Computer security is a good target for serious games
 - Sometimes subtle concepts
 - Simulate complex environments and extreme consequences
- Effectiveness of serious games needs formal research
 - CyberCIEGE has good depth of material
 - Hundreds of universities and community colleges
- CyberCIEGE is available with a no-cost educational license
 - Email cyberciege@nps.edu
 - SDK available for customizing scenarios

Contact

Cynthia E. Irvine, Ph.D Professor and Director irvine@nps.edu

Michael F. Thompson Research Associate <u>mfthomps@nps.edu</u>

Center for Information Systems Security Studies and Research
Department of Computer Science
Naval Postgraduate School, Monterey, CA 93943
U.S.A

http://www.cisr.us

March 2011 166