T emwil —

~ Autdialing INeWork Mofiitoring
on Experimental Network Testoeds

- 1 =S
- : e e TR e | .
T F| e — v . U - H = Ry = e i
{ ¥ (- 9 1ring R = L -E - ’ e ot | ‘B Y
1k § - o - - = [s
- = - i 4 o 3 ” =3 i | L]
i !
: =13 el du
T
=g
m e " H - =t
! e — B = ="‘-= - R 3
: f

Michael Golightly, Jack Brassil

(LABS™)

© 2011 Hewlett-Packard Development Company, L.P.

Problem

Experimenters can benetit from additional experiment-
wide network monitoring

debugging aid for large-scale experiments
Malicious tlow detection
Aids experiment ‘traffic engineering’

Many monitoring tools reauire tool-specitic expertise
(often not found in the student’s toolkit)

Deploying tools in large-scale experiments manual
and tedious

Difficult to manage if experiment topologies vary or are
dynamically modified

Difficult to configure/provision before running experiment

h
[LaBs™)
2 22 August 2011

Our Solution Approach

Avtom ated, experiment-wide network monitoring
tool deployment

Develop an extensible deployment framework that
can be used for a broad class of monitoring tools

Give user flexible contro/

monitoring resource consumption (cost)
Coverage
Data collection granularity

Impact on running experiment

Similar in spirit to Emulab’s trace, Orbit's Measurement
Framework & Library (OML), efc.

h
[LaBs™)
3 22 August 2011

NetFlowize

A tool to deploy NetFlow probes and collectors on

Emulab/DETER experiments

NetFlow widely used throughout both network systems and
security communities

Most typically used testbed-wide by provider/operator rather
than experiment-wide, e.g., PlanetFlow

Uses unmoditied, open-source NetFlow components

Can be extended to collect data from infrastructure switches
and routers (more later)

Users only specify one of two deployment modes

Resource lightweight or heavyweight

h
[LaBs™)
4 22 August 2011

I Briet NetFlow Backgrounder

Flow — unidirectional sequence of packets that
are logically associated

headers match a specific n-tuple, e.g.
<src IP, dst IP, src port, dst Port, protocol>

Creation and expiration policy — what conditions
start and stop a flow

TCP SYN, TCP FIN, timeouts

NetFlow counters
packets, bytes, time

[LaBs™)

I Passive Probe Collection

u| J
Workstation A Workstation B

Flow probe connected

to switch port in “traffic mirror” mode

[LaBs™)

Simple Flow Report
% telnet 10.0.0.2

% ping 10.0.0.2
_J, _ _J,
10.0.0.1 login: 10.0.0.2
ICMP echo reply
Active Flows

Flow Source IP Destination IP prot srcPort dstPort
1 10.0.0.1 10.0.0.2 TCP 32000 23
2 10.0.0.2 10.0.0.1 TCP 23 32000
3 10.0.0.1 10.0.0.2 ICMP O 0
4 10.0.0.2 10.0.0.1 ICMP 0 0 [Lass”]

Monitoring Overhead

client <-> monitor <-> server
monitor acting as bridge between client and server
client flooding 28 byte UDP packets to server
Emulab PC850 machines

850MHz Intel Pentium I11 processor.

512MB PC133 ECC SDRAM.

Intel EtherExpress Pro 10/100Mbps NIC (10 Mbs)
CPU overhead of building flow records

[LaBs™)

I Forobe CPU usage (PC850, 10 Mbs)

forobe CPU usage

Frtl g]

n 6f -
&)
X
4 -
2 L + 300 ms. duration
1 Mbs transmission link
packet size 28 bytes
0 | | | | | | | | |

0 05 1 15 2 25 3 35 4
log(# flows) [LaBs™)

9 22 August 2011

I Working with Flows

Building flow records from packets

Probes

Software: fprobe
Hardware: switches & routers

Collecting and aggregating tlow records

Collectors (Unix end hosts)

flow-tools, SilK, ...

Analyzing tlow records
tlow-tools, SilK, ntop, ...
Trattic mix, DDoS attacks, port scans, ...

[LaBs™)

I NetFlow v5 Packet Example

IP/UDP packet

NetFlow

v5 header

v5 record

v5 record

. UD
. 24
. 48

P packets

oyte header

pyte flow record

e 1-30 records in 1500

byte frame

[LaBs™)

NetFlow v5 Packet Header

struct ftpdu_v5 {
/* 24 byte header */

u.intlé
u_int16
u_int32
u.int32
u_.int32
u.int32
u_int8

u_int8

u.intlé

version;
count;
sysUpTi ne;

uni x_secs;

uni Xx_nsecs;

fl ow_sequence;
engi ne_type;
engi ne_i d;

reserved;

/s
/o
/o
/s
/s
/s
/o
/o

5 %/

The nunber of records in the PDU */

Current time in mllisecs since router booted */
Current seconds since 0000 UTC 1970 */

Resi dual nanoseconds since 0000 UTC 1970 */

Seq counter of total flow seen */

Type of flow swi tching engine (RP,VIP, etc.) */

Sl ot nunber of the flow sw tching engine */

[LaBs™)

NetFlow v5 Record: Key Fields

/* 48 byte payl oad */

};

struct ftrec_v5 {

}

u_int32 srcaddr; /* Source | P Address */

u_int32 dstaddr; /* Destination | P Address */

u_i nt32 next hop; /*¥ Next hop router's |IP Address */

u_i nt32 dPkts; /* Packets sent in Duration */

u_int32 dOctets; /* Octets sent in Duration. */

u_int16 srcport; /* TCP/UDP source port nunber or equival ent */
u_intl16 dstport; /* TCP/UDP destination port nunber or equiv */
u_int8 tcp_flags; /* Cunulative OR of tcp flags */

u_int8 prot; /* | P protocol, e.qg., 6=TCP, 17=UDP, ... */
u_int8 tos; /* 1P Type-of-Service */

u_int16 drops;

records[FT_PDU V5 MAXFLOWS];

[LaBs™)

Experiment View by Protocol

#

protocol flows octets packets duration
#

tcp 93.877 97. 143 93. 326 91. 589
udp 4. 257 2. 466 5.932 8. 286
icm 1.337 0. 368 0.576 0.117
gre 0.010 0. 002 0. 006 0. 005
pi m 0.012 0. 002 0. 004 0. 001

i pv6 0. 004 0. 000 0. 001 0. 000
i gnp 0. 000 0. 000 0. 000 0. 000
os pf 0. 001 0. 000 0. 000 0. 000
rsvp 0. 000 0. 000 0. 000 0. 000

[LaBs™)

Summary View of Experiment Run

Total Flows : 24236730
Total Octets - 71266806610
Total Packets > 109298006
Total Time (1/1000 secs) (flows): 289031186084
Duration of data (realtime) - 86400

Duration of data (1/1000 secs) : 88352112
Average flow time (1/1000 secs) : 11925.0000

Average packet size (octets) - 652.0000
Average flow size (octets) - 2940.0000
Average packets per flow - 4.0000
Average flows / second (flow) - 274.3201
Average flows / second (real) - 280.5177
Average Kbits / second (flow) - 6452.9880
Average Kbits / second (real) - 6598.7781

[LaBs™)

Netflowize tool

Automatically determines where to place Netflow probes
and collectors

Leverages underlying physical network topology

Relies on persistent resource assignment across
experiment swaps

Configurable
Lightweight: Use existing experimental infrastructure

Heavyweight: Deploys monitoring infrastructure
overlay using additional experimental resources

[LaBs™)

I Naive Approach to Overlay Creation

Analyze ns topology description

Modify toplogy description to add overlay nodes, links,
and NetFlow software probes and collectors

Swap experiment out and back in

Do this and watch bad things happen ...

[LaBs™)

Example: 3 node experiment

set ns [new Simulator]

client{pc} Hu?éﬁquﬁc}
10.1.1.2 10Mk S

source tb_compat.tcl . e omsec
Create nodes @
set client [$ns node] Lan®
set server [$ns node] 10k

. 2.0msec
set monitor [$ns node]
Create lan
set lan0 [$ns make-lan “$client server(pc)
$server $monitor" 10Mb 10ms] 10.1.1.3

Logical view of topology

[LaBs™)

$ns run

Physical Experiment Topology

Node HOL;I"S Startup
Node ID Name |Type Default OSID |Status Idle[1] |Status[2] SSH Console|/Log

pcB6 server |pc850/ RHLS0-STD |up 0.1 none E‘ L-.%J
pc93 |tbdelay0|pc850 FBSD410-STD |up 0.13 0 ER=
pc103 |tbdelay2|pc850 FBSD410-STD |up 0.13 0 EEr=!
pc152 |monitor |pc850|RHLS0-STD |up 0.1 none F%] =
pc164 |client |pc850 RHLS0-STD |up 0.1 none E‘ L-.%]
delay mapping @ tbdelayO
ltp_map e lanO client client fxp1 fxp4

L client monitor lan0 lanO monitor monitor fxp2 fxp3

| client server lanOL monitor client lanO

L monitor server lanO delay mapping @ tbdelay?2

| server client lanOL server monitor lanO
to @iy 0 lanO server server

[LaBs™)

I NS Topology Description: Example 1

$ns duplex—link [$ns node] [$ns node]\
10Mb O ms DropTail

Perfectly valid topology (just bad form)

Emulab will fill in unspecified details
Create 2 nodes running the default operating system
assign the nodes’ names (e.g., tbnode-nT, tbnode-n2)
name the connecting link (e.g., tblink-13)

Ditticult to parse and modity topology

[LaBs™)

I NS Topology Description: Example 2

create nodes
for{setiO}{$i<2}{incri}{

set node ($i) [$ns node]

tb—set—node—os $node ($i) FBSD410-STD
}

create link

set linkO [$ns duplex—link $node (0) $node (1)\\
10Mb O ms DropTail

A more common form, still difficult to parse

[LaBs™)

I Solution: Post-instantiation experiment
moditication

Get exported physical topology details via XML-RPC

Might be necessary to ssh into nodes for attached link
details

Construct physical topology graph

Much easier to parse and modify topology
using the minimum number of resources

[LaBs™)

I Overlay Construction

Lightweight mode:
e Probe Placement

* ‘set cover’ type algorithm to identity minimum
number of probes to deploy

e Collector Placement

* pick a node at random (easy)

e use control network for record distribution (ideally
dedicated measurement network)

[LaBs™)

Overlay Construction

Heavyweight mode:

e Probe Placement

* replace each link with LAN + node for probe
e attach new dedicated node to lossless LAN

* use existing nodes for lossy LANs
e Collector Placement

e create a new dedicated node

e use control network for record distribution

[LaBs™)

Tricks

Lightweight mode favors putting probes on shaper
(delay) nodes to minimize impact on experimental

nodes

Heavyweight mode takes advantage of Emulab’s
trace to deploy nodes

Modifications tagged so they can be automatically
stripped from experiment

[LaBs™)

I Current Status

~700 lines of python
Grab tool at
http://66.92.233.103/netflowize-0.3.tar.bz2

[LaBs™)

Future Work

* Instrumented experiment should be checked for
duplicates, unnecessary hardware resources,
incomplete coverage

e Inadequate handling of infeasible requests
* More control knobs?

e Virtual node handling?

* Integrate more efticient probe

e Extensions beyond NetFlow

* Infegration into existing workbenches

*Multi-tenant cloud monitoring?

[LaBs™)

	��������Automating Network Monitoring�on Experimental Network Testbeds�
	Problem
	Our Solution Approach
	NetFlowize
	Brief NetFlow Backgrounder
	Passive Probe Collection
	Simple Flow Report
	Monitoring Overhead
	Fprobe CPU usage (PC850, 10 Mbs)
	Working with Flows
	NetFlow v5 Packet Example
	NetFlow v5 Packet Header
	NetFlow v5 Record: Key Fields
	Experiment View by Protocol
	Summary View of Experiment Run
	Netflowize tool
	Naïve Approach to Overlay Creation
	Example: 3 node experiment
	Physical Experiment Topology
	NS Topology Description: Example 1
	NS Topology Description: Example 2
	Solution: Post-instantiation experiment modification
	Overlay Construction
	Overlay Construction
	Tricks
	Current Status
	Future Work

