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Abstract
The need for large-scale experimentation testbeds involv-
ing several hundred, or even thousands, of nodes is un-
deniable. Testbeds including Emulab [10], and Deter [5]
are heavily used for both research and application test-
ing. To scale even further and shed some of the limita-
tions that the relative small number of physical nodes im-
pose, researchers have turned to full virtualization [8] and
lightweight, container-based virtualization [16, 10]. Vir-
tualization allows running multiple virtual execution en-
vironments (VEEs) per physical host.

In this paper, we evaluate the use of hundreds of
lightweight containers as a testbed to measure the per-
formance of simple applications. We show that, al-
though economically and technically compelling, virtu-
alization has some limitations due the sharing of host re-
sources (CPU, network, memory and disk) among same-
host VEEs. Determining the number of VEEs that can be
deployed in a physical machine without interfering with
the fidelity of the experiment is not a trivial task and it
cannot be estimated or computed ahead of time using ag-
gregate utilization of individual resource. Furthermore,
monitoring the health of an experiment by measuring the
individual resource utilization can affect the behavior of
the service under test. Therefore, we observed what we
call a “weak” form of the Heisenberg uncertainty princi-
ple for host resource measurements: increasing the pre-
cision and fidelity of the resource measurements can in-
terfere with the behavior of the experiment. We believe
that this observation holds in general but it becomes more
pronounced when we instantiate hundreds of VEEs due to
the necessary context switching.

1 Introduction
Nowadays, the overwhelming majority of applications
and services are being performed by large-scale dis-
tributed software systems. Being able to emulate the scal-
ability, quality of service, fault tolerance, security prop-
erties, and steady state behavior of such planetary size

systems ahead of their deployment is highly desirable.
Testbeds including Emulab [10], and Deter [5] offer re-
searchers and practitioners the only viable platforms to
test their ideas and application beyond custom built cor-
porate clusters.

Although a step forward, current testbed platforms fall
short when it comes to scaling to tens or even hundreds
thousands of application or services instances. To ad-
dress this shortcoming and to allow existing testbed in-
frastructure to scale even further, researchers have turned
to virtualization technologies [16, 10, 8]. Indeed, Virtual
Execution Environments (VEEs) are an economical way
of scaling beyond the limitations imposed by the relative
small number of physical nodes. VEEs can dramatically
increase the perceived number of application or service in-
stances by one or two orders of magnitude depending on
the available host resources and the type of virtualization.

In this paper, we study the advantages in terms of
scalability but also the limitation from the use of hun-
dreds of lightweight containers as a performance evalu-
ation testbed. We do so by performing a range of sim-
ple experiments on a single but relatively powerful host.
Although superior in terms of scalability, lightweight vir-
tualization has itself limitations: determining the optimal
number of VEEs that can be accommodated in the single
host without interfering with the fidelity of the experiment
is not a trivial task. Moreover, we show that it is infeasible
to compute the VEE capacity of the underlying hardware
based on static or even aggregate measurements of host
resources (CPU, network, memory, and disk I/O).

Initially, we attributed this result to the lack of pre-
cise, per-VEE measurements that would enable us to ef-
fectively monitor the behavior of the application in each
of the containers. However, in our effort to increase the
fidelity of our measurement collection infrastructure to
track the health of each individual VEE, we run into an-
other limitation: increasing the frequency of measurement
can decrease the number of concurrent containers we can
utilize without interfering with the performance of the ex-
periment itself. Therefore, we observed what we call a
“weak” form of the Heisenberg uncertainty principle for



host resource measurements: increasing the precision and
fidelity of the resource measurements can interfere with
the behavior of the experiment, reducing the number of
“usable” VEEs. Although uncertainty principle was origi-
nated from physics, a system that has to share its resources
among many different tasks can exhibit the same behav-
ior. Therefore, we believe that our results holds for any
process and any system but it becomes more pronounced
for a testbed with hundreds of VEEs due to the necessary
context switching among the different CPU tasks.

2 Testbed System Architecture

Our initial goal was to setup a single machine testbed
where we use Virtual Execution Environments (VEEs) to
perform experiments. We were interested in generating
experimental scenarios that would be able to scale to po-
tentially thousands of VEE instances. We would like to do
so without exceeding the available host resources. With
host resources, we refer to CPU, network, memory and
disk for our Dell PowerEdge 1950 server equipped with
two Quad-Core Intel Xeon E5430 (2.66GHz) processors,
8GB RAM and Gigabit Ethernet NIC. The overall sys-
tem architecture is illustrated in figure 1. For the purpose
of our experiments, we used OpenVZ [15] (kernel patch)
version: ovz009.1 on a vanilla Linux kernel version 2.6.24
to instantiate the VEEs. However, any other lightweight
container-based systems such as VServers [16] would suf-
fice and the produced results are not dependent on the spe-
cific container solution.

To lower the disk and memory requirements,
Unionfs[23] plays a critical part in our system. It is
a stackable filesystem service which “merges several
directories into a single unified view” from each contain-
ers’ point of view. There are three major advantages of
using Unionfs in our system. First, instead of creating a
separate copy of filesystem for each container, we only
create one template filesystem and share it among all
containers. This results in tremendous disk space savings
which enables to scale to thousands of simultaneous con-
tainers instances in a single machine. Second, Unionfs
facilitates memory sharing. When the same user program
is running in multiple containers with Unionfs mounted
filesystem, its binary image would be loaded only once in
memory. Thus, we have automatic savings both in terms
of memory access time and space allocation. Third, any
changes in system configuration and software is quickly
propagated to the containers through modifications on
the base template. The base template is mounted to each
container as read-only root “/” while a write-enabled slice
is mounted on top of the root allowing each container to
store its state in a separate directory on the host.

Except the use of Unionfs, our testbed was composed
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Figure 1: Lightweight Virtual Execution Environment
(VEE) single-host testbed architecture.

process name RSS shared non-shared
init 860 604 256

syslogd 640 508 132
dbus-daemon 684 508 176

sshd 992 644 348
sum 2264 912

Table 1: ubuntu-8.04-i386-minimal container template
process memory consumption in kB

process name RSS shared non-shared
init 616 528 88

minilogd 632 208 424
sshd 1144 836 308
sum 1572 820

Table 2: centos-4-i386-minimal container template pro-
cess memory consumption in kB

from out-of-the-box software components. Our which, at
first glance, would have enabled the quick estimation of
the required resources through both static and dynamic
(on-line) analysis. We present this analysis in the next
section.

3 Estimating Resource Utilization

3.1 Pre-experiment Resource Computation
In order to roughly determine the number of VEEs that
can be held in our testbed, we want to estimate the system
resource utilization before carrying out any experiment.
In our testbed, the size of the Linux operating system is
371MB. Therefore, if we need to instantiate N contain-
ers without using UnionFS, they would require a total of
371*N MB. However, with UnionFS, we only require one
copy dramatically decreasing the amount of required disk
space. This is a significant difference especially for high
density testbed systems since such system usually run ex-
actly the same copy of the programs and configurations.
Due to the copy-on-write slices, the disk usage for each
container also remains small.



Lightweight virtualization has a small memory foot-
print which allows to save the state of each container
faster and inexpensive in terms of memory overhead. Af-
ter bootstrapping the containers, there is a small number
system processes running. Of course, the number of initial
processes depends on the system configuration. In tables 1
and 2 depict the number of processes and their memory
utilization.

These tables allow us to measure how much resident
physical memory pages are actually used by a single con-
tainer. For example, for ubuntu 8.04 guest OS template
to populate the containers, 3 basic process are launched,
and they are allocated with 2264kB shared memory pages
and 912kB non-shared pages. Using a physical memory
analysis tool [13], we notice that the shared pages are not
only shared within container (the .so lib files within the
same container), but also across the containers. The code
analysis shows that the inode numbers of the shared files
remain identical from the kernel’s perspective: when ker-
nel performs the ELF loading, kernel will map the same
binary file with identical inode number to the same mem-
ory region.

Using this, we can derive the simple formula to com-
pute the memory consumption per container:

The estimate memory requirements for C containers is:
M = 912 ·C + 2264 (in kB)

Thus, the Memory consumption per container is:
912 + 2264

C (in kB)
where C is the number of containers launched.
The second part of the above formula indicates that the

shared memory page consumption is not actually linear:
the more containers launched, the less it pays for shared
memory. The container based virtualization only needs
3.1MB memory for a basic running container.

Unfortunately, the pre-computation of resources for
each VEE can only be applied for memory and disk space,
to calculate the CPU and network requirements, we have
to rely on the run-time analysis of the running application.

3.2 Runtime Evaluation of Concurrent
VEEs

To quantify the number of VEEs that a single host testbed
can support, we had to perform a set of controlled experi-
ments using a variable number of VEEs and measure our
capability to estimate the number of VEEs that the un-
derlying hardware can support. To alleviate measurement
errors due to heterogeneous load and resource allocation
requirements, we chose to run the the same application
inside all VEEs. In addition, we used a light monitor-
ing process running outside the containers (i.e.on the host)
to sample the real-time values of resources including net-
work throughput, CPU and, memory utilization for each
of the VEEs. Our initial goal was to identify the number
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Figure 2: Aggregate resource utilization for wget and for a
varying number of containers. Notice that although there is a no-
ticeable change in the experiment completion time for approx-
imately 400 containers, the rest of the resources appear to be
nominal. It is not until running 600 concurrent VEEs that the
network throughput reaches a maximal point.

of containers we can execute in parallel on the same host
without depleting the host resources or otherwise contam-
inate the obtained experimental and performance results.
To that end, we implemented a monitoring process that
depends on the Linux proc file system [2]. This mon-
itoring process was performing periodic reading of the
resources status using the available “/proc” entries. To
avoid erroneous measurements, we used a real-time ker-
nel scheduler setting to optimize the performace of our
measuring process. We caught network data from file
“/proc/dev/net” within the directory of each container un-
der “/vz/root”. Container CPU usage was obtained from
“/proc/vz/vestat” on the host while memory utilization
was calculated from “/proc/user beancounters”.

Initially, we set our measuring sampling interval to one



measurement per three seconds and we started GNU wget
in each container. Wget is a simple console application
designed to retrieve files using HTTP protocol among oth-
ers. To prevent initial resource contention, we initiated
wget in randomized intervals ranging from ten (10) to
twenty (20) seconds. Each instance downloaded several
web pages approximately 400 KB in size from an Apache
web server hosted on another physical machine in local
network. The capacity of the web server was configured
to 4000 requests, which was never attained in our experi-
ments, meaning that the bottleneck was on the client side.
We selected wget as our application for our performance
evaluation because it is not CPU or memory intensive but
rather exercises the network and disk I/O. In addition, the
network behavior of wget is very sensitive to scarcity of
resources and thus provides an easy aggregate measure-
ment for the overall system performance.

We performed the same experiment on groups of 100,
200, 400, 600, 800, 1000, 1200 and 1400 VEEs, and col-
lected the real-time system network throughput, CPU and
memory usage. The completion time for each container
was recorded in memory and the averages are calculated
after the end of each experiment. Figure 2 illustrates our
experimental results using the aggregate resource mea-
surement. For each of the graphs, we measured the re-
source values using our real-time measuring process ev-
ery three-second intervals and for the entire duration of
the experiment. Our aim was to identify a resource that
would show signs of depletion or otherwise indicate that
the number of VEEs is not sustainable. As a ground-truth
for the actual concurrent VEE capacity of the host, we
measured the completion time for each experiment. If the
VEEs do not interfere with each other in any way, the ex-
periment would finish at approximately that same time.

Our initial expectation was that we would be able to
pinpoint the number of VEEs that we can scale to with-
out losing precision by just looking at the aggregate re-
source utilization for wget and for a varying number of
containers. Indeed, although there is a noticeable change
in the experiment completion time for approximately 400
containers, the rest of the resources appear to be nominal
and certainly within their installed capacity. The comple-
tion time for each container should be approximately 150
seconds. It is not until we reach 600 concurrent VEEs
that we notice that the network throughput reaches a max-
imal point and the completion time is well above 200 sec-
onds, almost a 25% increase over the value for 400 VEEs.
Therefore, we are unable to estimate the number of con-
current VEEs that the host can support by just observing
the aggregate measurements of the utilization of the pri-
mary host resources. Also, while for wget the increase in
completion time might appear satisfactory or even desir-
able since there is an increase in network throughput, for
latency-sensitive applications it might produce erroneous

results.
Interpreting the VEE scalability results as a deficiency

of our measuring methodology, we decided to observe the
experiment more closely and decide if there is a resource
scarcity not based on aggregates but rather peak values of
individual resources in any of the VEEs.

4 Heisenmeasure Uncertainty

Convinced that the context switching between containers
and short term peaks in CPU and network utilization was
the cause of the increase of the overall experimental time,
we decided to increase the frequency of resource sampling
and to keep individual and not aggregate measurements
for each containers. To that end, our monitoring pro-
cess would open the individual proc structures for each
of the containers and traverse them at regular intervals ev-
ery 0.1, 0.01, 0.005 and 0.001 seconds. Since applications
in our experiment can be affected by a lot of different re-
sources, we measured all host resources for completeness.
We stored the individual measurements in memory and we
performed statistical analysis after the completion of the
experiment. As a side-note, it is worth mentioning that
it is imperative to assign a real-time scheduling policy to
the monitoring process. Otherwise, it would fail to run on
time producing erroneous results.

We performed the same experiments as before but with
different number of containers, from 100 to 700. We also
reduced the initial calling interval of wget to one (1) to ten
(10) seconds. For every number of containers, the same
experiment is done with different sampling intervals (0.1,
0.01, 0.005 and 0.001 seconds). We were aiming in identi-
fying utilization peaks within a small window of time and
estimate when the experimental results become corrupted
due to lack of readily available resources. Therefore, by
carefully monitoring the health of each VEE we should
be able to detect “anomalies” in resource consumption
and potentially react in a dynamic fashion. However,
our results show frequent, or measurement collected on
a small window of time, can adversely affect the available
resources for the application under test. In essence, we
observed what we call a “weak” form of the Heisenberg
uncertainty principle for host resource measurements: in-
creasing the precision and fidelity of the resource mea-
surements can interfere with the behavior of the experi-
ment.

The completion times for different values of measure-
ment frequencies (0.1-0.001 seconds) is shown in Fig-
ure 3. Each of the graph lines corresponds to a differ-
ent sampling intervals. Frequently polling the resource
values for each VEE can interfere with the performance
of the experiment and increase its completion time. The
more frequent the measurements, the smaller the number
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Figure 3: Completion times when we vary and the number of
containers. Each line corresponds to different sampling intervals
(0.1-0.001 seconds). Measuring the resource utilization for the
VEEs can affect the experimental completion time. The more
frequent the measurements, the less containers we can instanti-
ate without interfering with the experiment.

of containers we can instantiate without affecting the over-
all experiment. Observing the measurement of the CPU in
Figure 4 is not helpful in determining the “breaking” point
for each polling interval. Indeed, we are unable to deter-
mine accurately when the experiment is affected just by
looking at Figure 4: there is a linear CPU increase even for
500 containers and for 0.01 second interval whereas there
is a significant discrepancy in the experiment completion
time. Unlike CPU, measuring the network utilization is a
good measure of when the experiment is affected by our
measurement. In Figure 5, we can see that the number of
containers that can be supported for each of the polling
intervals is pronounced: 0.1 seconds can support up to
500 containers, 0.01 can sustain up to 300 containers, and
0.001 cannot go beyond 100 containers.

Although our observation holds in principle for any ap-
plication running in a host, it becomes more pronounced
for a system running hundreds of VEEs concurrently. We
believe that this is due to the necessary context switch-
ing among the different CPU tasks and it imposes a fun-
damental limitation on the number of VEEs that we can
instantiate and use for testing without interfering with the
fidelity of the application. The use of an event-driven VEE
scheduling for each of the resources including CPU, I/O,
and networking would alleviate this allowing us to scale
without losing fidelity both in terms of resources and in
terms of measuring the health of the experiment.

5 Related Work

Computer virtualization was originally introduced as a
product by IBM in 1975 [3]. In recent years it has been re-
vitalized mainly due to the technology introduced by com-
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Figure 4: CPU utilization for each container and for different
measuring windows (0.1-0.001 seconds). Merely examining this
graph we are unable to determine accurately when the experi-
ment is affected: there is a linear CPU increase even for 500
containers and for 0.01 second interval whereas the completion
time shows a significant difference.
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Figure 5: Network utilization clearly indicates the number of
VEEs that can be supported when sampling frequency can affect
the health of the overall experiment.

panies and the open source community including VMware
[17], Xen [4] , User Mode Linux [7], KVM [1] and Virtu-
alBox [21]. A virtualization approach that provides more
efficiency is the OS-level virtualization. This approach
has been implemented in several operating systems such
as BSD[11], Solaris[14, 12] and Linux [15, 16]. Virtu-
alization has been employed in the past for building net-
work emulation system [10, 9] and provide live migration
capabilities [20].

Traditional approach to testing large-scale and multi-
tiered network topologies and applications is currently
done through simulation models that cannot capture all as-
pects of system behavior, especially scalability properties
and failures.Therefore, simulation cannot substitute real
system experimentation and fails to capture software bugs
and configuration errors. In addition, the transient state
of applications and unexpected component interactions
remain unexplored. On the other hand, emulation tech-
niques including Emulab [22, 10], and ModelNet [19])
offer contained execution environments that use unmod-
ified applications and operating systems. Unfortunately,



the scalability of the current testbeds is limited by the
number of physical nodes. We cannot expect to see a dra-
matic increase of the aforementioned testbed to tens or
even hundreds of thousands of nodes. For example, emu-
lating 10000 instances of a botnet or a virus propagation
using 250 physical machines is currently beyond the ca-
pabilities of the most advanced testbeds.

There is a wealth of previous research on dynamic pro-
vision of services [8, 18] or to efficient load balancing[6].
However, these efforts typically target already running
services and they affect the fidelity of the experiment.
This is due to the use of full virtualization which does
not scale as efficiently as process containers and does not
expose the entire stack of driver code to the application.
Moreover, they do not offer a solution to resource utiliza-
tion peaks but rather to initial provision of services [8].

6 Conclusions

In this paper, we analyze the experimental scalability
and fidelity limitations when employing lightweight vir-
tualization as testbed environment to measure the perfor-
mance of simple, large-scale applications. To that end, we
show that it is not a trivial task to determine the maximum
number of VEEs that can be run concurrently in a physical
machine without perturbing the experimental outcome.

Furthermore, our efforts to monitor the health of each
VEE have uncovered a “weak” form of Heisenberg un-
certainty principle in measuring lightweight virtualiza-
tion. The desirable accuracy of measurement is largely
dependent on the high sampling frequency, which poten-
tially deprives the containers of available resources and
adversely interferes with the experiment.
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