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Abstract

Cyber security experiments with potentially malicious
software can possibly damage the testbed environment
and “escape” into the Internet. Due to this security con-
cern, networks used in such experiments are often to-
tally isolated from production networks and the Inter-
net. This choice, however, precludes remote access to
testbeds used for security experiments, thus requiring
costly duplication of equipment, manpower and expertise
at sites that experiment with malicious software. We pro-
pose an alternative approach that is aimed at providing
a degree of safety comparable to that of physically iso-
lated testbeds while still permitting remote connectivity.
Our approach relies on logical isolation of networks used
in different security experiments using network virtual-
ization at the datalink layer. We have implemented this
approach into a platform (V-NetLab), and the responses
from testbed users have been very positive.

1 Introduction

Teaching and research in practical cyber security requires
experimentation with potentially dangerous software on
contemporary networks. Experimentation with live mal-
ware is particularly challenging since there is a possi-
bility that malware may “escape” the confines of a lab-
oratory and spread over the Internet. Although plat-
forms such as the PlanetLab [3] and Emulab [2] exist to-
day to support experimentation with large-scale network
services, security-related experiments are either discour-
aged or altogether disallowed, especially if they involve
intentional malicious behavior.

Even if malware is deployed on a tightly controlled
network, and prevented from accessing the Internet by a
firewall, there is no guarantee that malware will not ac-
cess (or escape into) the Internet. In particular, malware
may discover and exploit vulnerabilities in the very same
network components that are supposed to prevent it from

accessing the Internet, such as VLAN switches, routers
and firewalls. Alternatively, it may exploit vulnerabilities
in network monitoring and intrusion detection applica-
tions such as Snort, Wireshark (formerly Ethereal), tcp-
dump or other network-exposed applications that may be
run on the network used for security experiments. Nu-
merous CVE vulnerabilities have been reported involv-
ing these applications’ components in the past several
years, and hence the likelihood of finding exploitable
vulnerabilities is non-negligible. When combined with
the large magnitude of damage that can result from mal-
ware escaping to the Internet, the overall risk may be un-
acceptable. These risks grow in proportion to the size
of experimental testbeds — for instance, an oft-voiced
concern about security experiments in the context of the
proposed GENI infrastructure is that it should not be-
come the world’s most powerful botnet!

A typical approach for mitigating the security con-
cerns mentioned above is to physically disconnect exper-
imental networks from the Internet, but this requires re-
searchers to have physical access to these networks —
something that is not possible in the context of most
large-scale testbeds. To mitigate this difficulty, DETER
[1] (which is based on Emulab) can allow remote ac-
cess to hosts used in security experiments, while miti-
gating risks by deploying firewalls, network access con-
trol mechanisms and/or IDS/IPS. However, errors in con-
figuring these mechanisms may result in the possibility
that malicious code may escape into the Internet. As
a result, DETER recommends no remote access for the
most dangerous experiments. But disabling remote ac-
cess for a particular experiment is insufficient, it is possi-
ble that malicious code exploit vulnerabilities in the soft-
ware/hardware components of the testbed infrastructure
and escape to other experiments that have remote access.

To provide controlled Internet-access for carrying out
these experiments, we propose a new approach that uses
datalink layer virtualization in conjunction with virtual-



ization of hosts involved in security experiments. It is
implemented by rewriting every network packet created
within a security experiment in such a way as to iso-
late these packets from the underlying network infras-
tructure. As a result, malicious packets cannot “escape”
outside the experimentation network, and therefore have
no opportunities to exploit vulnerabilities in servers, fire-
walls or routers within production environments. Re-
mote access can be provided by creating a communica-
tion tunnel from an experimenter’s workstation to the ex-
perimentation network.

The key insight behind our approach is that network
virtualization can be used to provide security in much
the same way as host virtualization. Just as a VMM
mediates all accesses made by a guest OS to host hard-
ware, our approach relies on a packet rewriter deployed
on the host machine that mediates all accesses to the
physical network made by a guest VM. We point out
that while today’s security technologies such as anti-
virus and application firewalls can provide some defense
against malicious code, they are not considered strong
enough to run malware experiments. This is because
malware can potentially compromise its operating sys-
tem, and subsequently disable or defeat all defenses de-
ployed on this OS. In contrast, since a VMM is a much
simpler piece of software that provides a much narrower
interface to a guest OS as compared to the complexity of
an application-to-OS interface, it is believed to provide
an adequate level of security for experiments involving
malware. In the same manner, our packet rewriter is a
small piece of code with very simple functionality, and
hence can be relied upon to ensure isolation of the vir-
tual networks from the underlying physical network.

Our packet rewriter encapsulates the guest VM’s net-
work packets in a manner that they will no longer be in-
terpreted by the underlying network fabric. In particu-
lar, consider a datalink layer packet p from a host A to
another host B, where A and B are part of a security
experiment. In V-NetLab, both A and B will be imple-
mented as guests on host machines Ah and Bh respec-
tively. The packet p is intercepted by a packet rewriter
(implemented using a kernel module) on host Ah, which
generates a new datalink layer packet p′ with the source
address of Ah, destination address Bh, and a protocol
identifier ETH P VNETLAB that is unused in the (phys-
ical) testbed. The payload of p′ is the entire packet p. On
Bh, the kernel hands packets with the protocol identifier
of ETH P VNETLAB to our packet rewriter, which in-
verts the above transformation and hands p to the guest
B. Due to the fact that p′ looks like any other datalink
layer packet from Ah to Bh, it is highly unlikely to com-
promise any components on the physical testbed that op-
erate at these datalink layer. Moreover, since the proto-

col identifier of ETH P VNETLAB is unknown to these
components, they are unlikely to inspect or process its
payload. As a result, components on the physical net-
work are highly unlikely to be compromised (or affected
in any way) by network traffic generated as part of secu-
rity experiments. Additionally, the entire payload of p′

can be encrypted in order to ensure that its contents re-
main confidential, or to ensure that the resulting payload
looks essentially random (i.e., uncorrelated with the orig-
inal packet contents) and hence cannot predictably be
used to exploit vulnerabilities on these devices/services.

A benefit of virtualization at the datalink layer is that
it permits the use of any layer-3 protocol within the se-
curity experiments, including IP, ICMP, ARP, etc. More-
over, since the packets transmitted by guest OSes re-
main encapsulated on the physical network, it is possible
for different virtual networks to use overlapping IP ad-
dresses without interfering with each other. Indeed, the
management of IP addresses on the virtual network is to-
tally under the control of the user of the virtual network;
these addresses need not be allocated or approved by the
operators of the underlying physical network. We remark
that our mechanisms for remote connectivity operate in-
dependent of such overlaps in IP address space.

In the rest of this paper, we first describe the design
and implementation of our approach in Section 2. Sev-
eral issues about our approach are discussed in Section 3.
Related work is discussed in Section 4, followed by the
concluding remarks in Section 5.

2 Design and Implementation

2.1 V-NetLab System Architecture

We use Linux as the host OS to simplify develop-
ment of virtual network control and management soft-
ware. The virtual machines (guest OSes) themselves
may run Linux, Windows, or any other OS supported
by the virtual machine software. Our implementation
uses VMware for virtualization, since it provides seam-
less support for different guest OSes, strong isolation,
and reasonably good performance.

We have implemented V-NetLab framework on a
hardware platform consisting of dual-processor worksta-
tions connected together by a switched gigabit network.
Also included in the platform is an NFS server with a
large enough disk to accommodate many virtual machine
images. Since our platform is relatively small (currently
about 10 workstations), our network infrastructure con-
sists of a gigabit Ethernet switch. With this physical
infrastructure, we have been able to support around 50
experiments, each consisting of up to ten hosts. These
experiments were carried out by students in the context



Figure 1: V-NetLab System Architecture

of network and system security courses, and involved a
variety of tasks including network mapping and sniffing,
network intrusion detection, experiments with malicious
code, exploit development, etc. 1

We note that scaling to a larger testbed is primarily
a resource management and mapping problem, i.e., it re-
quires the development of algorithms and techniques to
map logical networks onto the physical hosts. Develop-
ment and implementation of these techniques is ongo-
ing effort. At present, we assume that this mapping has
been generated and given to the V-NetLab runtime sys-
tem, which is responsible for managing the physical in-
frastructure and interacting with remote users. This run-
time system provides management commands that may
be used by V-NetLab users to create virtual networks and
instantiate them, query their status, etc. The components
of V-NetLab runtime system are shown in Figure 1.

• VNetMgr is the user interface program for users to reg-
ister, deregister, start, query, and shutdown their net-
works.

• GrpAdmin is the user interface program for admin-
istrators. This interface allows the administrator to
add/delete users, register/deregister networks for the
users under his domain, create/delete teams, and query
the usage statistics of hardware resources for the run-
ning networks, etc.

• HostMgr is a daemon which runs on each of the phys-
ical nodes which host virtual machines for V-NetLab.
The HostMgr on a host is responsible for starting up
and shutting down virtual machines that reside on that
host, as well as configuring the virtual networking
components (i.e., packet rewriters) on that host.

• GrpMgr is a central daemon which listens to the user

1Details of some security projects are described in [5].

interface programs, processes their requests and relays
them to HostMgr. Its core component ResourceMgr
maintains information about all the virtual networks
which are currently running, current resource usage,
residual computing resources available, etc. It is also
responsible for instantiating new virtual networks by
mapping their components (hosts, hubs, and switches)
onto available resources. It interacts with the Host-
Mgrs to start up the virtual machines that have been
mapped to that host.

• Kernel Packet Rewriter is a packet handler that encap-
sulates outgoing packets from virtual machines, and in-
verts this process for incoming packets. The following
section expands on the function and operation of the
rewriter and other V-NetLab components for network
virtualization.

2.2 Datalink Layer Network Virtualization

VMware virtual network interfaces support host-only
mode, bridged mode and NAT mode. The bridged mode
automatically extends the virtual machine network inter-
face onto the LAN of physical machine, while NAT pro-
vides limited connectivity to the underlying physical net-
work. Thus, both these choices are inconsistent with our
isolation goal. Hence our approach is based on the host-
only mode, which provides connectivity with the host OS
but nothing else. The virtual Ethernet adapter inside the
guest OS is associated with a virtual network interface
vmnetX on the host OS, where X is a number. Note that
multiple guests can share the same host vmnet device.
In that case, the vmnet device acts like a network hub.

A virtual network typically consists of a number of
virtual machines distributed over a set of physical hosts.
Virtual machines belonging to the same subnet may be
distributed over multiple physical hosts in the testbed. In
that case, our packet handler is responsible for transpar-
ent transmission of packets among virtual machines via
physical hosts. In order to achieve this, the packet han-
dlers maintain the mapping between the virtual network
topology (also called logical topology) and the physical
topology. We use two data structures to maintain the
mapping information. Given a logical topology, logical
interfaces that are directly connected together by one or
more hubs form a sibling closure (SC). A logical host
interface in an SC should be able to listen to network
traffic originating at (or destined to) any of the other log-
ical host interfaces in the same SC. The SCs may then be
connected together using (logical) switches. Therefore,
the logical topology provided by the user can be divided
into multiple SCs.

Another important data structure is Participation Ta-
ble or PT, which lists the set of vmnet interfaces that be-



Figure 2: Virtualization at Datalink Layer

long to an SC. This is generated during the start-up phase
of the virtual network. By definition, each vmnet inter-
face in an SC is able to listen to conversations involving
any other vmnet interface of that SC. The packet rewriter
is responsible for ensuring this by relaying packets across
the vmnet interfaces of different hosts that are part of the
same SC. Figure 2 illustrates these concepts. To reduce
clutter, only a single vmnet interface is shown for each
host, but in reality, each physical host can support about
100 vmnet interfaces. In this figure, vm2, vm3 and vm4
are supposed to be on the same logical hub. Since vm2
and vm3 have been mapped to the same physical host,
they can share a single vmnet interface, called vmnet1 in
the figure. vm4 needs a separate vmnet interface on Host
2, called vmnet3. The interfaces vmnet1 and vmnet3 are
participants in an SC. Thus, our packet rewriter will en-
sure that any packet from any of the hosts vm2, vm3 and
vm4 would be relayed on both vmnet1 and vmnet3. Vir-
tual network packets observed by the packet rewriter that
do not originate from the participants in the SC will be
dropped by the rewriter to ensure isolation. An excep-
tion to this rule is made for packets originating on the re-
spective physical host. For instance, Host 1 can transmit
packets to vm2 or vm3 — the packet rewriter will handle
them appropriately. This ability plays an important role
in providing external tunnels into virtual networks.

Virtual network packets that need to be forwarded on
a remote vmnet interface have to be transmitted on phys-
ical wire through host physical interface (e.g., eth0). To
transparently transmit packets generated by a virtual ma-
chine on to the physical wire, we need a mechanism to
grab every packet arriving at the vmnet interface and for-
ward it on to the physical host’s network interface (eth0)
as specified in PT. Moreover, the packet needs to be cap-
tured at eth0 interface of the receiving physical host and
then forwarded to participating vmnet interfaces on that
physical host. These are ensured by our packet rewriter,
which is implemented as an extra layer of packet han-
dler (using dev add pack in Linux) to intercept all Ether-
net packets, and then encapsulate the packet using a spe-
cial data link layer protocol ETH P VNETLAB with the
source/destination MAC addresses as the MAC address

Figure 3: Enabling Remote SSH Access

of the sending host network interface and receiving host
interface2. On the receiving host, the packet handler sim-
ply removes the encapsulated header and forwards the
packet to corresponding vmnet interfaces according to
the PT.

2.3 Controlled Remote Access to Virtual Networks

V-NetLab allows tunnels to be created from external net-
works to a host on a virtual network. Although such tun-
nels can be created for any purpose, our current imple-
mentation targets the most common case, namely, that
of creating a tunnel from a virtual network user’s work-
station (which would typically be outside of the physical
testbed infrastructure) to any of the virtual machines on
the virtual networks belonging to that user. If multiple
users share a virtual network, then each of them can in-
dependently (and simultaneously) make use of this capa-
bility.

Note that, in order to access V-NetLab, a user is re-
quired to first establish an SSH session with a gateway
machine to the testbed. Hence our approach relies on us-
ing this connection to tunnel network packets to the tar-
get virtual network. A natural way to do this is to use the
tunneling capability provided by ssh, which allows data
targeted at a specified TCP port on the ssh client machine
to be forwarded so as to reach a destination port on the
server machine and vice-versa. Using this capability, a
tunnel is created from port A on the user’s workstation to
port B on the gateway. Next, another SSH tunnel is cre-
ated from port B on the gateway to port C on the physical
host that hosts the target virtual machine. Finally, Linux

2The encapsulation operation will increase the length of the original
packet, and so there is a possibility that the resulting packet will be
dropped by switches or hosts on the physical network due to MTU
size limitations. If this happens, the packet rewriter has to provide a
fragmentation and reassembly function as well. We did not encounter
MTU size problems on our implementation platform and hence have
not implemented this fragmentation/reassembly function.



iptables is used to forward packets from port C to port
22 (i.e., the SSH port) of the target virtual machine. Fig-
ure 3 illustrates this process. Our management infras-
tructure automatically picks suitable values for ports A,
B, and C, and sets up the tunnels. It also adds additional
iptables rules on the gateway to ensure that a user can
only send packets to the ports corresponding to the tun-
nels created by her. This ensures that one user cannot
(accidentally or intentionally) obtain network connectiv-
ity with the virtual networks belonging to other users.

3 Discussion

3.1 Security Analysis

Virtual networks realized using our approach are isolated
from each other, and from physical network infrastruc-
ture. A mechanism for controlled external connectivity
into this network is provided, but this mechanism cannot
be used by a malicious virtual machine to send data to
arbitrary external hosts; instead, data may be sent only to
a single host and port number to which a tunnel has been
explicitly set up.

Another way to think about our network virtualiza-
tion approach is that it enforces a strong form of “default
deny” policy: network packets belonging to a virtual net-
work cannot be seen by any host (virtual or physical) un-
less explicitly permitted through the deliberate process
of network virtualization and tunnel creation.

We point out that security based on isolation provided
by virtual machine software can become weakened if
malware running inside the virtual machine can exploit
vulnerabilities in virtual machine software (e.g., hyper-
visors) so as to attack the host environment. As far as we
know, such attacks have not become a real-world threat.
Moreover, since virtual machine software is simpler and
provides a narrower interface to a guest OS as compared
to the application-to-OS interface, it is believed to be fea-
sible to harden this layer.

Another target for malware attacks is the packet
rewriter, which has to operate on packets that may be
created by malware. However, due to the small size and
conceptual simplicity of this module, we believe that the
likelihood of finding exploitable vulnerabilities in this
module is rather small.

As a testbed for security experiments, V-NetLab
might become an attractive target for attacks. We rely on
best security practices to mitigate this threat, such as the
installation of a minimal set of applications and services
on the gateway machine, providing only a restricted shell
for users that permits them to invoke only the commands
relevant for managing their virtual networks, etc.

In order to enhance usability, V-NetLab provides a

controlled remote access functionality, which can poten-
tially be used to transport malicious code or data outside
of the virtual networks, or perhaps to carry out an at-
tack on external hosts. Our mechanisms are designed
so that this is possible only with active involvement by
the user of a virtual network. They have to explicitly set
up these tunnels; and even then, connectivity is provided
only to their desktops. If malicious code/data needs to
reach elsewhere, the user needs to propagate the data
further from his workstation, which requires additional
deliberate actions on his behalf. In other words, if the
user of a virtual network is malicious, then such outflow
of malicious data/code can easily occur. Otherwise, we
believe that the risk is very small. For self-spreading
worms, they would need propagation channels such as
email, IRC and instant messaging. The controlled tun-
nel created in V-NetLab is specific to a particular appli-
cation, e.g., ssh. And only the ssh client on the user’s
desktop is exposed to the virtual network. Therefore, the
likelihood of being used as an automatic worm spreading
method is greatly minimized.

3.2 Limitations

Currently, V-NetLab does not yet provide advanced re-
source management capabilities, e.g., reservations. It
also does not automate the mapping of large virtual net-
works onto multiple physical hosts, instead relying on
configuration files associated with a virtual network to
provide most of these details. Our ongoing work is con-
cerned with on-the-fly decomposition of these networks
based on available resources and instantiating them.

Our V-NetLab is currently LAN-centric. This does
not mean that it cannot support complex topologies, but
it certainly means that our focus has been on relatively
small networks. In fact, it can support networks that in-
volve multiple hops between senders and receivers by as-
signing dedicated virtual machines as virtual routers.

4 Related Work

Although approaches such as [7, 10, 6] have simplified
the setup of individual hosts for security experiments,
creation of entire networks is still cumbersome. Plan-
etlab [3] is a distributed laboratory that provides conve-
nient management tools to control a large collection of
hosts that run identical software. Emulab [2] is another
similar approach that provides such facilities. Emulab
supports light-weight virtualization, based on FreeBSD
Jails. But both approaches do not provide support for
running security experiments, where damage can escape
to the Internet. Another drawback is that they do not pro-
vide the degree of flexibility needed for our approach,
where computers running different OSes may need to



be hosted on the same physical machine. An alternative
mode supported in Emulab is one where physical nodes
on the testbed can be dedicated to run a custom OS im-
age. This approach provides the desired degree of flexi-
bility to support security experiments, but does not allow
sharing of underlying hardware across multiple OSes.

DETER [1] is a project which aims at building a
testbed for security research based on Emulab. In ad-
dition to isolating different experiments using VLANs,
firewall and intrusion detection system are deployed to
prevent potentially malicious experiments from affecting
the Internet. However, as mentioned earlier, there exists a
possibility that malware may be able to subvert these de-
fenses by exploiting vulnerabilities in network-exposed
hardware and software. In contrast, we believe that V-
NetLab provides stronger isolation guarantees, while still
providing safe external connectivity.

VNET [8] and VIOLIN [4] have some similarity with
our work in terms of the support for virtual networks.
VNET is concerned with distributed computing applica-
tions, and their virtual networks span a wide-area net-
work. Their approach is based on tunneling Ethernet
packets over TCP/IP. VIOLIN uses an application-level
virtual network architecture built on top of an overlay in-
frastructure such as Planetlab. They use UDP tunneling
in the Internet domain to emulate the physical layer in
the VIOLIN domain.

Unlike VNET and VIOLIN, our approach achieves
network virtualization at the datalink layer. This pro-
vides better performance, as it eliminates the need for
higher layers of the protocol from having to process the
same packet twice. Moreover, our approach supports
multiple virtual networks to share the same set of IP ad-
dresses, thus make the management task easier. On the
other hand, our approach currently does not support ex-
periments that span across the Internet.

Wroclawski et al [9] propose a collaborative spec-
ification of constraints from both experimenters and
testbed operators in order to achieve the balance of both
security and usability. Our approach does not make
any assumption that experimenters provide constraint re-
quirement of their experiments, and can provide satis-
factory security and usability even in face of malware
experimentation. On the other hand, our approach can
potentially achieve better usability (e.g., controlled tun-
nel creation can be made less constrained.) with accurate
constraint information from the experimenters.

Krishna et al [5] presented our earlier version of V-
NetLab with the focus on using it to support security
course projects in a class setting. This paper focuses on
our approach for realizing logically isolated networks for
supporting security experiments.

5 Conclusion

In this paper, we presented our approach for realizing
virtual networks for security experiments. The datalink
layer virtualization approach provides strong isolation
for virtual networks, while providing the flexibility for
establishing connectivity to external networks in a con-
trolled way.

We implemented this approach into V-NetLab frame-
work and have so far used it in several security courses in
our department to provide hands-on projects for students.
Student response to date has been very positive.
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