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Abstract

There are several remaining open questions in the area of
flow-based anomaly detection, e.g., how to do meaning-
ful evaluations of anomaly detection mechanisms; how
to get conclusive information about the origin and na-
ture of an anomaly; or how to detect low intensity at-
tacks. In order to answer these questions, network traffic
traces that are representative for a specific test environ-
ment, and that contain anomalies with selected character-
istics are a prerequisite. In this work, we present flame, a
tool for injection of hand-crafted anomalies into a given
background traffic trace. This tool combines the control-
lability offered by simulation with the realism provided
by captured traffic traces. We present the design and pro-
totype implementation of flame, and show how it is ap-
plied to inject three example anomalies into a given flow
trace. We believe that flame can contribute significantly
to the development and evaluation of advanced anomaly
detection mechanisms.

1 Introduction

In the last years numerous approaches for automated
detection of network anomalies in flow data, such as
DoS attacks, outages and scans have been proposed
[12, 4, 3, 11]. In contrast to the vast number of anomaly
detection systems researched, the effectiveness of these
systems has not been well investigated. A common prac-
tice is to evaluate an anomaly detection system with one
of the few publicly available network traffic traces, which
are usually anonymized and sampled. A second com-
mon approach is to use private traces from campus net-
works or small ISPs. Both methods have significant dis-
advantages: Anonymization and sampling alter the traf-
fic characteristics and thereby the evaluation results [1].
Manually labeled traces introduce bias and errors. Fi-
nally, the set of normal and anomalous traffic character-
istics present in a short trace is limited. An alternative

approach to using real traffic traces is simulation, which
allows for perfect control over the environment. How-
ever, simulation struggles with its own problems. Re-
alistic simulation of baseline traffic, i.e. traffic without
anomalies, is largely an unsolved problem today. Avail-
able simulation traces are typically of low quality. For
example the MIT’s Lincoln Lab [6] traces, which are
widely used as test data for anomaly detectors, have been
shown to contain serious artifacts [5].

In this paper we present flame, a framework for in-
jecting user-defined anomalous traffic into existing flow
traces1. In flame, we combine simulation and real traces
to get the best of the two worlds. We use real traces as
background traffic and provide the means for simulating,
and injecting realistic anomalous traffic into these. Thus,
our approach inherits the control over anomalous traffic
from the simulation-side, while at the same time the re-
alism of background traffic is given from the trace-side.
Moreover, with our approach anomalies are injected into
the raw flow data, and not into some specific metric that
is computed on it. Consequently, our approach is not tar-
geted to a specific anomaly detector, but applicable to all
detectors relying on flow data.

We are aware that our approach does not solve the
problem of establishing ground truth, i.e., of identifying
anomalies already present in the trace. Moreover, avoid-
ance of injection artifacts has to be considered by the
anomaly designer. Nevertheless, we believe that flame
can play a significant role in the systematic evaluation
of anomaly detection systems. It also represents a valu-
able tool for experimentation, especially, for tackling the
remaining open issues in anomaly detection, i.e., local-
ization and classification of anomalies, and detection of
low intensity attacks, since it allows for challenging de-
tection systems with hand-crafted anomalies. Note that
we do not evaluate any anomaly models in this paper.
The focus of the work presented herein are the injection

1With flow we refer to the common 5-tuple aggregation of packets
according to IP addresses, ports, and protocol.
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methodology and solution architecture.
In Section 2, we introduce our approach for model-

ing flow-level anomalies. We classify anomalies into
three classes, additive, subtractive, and interactive, and
for each class, we specify the actions that are required
for anomaly injection. We present the design and imple-
mentation of our anomaly injection framework prototype
in Section 3. In Section 4, we illustrate the applicability
of flame by describing three use cases for the injection
of an additive (network scan), subtractive (ingress shift),
and an interactive (DoS) anomaly. Related work is pre-
sented in Section 5. Finally, we conclude our work in
Section 6.

2 Modeling Network Traffic Anomalies

This section presents our methodology for modeling
network traffic anomalies. We define three classes of
anomaly models and show the modifications to an exist-
ing trace that are required for each anomaly class. We
also outline how anomaly models are built. The goal
of this work is to provide a framework for injecting re-
alistic and parameterizable anomalies into existing flow
traces. Unfortunately, an anomaly is an ill-defined con-
cept: Usually the term is used to describe the effect of
some unusual event on monitored network statistics (e.g.,
some spike or drop in the byte counts). This effect could
be captured with adescriptivemodel. We use, however,
a different approach that concentrates on the cause for
an anomaly (e.g., an ongoing denial of service attack, or
a flash crowd). Hence, we aim at buildingconstructive
anomaly models for a list of known events. The effect
on monitored traffic statistics (e.g., the size of a peak)
is only of secondary interest to us since it depends to a
large extent on the existing background traffic, and is in
that sense not generic. Another advantage of constructive
modeling is that it is agnostic with respect to the traffic
metrics used by the anomaly detector.

2.1 Classes of Traffic Anomalies

Each unusual event has a different effect on the observed
network traffic. An outage event, for example, causes a
loss of flows with specific characteristics, while a net-
work scan generates additional traffic. Events of larger
scale, such as Denial of Service attacks, might even im-
pact the background traffic due to congestion, network
element overload, or changes in user behavior caused by
the anomaly. Accordingly, we distinguish three different
classes of anomalies: Additive anomalies add flows, but
do not interact with the baseline traffic. Examples for this
type are alpha flows, network scans, or bot activity. Sub-
tractive anomalies are represented by removal of specific
flows from the baseline traffic. Examples for this class

are outage events, and ingress shifts to other AS peer-
ings. Interactive anomalies add flows that have an im-
pact on the baseline traffic. An example for this type are
denial of service attacks. Clearly, the transition between
additive and interactive anomalies is blurred. Each event
(e.g., a scan) will have side-effects on existing traffic,
once it becomes large enough to consume all available
resources such as bandwidth or processing power. If this
is the case, side-effects should be included in the model
describing the anomaly. Naturally, the size at which the
transition from additive to interactive occurs depends on
the existing background traffic and the underlying net-
work.

2.2 Required Injection Operations

In the following we will outline the trace modifications
that are necessary to inject each of the three identified
classes of anomalies. Injection ofadditiveanomalies re-
quires the generation of additional flows, followed by
merging with existing baseline flows. This requires a
model describing the traffic characteristics of the anoma-
lous flows for each particular anomaly. Additionally, it is
important that the generated traffic matches the charac-
teristics of the baseline used. Otherwise, detection sys-
tems may trigger on the mismatches in traffic character-
istics (e.g., unusual IP addresses), which may cause unre-
alistic detection results. Injection ofsubtractiveanoma-
lies requires the removal of flows with defined character-
istics from an existing flow trace. This requires a char-
acterization of the flows to be removed, as well as an
algorithm for the removal process (e.g., deterministic or
probabilistic selection). Finally, injection ofinteractive
anomalies requires first the identification and removal of
flows that are changed due to the injected anomaly, then
the generation of anomalous flows and the re-generation
of the flows to be modified with different characteristics
(e.g., at a slower rate if the anomaly causes congestion).
These side-effects need of course to be included in the
anomaly model. In a last step, the generated anomalous
and normal traffic gets merged with the ”cleaned” exist-
ing background traffic.

2.3 Building Anomaly Models

We have identified two basic operations that the frame-
work needs to provide for anomaly modeling:flow gen-
eration and flow deletion. Both operations are specific
to the type of anomaly that is to be injected. Hence, for
each type of anomaly we want to inject, a deleter model
and/or a generator model need to be defined. Defining
such anomaly models requires expert knowledge. A deep
understanding of anomalies and close observation of real
traffic traces are essential prerequisites for building accu-
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Figure 1: Basic design of the anomaly injection framework

rate and realistic anomaly models. Fortunately, we have
access to a comprehensive NetFlow archive, which pro-
vides a large reservoir of anomalies to study. This flow
archive, started in the DDoSVax project [2], records the
network traffic on flow level from all border routers of
a medium-sized ISP. We are continuously capturing this
unsampled flow data since 2003. The framework will
provide a basic set of anomaly models, but will also al-
low other users to define and share their own anomaly
models. In section 4, we will present anomaly definitions
for three examples, an ingress shift, a network scan, and
a denial of service attack. The models we present target
statistical anomaly detection systems with a temporal ac-
curacy of minutes to hours (e.g., [3, 11]), and a spatial
accuracy of single hosts (e.g., [12]) to Autonomous Sys-
tems (e.g., [4]). Consequently, the models we built will
be accurate with respect to the granularity provided by
the targeted anomaly detection system.

3 FLAME Prototype

In this section, we present the design and implementation
of our flame prototype. We also evaluate the performance
of the prototype.

3.1 Design

The basic design of our framework is presented in Fig. 1.
It identifies the main functional blocks, the in- and out-
puts of the framework and shows the data flow through
the system. The depicted configuration illustrates the
case where all functional blocks are used, i.e., the in-
jection of an interactive anomaly. In case of an ad-
ditive anomaly the deleter component is not required,
whereas injection of a subtractive anomaly requires only
a reader/deleter/writer chain. The main functional blocks
of the framework are:

- Reader: The reader takes a flow trace file as input,
and converts it to an internal flow format.

- Flow Deleter: The deleter has two inputs, the
deleter model that defines the flows to be deleted,
and the stream of input flows. It outputs the remain-
ing flows in an internal format. A detailed descrip-
tion of the flow deleter is presented in the next sec-
tion.

- Flow Generator: The flow generator takes a gen-
erator model as input and outputs a stream of flows
in an internal format. A detailed description of our
flow generator is given in the next section.

- Flow Merger: The flow merger has two inputs, one
stream of flows from the flow deleter and one from
the flow generator. It outputs the merged stream of
flows from both inputs. Merging is done based on
flow packet timestamps.

- Writer: The writer takes flows in an internal format
and writes them to a flow trace file.

While the flow generator and flow deleter are parame-
terized by the respective anomaly models, the writer and
reader need to be selected according to the format of the
input and output trace files.

3.2 Implementation

The individual data processing modules from Fig. 1 are
implemented as separate processes. Communication is
done via named pipes (Unix domain sockets). The data
format used is always a stream of flows in an internal
format inspired by Cisco NetFlow version 5. This al-
lows removal and addition of individual components, for
example the deleter module, with minimal changes. Ba-
sically only the set-up procedure, which is responsible
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for passing the individual parameterizations and the re-
spective socket names to the components on start-up, has
to be adjusted. Synchronization between components is
done in a producer-consumer fashion, with buffering by
the named pipes. This allows the use of multiple CPUs
concurrently without the need for complicated synchro-
nization mechanisms. One extension to the framework
is to allow all internal connections between the compo-
nents to use TCP sockets as alternative to Unix domain
sockets. This facilitates distribution to a set of networked
computers. Especially with complicated traffic genera-
tors, this possibility may prove valuable. The extension
can also be propagated to reader and writer components.

Deleter Module

The task of the deleter module is to select which flows
are passed onwards and which ones are dropped. Its in-
ternal structure is shown in Fig. 2. Flows are grouped
into packets of flows (as specified by the NetFlow format
and the IPFIX standard). The deleter module employs
a Flow Extractorcomponent to extract each individual
flow and passes its fields to a decision function imple-
mented in Python. The decision function has a logical
value as result that directs the Flow Extractor to keep or
delete each individual flow. In case of deletion, the num-
ber of flows in the packet (sequence number) is adjusted
accordingly. If all flows from a flow packet are deleted,
then it is dropped.

Flow Deleter

Flow Extractor

(embeded Python)

Stream

FlowFlow

Stream

Figure 2: Deleter Module Structure

The choice of embedded Python for the actual decision
procedure allows easy configuration and reconfiguration
of the deleter functionality without recompilation. It also
allows access to a wealth of Python modules that imple-
ment advanced statistical distributions and other useful
helper functions for the decision process The downside
is a negative impact on performance. For applications
where performance is critical, the deleter module pro-
vides a well defined interface that allows the use of a
deleter decision function implemented natively in C that
replaces the Python script. However, use of this feature
requires modification of the deleter source code and re-
compilation.

Traffic Generator

The task of the traffic generator module is to synthesize
flow streams representing one or several anomalies. Its
internal structure is given in Fig. 3. Anomalies can be
generated on flow level or on packet level. If packet level
generation is used, the packets have to be aggregated into
flows. The structure of the packed-based anomaly gener-
ator substructure can be found in Fig. 4. The separation
of the packet generation and flow aggregation step allows
parametrization of the flow aggregation process (e.g., to
set the timeouts for short-lived and long-lived flows used
by Cisco routers). This facilitates adjusting the generated
flow stream to the base data flow stream to minimize in-
jection artifacts. Still, in some cases direct generation of
flow-level anomalies might be accurate enough.

  P
rio

rit
y 

Q
ue

ue

Stream

Flow

Packet Based Generator

Flow Generator N

. . .

Flow Generator 1

Figure 3: Complete Traffic Generator Structure
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Figure 4: Packet-Based Traffic Generator Substructure

Each individualPacket GeneratorandFlow Genera-
tor is modeled as a system process. This again allows for
coarse grained parallelism without complicated synchro-
nization constructs. We use two priority queues that op-
erate on timestamps, one for mixing the individual packet
streams 1 to N, and one for mixing the flow streams
1 to N with the output of the packet-based generator.
The advantage of this design is that the generator out-
puts are synchronized in a producer-consumer fashion,
which facilitates their internal design significantly. Basi-
cally, packets/flows can be generated on-demand, or all
packets/flows can be generated initially and stored in a
large output buffer until consumption. It is also possible
to read the packet or flow stream for a specific generator
from file. This approach has advantages when a packet
or flow stream is used repeatedly. Individual traffic gen-
erators can be hard-coded in C or use embedded Python
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for easy configuration, similar to the usage in the Deleter
component.

3.3 Performance

In practical experiments with simple deleter functional-
ity, for example a prefix-match, we have measured data
processing rates of around 5’000 flow packets per sec-
ond. This corresponds to roughly 140’000 individual
flows per second, or around 500 million flows per hour2.
The observed performance is high enough to support
very large captured datasets as input data. Speed mea-
surements were done on a 4-way SMP Linux system,
featuring two dual core AMD Opteron 275 CPUs, run-
ning at 2200 MHz and 8GB of RAM.

4 Use Cases

We now present three use cases for flame, and discuss
the artifacts created by the injection procedure.

4.1 Additive Anomaly

We illustrate the case of an additive anomaly with aTCP
SYN network scan. For additive anomalies we need to de-
fine agenerator model. Moreover, the tool chain config-
uration contains the reader, writer, generator, and merger
module. TCP SYN scans are well known and we have
a precise idea of how they work: The host doing the
scan sends TCP SYN packets to a large number of IP
addresses. Each scan may eventually result in a reply
packet. This reply can be either a TCP SYN/ACK, a
TCP RST, or an ICMP destination unreachable packet
from the last-hop router. Consequently, our generator
model gets a target IP range, a scanning rate, a start and
end time, and a target port as parameters. It selects a
destination IP address out of the given range and gen-
erates the TCP SYN packet header with the source IP
address of the selected scanning host, a randomly chosen
source port (> 1023), the targeted destination port, and a
time stamp derived from the start time and the scanning
rate. In this case, one could also generate the flows di-
rectly since each packet will form an individual flow any-
way (no two packets have the same 5-tuple that defines
a flow). A reply packet is generated for a given fraction
of all sent TCP SYN packets. This fraction could also
be configured by the user. Moreover, the type of reply
packet sent is chosen according to a given distribution of
TCP SYN/ACK packets, TCP RST packets, and ICMP
destination unreachable packets. A TCP reply packet
is generated by inversing the source and destination IP

2We used Netflow v5 data, which aggregates 28-30 flows in a flow
packet, for these tests.

addresses and selecting a random source port. The tar-
get port is used as destination port, and the flag is ei-
ther SYN/ACK or RST. For ICMP packets, the source IP
address is set to the address of the last-hop router (e.g.,
same network but last 8 bits set to 1), a default source
and destination port are used. The time stamp for the re-
ply packet is set to the time stamp of the triggering TCP
SYN packet plus a constant delay and a random offset.
This is a basic model that makes several simplifying as-
sumptions: 1) a given distribution of reply types, and 2)
a constant round-trip time plus random offset. Whether
this model is correct with respect to the accuracy required
by target anomaly detection systems will be analyzed in
future work. In particular, we see two possible sources
for injection artifacts: first, the reply type might not be
appropriate for internal machines, and second, the con-
stant delay might not be realistic. In future work, we will
provide the means to parameterize a model based on the
information available in the existing background trace.

4.2 Subtractive Anomaly

We illustrate the case of a subtractive anomaly with the
example of aningress shift. For subtractive anoma-
lies we need to define adeleter model. Moreover, the
tool chain configuration contains the reader, writer, and
deleter module. Ingress shifts are caused by routing
changes in other Autonomous Systems that result in traf-
fic shifts to a different PoP [10]. Here, we model the
ingress shift at the PoP (router) where traffic is shifted
away from. At the router where traffic is shifted to, an
additive model would be used instead. Our deleter model
for a ”negative” ingress shift is thus the following: It
deletes each flow, which has its source IP address within
the (configured) IP address range that has been shifted to
another router. Moreover, the user needs to specify the
start and duration of the ingress shift anomaly. With this
type of anomaly we do not expect any injection artifacts.

4.3 Interactive Anomaly

Due to the limited space, we only briefly illustrate the
case of an interactive anomaly with the example of a
TCP SYN flooding Denial of Service attack. For inter-
active anomalies we need to define agenerator model
and adeleter model. Moreover, the tool chain config-
uration contains the reader, deleter, generator, merger,
and writer module. The deleter model is parameterized
with the start and end of the anomaly, the IP address
of the attacked server, and the probability that replies
are dropped by the server. It deletes each flow originat-
ing from the attacked server with the given probability.
The generator model generates TCP SYN packets at a
specified (constant or variable) flooding rate, and TCP
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SYN/ACK replies with a constant delay plus random off-
set, and a defined probability that the server generates a
reply. We expect this model to create several injection
artifacts since the drop rate is not coupled to the load on
the server, and the load-induced slow-down of replies is
not considered.

5 Related Work

This present work was very much inspired by the paper
on packet trace manipulation from Rupp et al [8]. The
authors present several basic manipulation operations for
packet traces, namely, merging, adapting, stretching or
compressing, moving, and duplicating. The main dif-
ference is that they work with packet traces, while we
rely on flow traces. Moreover, they do not provide meth-
ods for generating anomalous traffic, but rely on exist-
ing packet traces that already contain attack traffic. In
contrast, our focus is to simulate the anomalous traffic
since this gives us full control about the characteristics
of the anomalous traffic. A second source of inspiration
was the work by Mirkovic et al [7] on modeling denial
of service attacks and countermeasures. We will try to
explore the knowledge about DoS attack characteristics
gained in this work. Our approach differs from this work
in two ways: first we use an existing trace as background
traffic, and second we do not restrict ourself to denial
of service attacks. Trident, developed by Sommers et al
[9] is another tool for generating malicious and benign
IP packet traffic traces. Benign traffic is generated us-
ing application-specific automata and a tool called Har-
poon, which was developed earlier by the authors. Attack
traffic is generated with MACE, which was extended to
support 21 different attacks (e.g., Welchia, teardrop, syn-
flood) for this work. Trident focuses on the evaluation
of packet-level NIDS such as Bro, while our goal is to
evaluate flow-based anomaly detection systems. In con-
trast to NIDS, these systems do not rely on individual
packet header or payload characteristics but on link- or
host-level statistics such as flow or packet counts.

6 Conclusion

We have presented flame, an anomaly injection frame-
work that allows to combine recorded real traffic data
with synthetic anomalous traffic for evaluating statistical
anomaly detection systems. Flame uses a constructive
anomaly modeling approach that simulates the cause of
an anomaly rather than its effects. We have described
our anomaly injection methodology, which relies on two
modification operations applied to existing background
traces: flow deletion and flow generation/merging. We
also presented a prototype implementation of flame, dis-

cussed architectural aspects, and gave performance fig-
ures. Finally, we presented three use cases for flame: the
injection of a network scan, an ingress shift, and a denial
of service attack, and discussed possible injection arti-
facts. Future work includes development and evaluation
of basic anomaly models, and the application of flame
to evaluate different anomaly detection approaches. Of
further interest is also the use of flame for an investiga-
tion into the effects of data reduction techniques, such as
sampling and anonymization, on anomaly detection ap-
proaches. The flame prototype implementation is avail-
able under the GNU GPL upon request from the authors.
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