USENIX Association

Proceedings of the
6" USENIX Conference on Object-Oriented
Technologies and Systems
(COOTS'01)

San Antonio, Texas, USA
January 29 - February 2, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Bean Markup Language: A Composition Language
for JavaBeans Components

Sanjiva Weerawarana, Francisco Curbera, Matthew J. Duftler,
David A. Epstein} and Joseph Kesselman
Component Systems Group
IBM TJ Watson Research Center
Hawthorne, NY 10598

{sanjiva,curbera,duftler }@Qus.ibm.com, depstein@vastvideo.com, keshlam@us.ibm.com

Abstract

Although the benefits of software component com-
position are today widely accepted, component ori-
ented software development is not yet as widespread
as its multiple advantages may suggest. This is so
in spite of the maturity reached by several compo-
nent models (Microsoft’s COM, JavaBeans, OMG’s
CORBA), and their general acceptance by large
communities of developers. Thus, while compo-
nents are being 'used’ in software development, the
development process itself is not fully component
oriented. One major roadblock limiting the adop-
tion of a component oriented development process
is the lack of viable component composition lan-
guages. This paper introduces a component com-
position language specifically designed for the com-
position of JavaBeans components.

The Bean Markup Language (BML) supports
component composition in a first—class manner.
BML has language constructs for describing inter—
component bindings, for constructing aggregates of
components, for macro expansion and for imple-
menting certain types of recursive compositions.
Further, it allows the specification of “glue code”
in any traditional scripting language (for example,
JavaScript) to enable powerful adaptation during
composition.

*Presently Vice President, Development & Architecture,
VastVideo Inc., Astoria, NY 11106.

1 Introduction

The benefits of software component composition are
today widely accepted, see [6, 7, 21, 11, 2, 15], how-
ever, component oriented software development is
not yet as widespread as its multiple advantages
may suggest. This is so in spite of the maturity
reached by several component models (Microsoft’s
COM, JavaBeans, OMG’s CORBA), and their gen-
eral acceptance by large communities of developers.
Thus, while components are being “used” in soft-
ware development, the development process itself is
not fully component oriented. One major roadblock
limiting the adoption of a component oriented devel-
opment process is the lack of viable component com-
position languages. As has been argued in [13] and
[21], component-oriented development is likely to be
much more successful when first-class mechanisms
enabling simple forms of composition are used.

Component—oriented development is a natural
evolution of the object—oriented development
paradigm. Components provide a programming ab-
straction in terms of events, properties and meth-
ods. The properties and methods of a component
allow the component to be configured and events
are how the component communicates interesting
information to its consumers. In the component—
oriented development model, application develop-
ment becomes a matter of “scripting together” a set
of such components, where the components them-
selves are sometimes bought from a collection of
third parties and sometimes developed in—house.
This type of composition enables loose coupling and
provides the necessary hooks for adapting pre—built
components as needed to form the desired aggre-
gation. Object-oriented development is clearly the
predominant methodology used in developing the

components themselves [21, 11].

The key technologies that enable component-
oriented development are a component model and
a composition mechanism. A component model is
a set of conventions and a run-time architecture
that provide an environment to define and manipu-
late software components. The definition of a soft-
ware component varies. However, a common theme
is that it is an executable, self-contained, dynam-
ically loaded/bound module that exhibits certain
types or interfaces or contracts to other components
that adhere to the same component model [7]. The
three most popular component models in use to-
day are: Microsoft’s COM [5], OMG’s CORBA [18]
and JavaSoft’s JavaBeans [20]. The work described
in this paper assumes the JavaBeans component
model, but it could be implemented with any of
these models.

Component composition is the key programming
task required and enabled by component-oriented
development [2]. Component composition is the
process of creating component instances, configur-
ing them and putting them together to form com-
posite components or applications. Configuring
components consists of manipulating their proper-
ties and also invoking their methods. Putting com-
ponents together consists of describing component—
to—component relationships as well as aggregations
such as component hierarchies. An ideal language
for component composition would have first-class
syntax and semantics to support such composition
operations.

Component composition can be performed in a vari-
ety of ways. The obvious way is to use a traditional
programming language to write code that creates in-
stances of components and composes them together
by using the appropriate method calls. This task
is commonly done by the “main” procedure of an
application or that of a composite component.

Traditional programming languages are however not
the best suited for component composition. Since
their syntaxes and semantics do not support com-
ponent composition concepts in a first-class manner,
composition operations are supported using other
existing language elements like, say, method calls.
As a result, the composition operations are lost
amongst the rest of the code and the compositional
structure is obscured. A discussion of the short-
comings of object oriented languages when applied
to component composition can be found in [1].

A second common approach to software composi-
tion is the use of scripting languages. Scripting
languages are programming languages which are
supposed to be in some sense “easier” to program
with: they are typically loosely typed and inter-
preted. They are commonly used for application
prototyping, configuration, customization and ex-
tension [17, 11]. Scripting is a natural counter-
part to component-oriented development - compo-
nents can be written in standard object-oriented
languages and then “glued together” to form ap-
plications. However, as a mechanism for com-
ponent composition, scripting languages such as
PERL [22], Tcl [16] and JavaScript [8] suffer from
the same problem as traditional programming lan-
guages, their lack of first class support for com-
position. In fact, scripting languages do not add
abstractions to programming; their primary goals
are to reduce complexity by eliminating syntax and
types to make programming “easier,” not to change
the level of abstraction.

Visual composition is another popular approach to
component composition. A visual builder allows one
to select components from a palette, place them on
a composition editor and visually “wire” together
the component interactions. Where required, ad-
ditional behavior can be added using scripts, for
instance, to intercept an event on its path from a
source to a target and trigger special actions. The
JavaBeans component model in fact recognizes the
role of visual builders and provides for the com-
ponent to distinguish between build-time and run-
time. Using this, a JavaBeans component may, for
example, present a build-time user interface that
can be used to configure the component. Visual
composition clearly provides first-class support for
the composition operations described earlier. Vi-
sual composition’s power is also its failing however:
it is interactive and graphical, and, consequently,
not an option in scenarios where the composition is
done by a non-interactive mechanism. This is the
case, for instance, when user interfaces are automat-
ically generated from data input specifications. A
first class representation of the composition would
allow both generation methods (interactive and non-
interactive) to interoperate, by acting as a neutral
intermediate format. Moreover, if appropriately de-
signed, the intermediate format could also be di-
rectly manipulated by developers.

Hence, a solution to the shortcomings of existing
compositions techniques is to introduce a compo-
nent composition language, that is, a language in

which the basic component composition operations
is supported in a first class manner.

Extending the syntax and semantics of existing lan-
guages looks like an attractive option, but it can be
argued that a special purpose composition language
will do a better job capturing the specific nature of
composition operations. Moreover, it is noted in [1]
that object-oriented languages like Java and object
oriented design tend to be used to produce domain
specific designs, rather than standard architectures
more suitable for the kind of reuse expected from
software components.

The most relevant effort in the definition of a com-
position language is probably Piccola [1], a declar-
ative composition language founded on a variant of
the 7 calculus, in which components are viewed as
interacting processes. Piccola is a very small lan-
guage, which is able to support a variety of compo-
nent models through the definition of different com-
ponent composition (“architectural”) styles. Pic-
cola is an on-going research effort.

The introduction of a new language has some major
practical problems, though. It requires retraining
and the development or adaptation of tools to sup-
port it. Furthermore, component models and run-
time models to interact with other languages must
be developed. Thus, an approach where a new lan-
guage, a new component model and a new run-time
is needed is not immediately suitable as a mecha-
nism to enable component-oriented development in
practice.

Hence, the problem we are interested in can be for-
mulated as follows:

How to design a component composition language
which can be seamlessly integrated in today’s soft-
ware development environment.

We believe that an answer to this problem can be
a key to successfully driving today’s development
methodology toward the component oriented de-
velopment paradigm. This paper describes an an-
swer to this problem, the Bean Markup Language
(BML), a declarative language for the composition
of JavaBeans components.

The rest of the paper is organized as follows. Section
2 states the requirements for a composition language
that can capture the design problem stated above.
Section 3 describes the design of the BML language

and how BML addresses these requirements. Sec-
tion 4 describes the BML implementation and run-
time support. Finally, in Section 5 we address open
problems and research issues.

2 Requirements for a Composition
Language

The purpose of this section is to map the design
problem stated in the Introduction to a list of design
requirements. The starting problem has two parts:
designing a composition language, and assuring its
eagy integration in development environments.

Several papers have dealt with the problem of spec-
ifying requirements for successful composition lan-
guages. The following discussion owes much to the
ones found in [13], [14] and [3].

Our first requirement states a list of composition
operations that a composition language should sup-
port.

1. The following composition operations must
be supported by the language:

¢ Binding communication channels.
Communication channels let components
exchange data and invoke behavior. Good
examples are pipes and filters, and event
notification in JavaBeans.

e Creating higher level component ag-
gregates. In this operation components
are combined to produce higher order
functional constructs. The combination
typically involves creating a hierarchy of
components, as when creating graphical
user interfaces.

e Macro expansion of parametrized com-
ponents. Macro expansion can be used
in several ways to compose components.
In the COMPOST language, [3], source
components are connected together by ex-
panding (binding) “generalized program
elements” present in each component’s
code. Another case of composition by
macro expansion is described in [4] and
[19] discusses a mechanism to main-
tain correct scoping while generating pro-
grams.

¢ Recursive component composition.
Component composition is used to create
new components, rather than an applica-
tion. This is a powerful technique that en-
ables components to become software ab-
stractions at different levels, and provides
support for top-down progressive refine-
ment design strategies. It is also has an
important role providing scalability to the
language, since it allows using the same
language composition abstractions at dif-
ferent configuration levels.

A language solely devoted to component composi-
tion must also provide effective separation of con-
cerns between the person doing the composition and
the developer of components. This is nothing but
a restatement of the principle that the composi-
tion of components must require no knowledge of
their implementations. In particular, the language
must provide a way to address “compositional mis-
matches”, i.e. situations when the interfaces of two
components are incompatible and don’t allow direct
composition.

2. The language should allow the specification of
“glue code” to deal with compositional mis-
matches.

Glue code provides the bridge through which the
two interfaces can interact. In object oriented de-
sign this correspond to the “adapter” pattern, [9].

The next requirement deals with the important issue
of reusing component application designs.

3. The language should

frameworks.

support component

Here the notion of a component framework is sim-
ilar to the frameworks found in object oriented de-
sign, see [9, 10] for instance. It is defined in [21]
as a software architecture that provides basic rela-
tionships among components and allows instances of
those components to be plugged in the framework.
Frameworks are important tools that provide com-
ponent assemblers with the infrastructure needed to
build structured applications. Frameworks are also
important as a knowledge sharing mechanism and
as enablers of large scale component oriented devel-
opment.

In order to assure seamless integration of the lan-
guage into current development environments, we
state in our requirements list the need for low adop-
tion costs, and the ability to reach different devel-
opment platforms as possible:

4. Reduce to a minimum the learning process for
the language. In particular, use whenever pos-
sible existing languages, syntactic and semantic
conventions. The Java language and the XML
syntax would be good starting points according
to this criterion.

5. Eliminate the need for new support tools,
whenever possible. Existing development en-
vironments should be able to provide support
for the language with minimal investment.

6. The language primitives must allow easy exten-
sion to support alternative component models.
While the focus of this work has been the Jav-
aBeans model, it should enable a direct exten-
sion to support the COM and CORBA models.

3 BML: A Composition Language for
JavaBeans

The BML language was designed to meet many of
the requirements we have identified in the previous
section. This section describes the BML language,
its design principles, and some of its most relevant
features.

This section is organized as follows: first we explain
some of the general design decisions behind BML.
Finally, we describe the major language elements
and explain the support that BML provides for the
composition of components and other relevant fea-
tures of the language.

Design Principles

BML has been designed as an XML-based declara-
tive language for describing the composition of Jav-
aBeans applications. This statement summarizes
three major design principles, which we review in
this section.

XML syntax. BML intentionally de-emphasizes
the importance of syntax. From the two alterna-

tives of choosing a syntax with multiple elements
and structures (e.g., a Java-like syntax), or follow-
ing a relatively “syntax—free” approach (e.g., the
Lisp way), the second option was judged more likely
to allow the language to satisfy requirements 4 and
5 from Section 2. This is the reason why XML was
chosen as the syntactic model for the language. Its
XML syntax is in fact the main reason why BML
complies with those two requirements.

XML languages follow a relatively simple syntax
model (see [12]), and are described using the XML
DTD [24] or the XML Schema [25] metalanguages.
The XML model allows very limited syntactic op-
tions, essentially the choice of whether to use an
XML attribute or an XML element to represent fea-
tures of the language. XML, on the other hand, is
already a widely embraced industry standard, its
simple syntax is well known by many developers,
and supporting middleware is available for all ma-
jor computing platforms.

While a Java-like syntax would have the advantage
of providing a certain degree of familiarity to Java
developers, it would also have the disadvantage to
being only Java—like, and not exactly Java. In fact,
the intended user of BML is the component com-
poser, who may not even be a Java developer.

A declarative language. BML is designed to de-
scribe the composition of a set of components rather
than to describe how the composition is to be im-
plemented. To fully understand this distinction we
state here the four phases of the component devel-
opment process:

1. Authoring—time. Components are created,
typically using an object oriented language, and
packaged for use by third parties.

2. Composition—time. This is design-time,
when components are selected, configured and
the desired composition is described. The role
of component languages is to capture this com-
position.

3. Assembly—time. Part of the application
startup time. The composition described in the
component language script is realized into an
executable application, typically by a compo-
nent language processor.

4. Run—time After the composition is performed,
the application runs to perform its function.
Non-compositional processing happens at this

time, typically by executing the component’s
own code.

The role of BML is to represent the structure of
a composed application as designed at composition
time. The actual assembly of the components is
the role of the language processor at assembly time.
BML defines an assembly—time environment to sup-
port this distinction (the assembly—time environ-
ment is described later in this section and in Sec-
tion 4). This is the reason why we describe BML
a as declarative composition language. It must be
remarked that, while BML allows the inclusion of
sections of “glue code” for the purpose of solving
compositional mismatches and “configuration in-
structions” for configuring individual components
for composition, the BML language’s compositional
elements are declarative.

Application versus component composition.
Compositions can be either “final” or reusable. Fi-
nal compositions are applications. Reusable compo-
sitions are themselves components and can be used
in new compositions, both final and reusable. The
main difference between the two is that reusable
compositions present a well defined public interface
that identifies them as components in the compo-
nent model under consideration, and allows reuse.
BML is designed to enable the creation both types
of compositions, by providing component definition
language elements in addition to the basic compo-
sitional and configurational elements. The ability
to define reusable components in the language pro-
vides support for the for recursive composition re-
quirement listed in Section 2.

3.1 BML Language

As an XML based language, BML uses different
XML elements for each composition operation. This
section presents the BML solution to the compo-
sition language problem by describing how it ad-
dresses each of the requirements listed earlier. We
describe only the essential features of each element
in this document; complete documentation can be
found in the BML User’s Guide, which is part of
the BML distribution [23]. The syntax of BML is
summarized in a BNF-like form in Table 1.

The role of BML is to capture a composition. A
composition script is represented in BML by a
<script> element. The contents of this element are

<script> n= (S| <cast>)+

<bean> = <args>7 Sx

<args> = V+

<property> = V7

<field> = V7

<event-binding> 1= <bean> | <script>

<call-method > = Vx

<cast> = V?

<string> = text

<add> = V+

C = (<bean> | <string> |
<property> | <field> |
<call-method> |
<script>)

S = (C | <event-binding> |

m= <add>)
\Y = (C] <cast>)

Table 1: BML Syntax Summary

arbitrary BML elements and the result of evaluating
it is the value of evaluating the last child element.

We start the description of the BML language with
a small, yet complete example.

The Juggler

This section provides an simple example of a BML
application. The purpose is to give the reader an
early view of a significant subset of BML.

The example shows how BML can be used to com-
pose a collection of AWT components into an appli-
cation. The application includes an animation com-
ponent and two buttons that control it, as well as
a window frame component that acts as a container
component. Figure 1 shows the resulting applica-
tion. The example code is shown in Figure 2.

We now briefly explain how the code in in Figure 2
works.

Note that line 0 is the XML declaration which
is required of XML documents. In line 2 a new
a new script of BML statements is started with
the <script> element. The <bean> element in
line 3 creates a component of type java.awt.Frame
and uses the id attribute to assign to it the name
“frame”. In line 4 the title property of the frame
bean is set. The <event-binding> element in line

E%%IBH Juggler [[=] E3
Stop |

Figure 1: The Juggler Application

5 binds the script in lines 6-10 so it is run when
a “window” event occurs and the event is delivered
via the windowClosing method. The script contains
one statement (lines 7-9) which causes the program
to exit.

On line 14 the animator component is created and
given the name “Juggler”. Lines 13-16 aggregate
this component into the container “frame” at the
center position using the <add> element. On line
18 a button component is created, its label prop-
erty is set to “Start” on line 19. Line 20 binds the
script on lines 21-23 to be run when an “action”
event occurs on the button. The script invokes the
start method of the “Juggler” component using the
<call-method> element. Observe that the target
component is identified using the “target” attribute.
Lines 17-27 aggregate the button component into
the container “frame” in the north position. Simi-
larly, lines 28-38 create another button component
(this one for stopping the animation) and aggregates
it to the “frame” component. Lines 40-41 invoke the
“pack” and “show” methods of the frame in order
to bring it to the screen. Finally, line 43 invokes
the “start” method of the animator component to
initiate the animation.

In the following sections we review in detail some
important aspects of the language.

Naming and Scoping in BML

A mechanism to identify components is fundamental
to any composition language. In the previous sec-
tion we have seen how beans can be created with the

O ~J O UL W N~ O

©

<?xml version="1.0"7>

<script>
<bean class="java.awt.Frame'" id="frame">
<property name="title" value="IBM Juggler"/>
<event-binding name="window" filter="windowClosing">
<script>
<call-method target="class:java.lang.System" name="
<cast class="int" value="0"/>
</call-method>
</script>
</event-binding>

<add>
<bean class="demos.juggler.Juggler" id="Juggler"/>
<string value="Center"/>
</add>
<add>
<bean class="java.awt.Button">
<property name="label" value="Start"/>
<event-binding name="action'>

<script>
<call-method target="Juggler" name="start"/>
</script>
</event-binding>
</bean>
<string value="North"/>
</add>

<add>
<bean class="java.awt.Button">
<property name="label" value="Stop"/>
<event-binding name="action'>

<script>
<call-method target="Juggler" name="stop"/>
</script>
</event-binding>
</bean>
<string value="South"/>
</add>

<call-method name="pack"/>
<call-method name="show"/>
</bean>
<call-method target="Juggler" name="start"/>
</script>

exit">

Figure 2: The Juggler Script

<bean> element, named using the ¢d attribute, and
located with the target attribute. Assigning names
to new components is optional, but if a name is as-
signed then the component is registered in current
scope with that name.

BML is a lexically scoped language. A scope
is defined by the <script> and the <bean> ele-
ments. The default scope is created by the open-
ing <script> element and nested scopes are explic-
itly created by nesting <script> elements; nested
<bean> elements implicitly create a new scope.
The scoping semantics are as usual with inside—
out visibility and standard shadowing rules. The
scope is represented at assembly—time as an “ob-
ject registry”, a registry which provides a name-to—
reference mapping and is part of the BML language
processor’s environment during assembly—-time.

A related issue is how BML uses XML’s contain-
ment model to effect a Pascal-style “with” operator.
Recall from our previous example that the target at-
tribute is used to name the bean on which an oper-
ation is to be performed. In BML the default target
for a composition operation is the closest enclosing
component, as in the next example.

<bean class=’java.awt.Button’>
<property name=’label’
value=’Click Me’/>
</bean>

Configuration of Components and Type Con-
version

JavaBeans components may have configurable prop-
erties. BML uses the <property> element for this
purpose. The example in Figure 1 shows that the
value of the property can be encoded using the value
attribute, as long as this value can be represented
as a string.

When there is no possible string representation,
the <property> element is given one child element,
the result of evaluating which becomes the value
assigned to the property. The following example
shows how one can change the layoutManager prop-
erty of a Panel component:

<bean class=’java.awt.Panel’>
<property name=’layoutManager’>

<bean
class=’java.awt.BorderLayout’/>
</property>
</bean>

The <property> element also supports retrieving
property values. This is effected by omitting any
value for the property; thus, if a value to assign the
property is not found, it is treated as an “rvalue”
instead of as an “lvalue.”

We now discuss type conversions issues arising when
property values are encoded as strings. We must
note first that this issue is a consequence of the lack
of typing information in XML, which results in all
the data being encoded as strings.

If the type of the property being set is not a string, a
type conversion must be performed before the value
can be set. For instance, one may wish to set color—
valued properties by giving a string containing the
RGB representation of the color. BML’s approach is
to separate the type conversion problems from the
compositional problems as much as possible. All
the type conversion logic is considered part of the
assembly—time environment of the language, and is
not reflected in the BML script.

The BML processor’s assembly—time environment
contains a registry, called the type converter reg-
istry, which is a collection of code that is able to
convert data from one type to another. If a type
conversion is deemed necessary, the processor will
transparently invoke the appropriate converter in
order to effect the setting of the property. The type
converter registry mechanism serves to improve the
declarative nature of BML: it enables one to concen-
trate on the required composition operations and
defer the issues of how to realize them until later
(and probably to someone else).

Type conversions can also be explicitly requested
in BML. The <cast> element is a utility element
used to explicitly request a type cast, or to explic-
itly invoke a type converter to change the type of a
value. An example of is provided in line 8 of Figure
1, where a string to integer conversion is requested.
Explicit casts are commonly found in BML in the
the arguments of a <call-method> invocation (lines
7 to 9 in Figure 1), a common way of performing
more complex configuration of components.

Binding Events

Binding communication channels is one of the main
composition operations described in Section 2. In
the JavaBeans model inter-component composition
channels are event streams. In order to do the bind-
ing, two requirements must be met:

e The event source must be notified of the listen-
ers’ interest in receiving the events.

e Event listeners must be of a suitable type which
is statically defined by the event source.

BML uses the <event-binding> element for this
purpose, as in the next example:

<bean class=’java.awt.Button’>
<event-binding name=’action’>
<bean class=’MyActionListener’
id=’al’/>
</event-binding>
</bean>

Notice that the component ’al’ must be of the ap-
propriate type for this the binding operation to be
valid. This kind of binding of communication chan-
nels is hence fairly restrictive as the components
must be statically designed to be aware of each
other’s event types. The following section discusses
how this is generalized to make event bindings more
adaptable.

Writing “Glue” Code

Composing components that are not pre—designed
to be linked together often requires the writing of
“glue” code to solve these compositional mismatches
(recall requirement 2 from Section 2). In the Jav-
aBeans case the problem is even worse because the
event binding architecture which requires that the
event listener implement a certain interface type.

BML addresses this requirement by allowing the
component composer to author glue code in any
of several traditional scripting languages. The cur-
rently supported languages include JavaScript, Jacl,
JPython and VBScript.

This is an important design point. Traditional lan-
guages are better fit for writing glue code because,

typically, the glue code does not, perform component
composition, but rather some type of data adapta-
tion to allow components to interact. A composi-
tion language is clearly less suited for such tasks
than a traditional scripting language, except per-
haps for the most elementary ones. Observe also
that this further reinforces the clearer separation be-
tween component authoring and component compo-
sition: while JavaBeans authors are Java program-
mers, component composers need not be so.

The glue code is directly embedded in the composi-
tion script using a <script> element as the child of
an <event-binding>. In lines 20 to 24 in Figure 1,
for instance, a BML script is provided to cause the
invocation of the “start” method when an “action”
event is received.

The code in these scripts is executed at run—time
when events are generated by the event source com-
ponent. However, BML provides static scoping for
the script, that is, any component that is referenced
by the script and was previously registered within
its lexical scope will be available during script eval-
uation. Section 4 describes the implementation of
<script>.

Aggregation

Aggregation of components into hierarchies is an-
other major composition operation. BML sup-
ports it through the <add> element. The fol-
lowing example illustrates the process of adding
a java.awt.Button component to a java.awt.Panel
component:

<bean class=’java.awt.Panel’>
<add>
<bean class=’java.awt.Button’/>
</add>
</bean>

The meaning of an aggregation operation is defined
by the “container” into which aggregation is occur-
ring. This is the default target bean (in XML terms,
the parent <bean> element of the <add>), unless
otherwise stated by the <add> element. BML’s ap-
proach is to stay away from differences in the seman-
tics of the operation; only its compositional signif-
icance is of interest. Observe that the operation of
nesting a <bean> element inside another has very

different semantics from the aggregation operation,
since the first one corresponds only to the declara-
tion of a bean inside the parent’s scope.

Aggregations defined by different containers may
require different data to be specified before the
operation can be performed. In the above ex-
ample, the <add> element has only one child
because the layout manager that the panel uses
(java.awt.FlowLayout) does not require any other
information. However, the add operations in-
cluded the example from Figure 1 take two argu-
ments, since the default layout manager for the
java.awt.Frame component, the BorderLayout, re-
quires that we indicate the layout area in which the
a component is to be added. In general, the first
child element of <add> is expected to identify what
to add and any other children are expected to be
additional information as needed by the container’s
semantics for aggregation

The mechanics of how the aggregation is imple-
mented are part of BML’s assembly—time environ-
ment. This includes a registry (the adder registry)
of code fragments (adders) that implement specific
aggregation operations for specific container types.
The separation of the compositional meaning of the
operation from the mechanics of its implementation
mechanism serves to further increase the declara-
tive nature of BML: the component composer is
only concerned with the desired aggregation struc-
ture and not with how that is to be actually realized.

Recursive Composition

Recursive composition of JavaBeans requires a way
to define a new component in terms of compositions
of beans. The language elements presented so far
deal with the connection of already defined beans,
and are typically contained inside a <script> ele-
ment. When this element is the root of the XML
document, the BML script corresponds to a final
application, that is, cannot be reused as a compo-
nent (it can be reused through macro expansion as
we explain later).

Recursive composition requires additional language
support to define the constructor, properties, meth-
ods and events of the new bean using compositions
of beans. This section describes the creation of new
JavaBeans with BML. In the next section we present
the related function of macro expansion in BML,

which is way of reusing preconfigured BML scripts.

The example in Figure 2 shows how the Juggler ap-
plication of Figure 1 can be wrapped in a bean. In
this particular case, almost all the code from Figure
1 has been included as the constructor of the new
bean, while two method calls have been exposed as
methods of the composition.

A new component type is defined in BML using the
<beanDef> element. The class for the new com-
ponent is derived from the name attribute. The
constructor, properties, methods and events of the
component are defined using the <constructorDef>,
<propertyDef> <methodDef>, and <eventDef>
elements respectively. These definitions can in gen-
eral be provided in two ways: by delegation or by
direct implementation.

When delegation is used, the composite’s property,
method or event is mapped to a property, method or
event of a bean which is part of the composition. For
example, in lines 59 to 66 of Figure 3 methods, prop-
erties and events of the composite bean are define
by delegating to the frame Juggler, start and stop
beans. In all these cases, the name attribute gives
the name of the new method, property or event in
the composite, the sourceBean attribute is used to
identify the delegation bean, and method, property
and event identify the method, property and event
in the source bean.

When using direct implementation, the implemen-
tation is specified by a nested <script> element con-
taining a regular BML script (which includes no
bean definition elements). An example of this is
provided by the constructor in Figure 3, which in-
cludes most of the code from Figure 2. Constructors
are defined using a <constructorDef> element, and
can only be defined by direct implementation, never
by delegation.

Constructors are different from other bean elements
in another important aspect. The naming scope
defined by the (top level) <script> element in a
constructor’s definition is considered global for the
complete bean definition. That is, the identifiers in-
troduced in this script are visible everywhere in the
bean. This is used, for instance, in the identification
of the beans used in all definitions by delegation. In
the examples from figure 2, the names specified by
all the sourceBean attributes correspond to beans
that were registered in the constructor’s script. The
identifiers of beans defined in the implementation of

0O Utk W~ O

<?xml version="1.0"7>

<beanDef name="CompositeJuggler'">
<constructorDef>
<script language="bml">
<bean class="java.awt.Frame" id="frame">
<property name="title" value="IBM Juggler"/>
<event-binding name="window" filter="windowClosing">
<script>
<call-method target='"class:java.lang.System" name="exit">
<cast class="int" value="0"/>
</call-method>
</script>
</event-binding>
<add>
<bean class="demos.juggler.Juggler" id="Juggler"/>
<string value="Center"/>
</add>
<add>
<bean class="java.awt.Button" id="start">
<property name="label" value="Start'"/>
<event-binding name="action">

<script>
<call-method target="Juggler" name="start"/>
</script>
</event-binding>
</bean>
<string value="North"/>
</add>

<add>
<bean class="java.awt.Button" id="stop'">
<property name="label" value="Stop"/>
<event-binding name="action">

<script>
<call-method target="Juggler" name="stop"/>
</script>
</event-binding>
</bean>
<string value="South"/>
</add>
<call-method name="pack"/>
</bean>
<call-method target="Juggler" name="start"/>
</script>
</constructorDef>

<methodDef name="show" sourceBean="frame" method="show"/>
<methodDef name="start" sourceBean="Juggler" method="start"/>
<methodDef name="stop" sourceBean="Juggler" method="stop"/>

<propertyDef name="startLabel" sourceBean="start" property="label"/>
<propertyDef name="stopLabel" sourceBean="stop" property="label"/>

<eventDef name="window" sourceBean='"frame" event="window"/>

</beanDef>

Figure 3: The Juggler Bean

methods, properties of events are not visible outside
their own script block.

Macro Expansion

BML provides a form of macro expansion that al-
lows reusing existing BML scripts, which can then
be embedded and further configured on new scripts.

To achieve this BML allows using the name of a
BML file as the value of the class name attribute in
the <bean> element used to instantiate the compo-
nent. The nested BML file is evaluated recursively
within a new scope of its own, and the resulting bean
is then used as the default target bean for further
composition operations.

Consider this example:

<bean class=’redbutton.bml’>
<property name=’label’
value=’Red Button’/>

</bean>
where redbutton.bml is:

<bean class=’java.awt.Button’>
<property name=’background’
value=’0xf£0000°’/>
</bean>

In this example the first BML script takes the bean
produced by evaluating redbutton.bml and then sets
its label property. The file redbutton.bml takes a
Button component and sets its background color
property to red and returns it. This simple example
illustrates how a nested BML script can be used as
defining a component which is then further config-
ured and composed.

This approach amounts to macro expansion without
parameterization. BML in fact allows parameteri-
zation of such scripts: the recursive invocation can
be given arguments similar to how constructor argu-
ments are given. The nested script can then retrieve
the arguments and use them as it wishes. This al-
lows the nested script to effectively be a template
composition, with key parts filled in by the values
of the parameters.

This type of parameterized macro expansion is not
true recursive composition because we can only ma-
nipulate the features of the returned component and
not of an entire composition. See the previous sec-
tion for a description of how recursive composition
is supported in BML.

4 Implementing BML

We have implemented two BML language proces-
sors: an interpreter and a compiler. Both implemen-
tations are designed to be embeddable and provide
full access to the assembly—time environment as well
as to the run—time environment. The assembly—time
environment has been pre—populated with a collec-
tion of type converters and adders that provide com-
monly used type conversions and aggregation capa-
bilities, respectively. These can be augmented by
the host of the BML processor by accessing the en-
vironment and adding new capabilities to the reg-
istry.

The interpreter receives the BML document as an
XML tree and functions based on whether the out-
ermost element is a beanDef element or a bean/<
script element. In the latter case, it uses Java re-
flection to implement the composition operations.
In the case of beanDef, the interpreter will use the
compiler to compile the bean definition upon first
use and then reuse the resulting class.

The BML interpreter implements static scoping by
performing name registration and resolution against
the object registry in scope. Each < script > el-
ement introduces a new scope by creating a new
registry which cascades upwards to the scope that
embeds it. For event handler scripts (“glue” code),
which are scripts whose execution is deferred until
run—time, static scoping is achieved by storing the
statically scoped registry with the script to be run
at run—time. For example, the event script in line 22
of the example shown in Figure 2 binds statically to
the registry in scope at assembly-time and then at
run—time uses it to locate the “Juggler” component.

The compiler receives the BML script as an XML
tree and uses Java reflection to generate the appro-
priate Java source code to implement the compo-
sition operations. If the outermost element is not
beanDef, the compiler places the resulting code in
a main() method. Otherwise, the bean definition

guides the target code generated.

The previously identified “assembly—time” phase for
such generated composition code hence occurs at
the startup of the execution of the generated code.
The compiler allows one to generate code that is
independent of the BML environment at assembly—
time. That is, it can resolve type converters and
adders as well as scoping at compile time if possible
so that the generated code is straight Java code. If
one wishes to have full embeddability of the gen-
erated code with the BML assembly—time environ-
ment, then it is necessary to generate code which
BML dependent.

Implementing Event Bindings to Scripts

BML supports writing arbitrary scripts to be run as
“glue” code. This is supported for any type of event
thrown by any bean and is implemented with event
adaptors, event processors and the event adaptor
registry. The model consists of an event specific
adaptor that receives the event from the source, del-
egates it to a generic event processor which then
runs the script. This approach is a decomposition
of the standard JavaBeans event binding model to
allow dynamic look up and/or generation of event
adapters.

Event adapters must implement a simple interface
that is capable of receiving a handle to an event
processor. An event adapter must be implemented
and available from the event adapter registry for
each event listener type. When the BML processor
creates an event adapters and adds it as a listener
to an event source, it tells the adapter what event
processor to delegate the event to. Event processors
are the entry point to the BML runtime and are
responsible for delivering the event to the intended
recipient script.

When an event adapter receives an event from an
event source, it delegates the event to its event pro-
cessor. The interpreter uses an event processor that
actually delivers the event to a script and runs the
script. The compiler can generate both customized
event processors that perform this task, and cus-
tomized event adapters that bypass the event pro-
cessor mechanism entirely and directly deliver the
event to the user’s script.

The event adapter registry provides registration and

lookup service for event adapters. We have also im-
plemented the ability to on—-demand generate event
adapters in Java bytecode form. This eliminates the
need to hand-write event adapters in many cases.
(It is not possible sometimes because of security con-
straints of the runtime location; loading dynami-
cally constructed classes is not always permitted.)

5 Future Work

Support Other Component Models

An important objective of the BML project is to
achieve wide acceptance in the software develop-
ment community by supporting other component
models.

The challenge is to develop a a common compo-
nent composition language supporting composition
operations for the three major component mod-
els, JavaBeans, COM, and CORBA, in such a way
that it can work with components from different
component models in the same application. This
work clearly depends on the availability of run—time
bridges to go between the different models. Some of
those already exist.

Concurrency Support

BML has not dealt with the issue of object concur-
rency. If components can be objects, and there is
the possibility of concurrent execution, concurrency
control can become a major issue. This is particu-
larly important when communication channels are
event streams, as in the JavaBEans model, since
event handling is a common cause of race condi-
tions and deadlocks in multithreaded environments
(see [20]).

The question is whether, in these circumstances, the
composition language should assure correct synchro-
nization among components. When components
from third party authors are used (maybe from sev-
eral of them) and concurrent execution is necessary,
it may become impossible to predict correct syn-
chronization of the composition, and a positive an-
swer would seem appropriate. This is the view ex-
pressed in [13], which underlies the design of the
Piccola language.

The issue for BML is whether it is possible to inte-
grate concurrency control while still keep the sim-
plicity and transparency of the language. We have
no answer to this yet.

6 Conclusions

We have presented an alternate approach to compo-
nent composition in the form of a new composition
language for the composition of JavaBeans compo-
nents, the Bean Markup Language (BML). BML is
a declarative language that uses the XML syntax
to reduce the adoption barrier of both developers
and machines. The language constructs are few and
simple, and are designed to capture in a first—class
manner the semantics of component composition.
In spite its simplicity, BML provides support for
most major composition operations. In particular,
BML supports recursive composition, which assures
scalability and enables top—down design methodolo-
gies.

BML allows composers to author event filtering
scripts in arbitrary scripting languages, which opens
up JavaBeans component composition to non—Java
programmers. That is an important points that re-
inforces the notion that is not necessarily a program-
mer’s job.

Still, BML does not address some relevant issues.
One is concurrency control, which can be a critical
issue in multiprocess environments. Finally, the ob-
jective of using BML as a vehicle to extend compo-
nent oriented development equires that other com-
ponent models be supported, if possible through a
common composition language.

References

[1] F. Achermann, M. Lumpe, J.-G. Schneider,
and O. Nierstrasz. Piccola - a small composi-
tion language. In H. Bowman and J. D. (Eds.),
editors, Formal Methods for Distributed Pro-
cessing, an Object Oriented Approach. Cam-
bridge University Press, 2000, to appear.

[2] M. Aoyama. New age of software development:
How component-based software engineering
changes the way of software development.

3]

[4]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

In Proc. 1998 International Workshop on
Component-Based Software Engineering, 1998.
http://www.sei.cmu.edu/cbs/icseworkshop.htm.

U. Assmann. Invasive Software Composition
with Program Transformation. Forthcoming
habilitation, 2000.

D. Batory, V. Singhal, J. Thomas, S. Dasari,
B. Geraci, and M. Sirkin. The genvoca model
of software-system generators. IEEE Softw.,
11(5), Sept. 1994.

D. Box. FEssential COM. Addison-Wesley,
Reading, M, 1998.

A. Brown. From component infrastruc-
ture to component-based development. In
Proc. 1998 International Workshop on
Component-Based Software Engineering, 1998.
http://www.sei.cmu.edu/cbs/icseworkshop.htm.

A. Brown and K. C. Wallnau. The current state
of cbse. IEEE Software, September 1998.

D. Flanagan. JavaScript: The Definitive
Guide. O’Reilley, Cambridge, MA, 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns: Elements of Reusable
Object Oriented Software. Addison Wesley,
Reading, MA, 1995.

IBM Corporation. Build-
mng Object-Oriented Frameworks.
http://www.ibm.com/java/education/oobuilding.

K. L. Kroeker. Software [r]evolution: A
roundtable. IEEE Computer, 32(5), 1999.

R. Light. Presenting XML. Sams.Net, Indi-
anapolis, IN, 1997.

O. Nierstrasz and T. D. Meijler. Require-
ments for a composition language. In O. N.
Paolo Ciancarini and A. Yonezawa, editors,
Object-Based Models and Languages for Con-
current Systems, Lecture Notes in Computer
Science 924, Berlin, 1995. Springer.

O. Nierstrasz and T. D. Meijler. Research di-
rections in software composition. ACM Com-
puting Surveys, 27(2), June 1995.

O. Nierstrasz and D. Tsichritzis. Object Ori-
ented Software Composition. Prentice Hall, En-
glewood Cliffs, NJ, 1995.

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

J. K. Ousterhout. Tel and the Tk Toolkit.
Addison-Wesley, Reading, MA, 1994.

J. K. Ousterhout. Scripting: Higher level pro-
gramming for the 21st century. IFEE Com-
puter, 31(3), 1998.

J. Siegel. CORBA: Fundamentals and Pro-
gramming. John Wiley, New York, 1996.

Y. Smaragdakis and D. Batory. Scoping con-
structs for software generators. In Proc. First
Symposium on Generative and Component-
Based Software Engineering, September 1999.

Sun Microsystems. JavaBeans, 1997.

C. Szyperski. Component Software: Be-
yond Object-Oriented Programming. Addison-
Wesley, Harlow, England, 1998.

L. Wall, T. Christiansen, and R. L. Schwartz.
Programming PERL. O’Reilley, Cambridge,
MA, 1996.

S. Weerawarana and M. Duftler.
Bml v2.3 user’'s guide. Avail-
able as a part of BML v2.3, 1999.
http://www.alphaWorks.ibm.com/formula/bml.

World Wide Web Consortium. Fz-
tensible Markup Language (XML)
1.0 (Second Edition), October 2000.
http://www.w3.org/TR/2000/REC-xml-
20001006.

World Wide Web Consortium. XML
Schema Part 1: Structures, October 2000.
http://www.w3.org/TR/xmlschema-1.

