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Abstract

Component technology promotes code-reuse by en-
abling the construction of complex applications
by assembling off-the-shelf components. However,
components depend on certain characteristics of the
environment in which they execute. They depend
on other software components and on hardware re-
sources.

In existing component architectures, the application
developer is left with the task of resolving those de-
pendencies, i.e., making sure that each component
has access to all the resources it needs and that
all the required components are loaded. Neverthe-
less, according to encapsulation principles, develop-
ers should not be aware of the component internals.
Thus, it may be difficult to find out what a compo-
nent really needs. In complex systems, this manual
approach to dependency management can lead to
disastrous results.

In this paper, we propose an integrated archi-
tecture for managing dependencies in distributed
component-based systems in an effective and uni-
form way. The architecture supports automatic con-
figuration and dynamic resource management in dis-
tributed heterogeneous environments. We describe
a concrete implementation of this architecture and
present experimental results.

*This research is supported by the National Science Foun-
dation, grants 98-70736, 99-70139, and ETA99-72884EQ.

fFabio Kon is supported in part by a grant from CAPES,
the Brazilian Research Agency, proc.#1405/95-2.

1 Introduction

As computer systems are being applied to more and
more aspects of personal and professional life, the
quantity and complexity of software systems is in-
creasing considerably. At the same time, the di-
versity in hardware architectures remains large and
is likely to grow with the deployment of embedded
systems, PDAs, and portable computing devices.
All these platforms will coexist with personal com-
puters, workstations, computing servers, and super-
computers. The construction of new systems and
applications in an easy and reliable way can only be
achieved through the composition of modular hard-
ware and software.

Component technology has appeared as a powerful
tool to confront this challenge. Recently developed
component architectures support the construction
of sophisticated systems by assembling together a
collection of off-the-shelf software components with
the help of visual tools or programmatic interfaces.
Components will be the unit of packaging, distri-
bution, and deployment in the next generation of
software systems. However, there is still very lit-
tle support for managing the dependencies among
components. Components are created by different
programmers, often working in different groups with
different methodologies. It is hard to create robust
and efficient systems if the dependencies between
components are not well understood.

Until recently, highly-dynamic environments with
mobile computers, active spaces, and ubiquitous



multimedia were only present in science fiction sto-
ries or in the minds of visionary scientists like Mark
Weiser [Wei92]. But now, they are becoming a re-
ality and one of the most important challenges they
pose is the proper management of dynamism. Fu-
ture computer systems must be able to configure
themselves dynamically, adapting to the environ-
ment in which they are executing. Furthermore,
they must be able to react to changes in the envi-
ronment by dynamically reconfiguring themselves to
keep functioning with good performance, irrespec-
tive of modifications in the environment.

Unfortunately, the existing software infrastructure
is not prepared to manage these highly-dynamic en-
vironments properly.

Existing component-based systems face significant
problems with reliability, administration, architec-
tural organization, and configuration. The problem
behind all these difficulties is the lack of a unified
model for representing dependencies and mecha-
nisms for dealing with these dependencies. Compo-
nents depend on hardware resources (such as CPU,
memory, and special devices) and software resources
(such as other components, services, and the operat-
ing system). Not resolving these dependencies prop-
erly compromises system efficiency and reliability.

As systems become more complex and grow in scale,
and as environments become more dynamic, the
effects of the lack of proper dependence manage-
ment become more dramatic. Therefore, we need
an integrated approach in which operating systems,
middleware, and applications collaborate to manage
the components in complex software systems, deal-
ing with their hardware and software dependencies

properly.

Software is in constant evolution and new compo-
nent versions are released frequently. How can one
run the most up-to-date components and make sure
that they work together in harmony? This requires
mechanisms for (1) code distribution over wide-area
networks so we can push or pull new components
as they become available and (2) safe dynamic re-
configuration so we can plug new components when
desired.

In previous papers, we introduced a model for repre-
senting dependencies in distributed component sys-
tems [KC99] and described a reflective ORB that
supports dynamic component loading in distributed
environments [KRLT00, KGA100]. In this paper,

we extend our previous work by describing the de-
sign, implementation, and performance of an inte-
grated architecture that provides mechanisms for:

1. Automatic configuration of component-based
applications.

2. Intelligent, dynamic placement of applications
in the distributed system.

3. Dynamic resource management for distributed
heterogeneous environments.

4. Component code distribution using push and
pull methods.

5. Safe dynamic reconfiguration of distributed
component systems.

1.1 Paper Contents

Section 2 gives a general overview of our architec-
ture for automatic configuration and dynamic re-
source management. Section 3 details the automatic
configuration mechanisms, explaining the concepts
of prerequisites (Section 3.1), component configu-
rators (Section 3.2), and the Automatic Configura-
tion Service (Section 3.3). Section 4 describes the
Resource Management Service, addressing resource
monitoring (Section 4.1) resource reservation (Sec-
tion 4.2), application execution (Section 4.3), and
fault-tolerance and scalability (Section 4.4).

Section 5 gives additional implementation details
and present experimental results. We then present
related work (Section 6), future work (Section 7),
and our conclusions (Section 8).

2 Architectural Framework

To deal with the highly-dynamic environments of
the next decades, we propose an architectural
framework divided in three parts. First, a mech-
anism for dependence representation lets develop-
ers specify component dependencies and write soft-
ware that deals with these dependencies in cus-
tomized ways. Second, an Automatic Configuration
Service is responsible for dynamically instantiating
component-based applications by analyzing and re-
solving their component dependencies at runtime.



A Resource Management Service is responsible for
managing the hardware resources in the distributed
system, exporting interfaces for inspecting, locating,
and allocating resources in the distributed, hetero-
geneous system.

Figure 1 presents a schematic view of the major el-
ements of our architecture. Prerequisite specifica-
tions reify static dependencies of components to-
wards its environment while component configura-
tors reify dynamic, runtime dependencies.
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Figure 1: Architectural Framework

As we explain in Section 3, the automatic configu-
ration process is based on the prerequisite specifica-
tions and constructs the component configurators.
As the Automatic Configuration Service instanti-
ates new components, it uses the Resource Manage-
ment Service to allocate resources for them. At ex-
ecution time, changes in resource availability may
trigger call-backs from the Resource Management
Service to component configurators so that compo-
nents can adapt to significant changes in the under-
lying environment.

As described in Section 4.3, when a client requests
the execution of an application to the Resource
Management Service, the latter finds the best lo-
cation to execute the application and then uses the
Automatic Configuration Service to load the appli-
cation components.

The elements of the architecture are exported as
CORBA services and their implementation relies
on standard CORBA services such as Naming and
Trading [OMGY8].

We have employed the architecture presented here
to support a reliable, dynamically configurable Mul-
timedia Distribution System. Readers interested in
a detailed description of how our services were used
in that particular application scenario should refer
to [KCNOQO]. In the following sections, we provide a
more in-depth description of each of the elements of
the architecture.

3 Automatic Configuration

Software systems are evolving more rapidly than
ever before. Vendors release new versions of web
browsers, text editors, and operating systems once
every few months. System administrators and users
of personal computers spend an excessive amount of
time and effort configuring their computer accounts,
installing new programs, and, above all, struggling
to make all the software work together!.

In environments like MS-Windows, the installation
of some applications is partially automated by “wiz-
ard” interfaces that direct the user through the in-
stallation process. However, it is common to face
situations in which the installation cannot complete
or in which it completes but the software package
does not run properly because some of its (unspeci-
fied) requirements are not met. In other cases, after
installing a new version of a system component or a
new tool, applications that used to work before the
update, stop functioning. It is typical that applica-
tions on MS-Windows cannot be cleanly uninstalled.
Often, after executing special uninstall procedures,
“junk” libraries and files are left in the system. The
application does not know if it can remove all the
files it has installed because the system does not
provide the clear mechanisms to specify which ap-
plications are using which libraries.

To solve this problem, we need a completely new
paradigm for installing, updating, and removing
software from workstations and personal comput-
ers. We propose to automate the process of soft-
ware maintenance with a mechanism we call Auto-
matic Configuration. In our design of an automatic
configuration service for modern computer environ-
ments, we focus on two key objectives:

1When even PhD students in Computer Science have trou-
ble keeping their commodity personal computers functioning
properly, one can notice that something is very wrong in the
way that commercial software is built nowadays.



1. Network-Centrism and

2. a “What You Need Is What You Get” (WYNI-
WYG) model.

Network-Centrism refers to a model in which all en-
tities, users, software components, and devices exist
in the network and are represented as distributed
objects. FEach entity has a network-wide identity,
a network-wide profile, and dependencies on other
network entities. When a particular service is con-
figured, the entities that constitute that service are
assembled dynamically. Users no longer need to
keep several different accounts, one for each device
they use. In the network-centric model, a user has a
single network-wide account, with a single network-
wide profile that can be accessed from anywhere in
the distributed system. The middleware is responsi-
ble for instantiating user environments dynamically
according to the user’s profile, role, and the under-
lying platform [CKB100].

In contrast to existing operating systems, middle-
ware, and applications where a large number of non-
utilized modules are carried along with the standard
installation, we advocate a What You Need Is What
You Get model, or WYNIWYG. In other words,
the system should configure itself automatically and
load a minimal set of components required for ex-
ecuting the user applications in the most efficient
way. The components are downloaded from the net-
work, so only a small subset of system services are
needed to bootstrap a node.

In the Automatic Configuration model, system
and application software are composed of network-
centric components, i.e., components available for
download from a Component Repository present in
the network. Component code is encapsulated in
dynamically loadable libraries (DLLs in Windows
and shared objects in Unix), which enables dynamic
linking.

Each application, system, or component? specifies
everything that is required for it to work prop-
erly (both hardware and software requirements).
This collection of requirements is called Prerequisite
Specifications or, simply, Prerequisites.

2From now on, we use the term “component” not only to
refer to a piece of an application or system but also to refer to
the entire application or system. This is consistent since, in
our model, applications and systems are simply components
that are made of smaller components.

3.1 Prerequisites

The prerequisites for a particular inert component
(stored on a local disk or on a network component
repository) must specify any special requirements
for properly loading, configuring, and executing that
component. We consider three different kinds of in-
formation that can be contained in a list of prereg-
uisites.

1. The nature of the hardware resources the com-
ponent needs.

2. The capacity of the hardware resources it
needs.

3. The software services (i.e., other components)
it requires.

The first two items are used by the Resource Man-
agement Service to determine where, how, and when
to execute the component. QoS-aware systems can
use these data to enable proper admission control,
resource negotiation, and resource reservation. The
last item determines which auxiliary components
must be loaded and in which kind of software en-
vironment they will execute.

The first two items — reminiscent of the Job Control
Languages of the mid-1960s — can be expressed by
modern QoS specification languages such as QML
[FK99b] and QoS aspect languages [LBS'98], or
by using a simpler format such as SPDF (see Sec-
tion 3.4.1). The third item is equivalent to the re-
quire clause in architectural description languages
like Darwin [MDK94] and module interconnection
languages like the one used in Polylith [Pur94].

The prerequisites are instrumental in implementing
the WYNIWYG model as they let the system know
what the exact requirements are, for instantiating
the components properly. If the prerequisites are
specified correctly, the system not only loads all the
necessary components to activate the user environ-
ment, but also loads a minimal set of components
required to achieve that.

We currently rely on the component programmer
to specify component prerequisites. Mechanisms
for automating the creation of prerequisite speci-
fications and for verifying their correctness require
further research and are beyond the scope of this pa-
per. Another interesting topic for future research is



the refinement of prerequisites specifications at run-
time according to what the system can learn from
the execution of components in a certain environ-
ment. This can be achieved by using QoS profiling
tools such as QualProbes [LNOO].

3.2 Component Configurator

The explicit representation of dynamic dependen-
cies is achieved through special objects attached to
each relevant component at execution time. These
objects are called component configurators; they are
responsible for reifying the runtime dependencies for
a certain component and for implementing policies
to deal with events coming from other components.

While the Automatic Configuration Service parses
the prerequisite specifications, fetches the required
components from the Component Repository, and
dynamically loads their code into the system run-
time, it uses the information in the prerequisite
specifications to create component configurators
representing the runtime inter-component depen-
dencies. Figure 2 depicts the dependencies that a
component configurator reifies.

dependson
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Figure 2: Reification of Component Dependencies
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The dependencies of a component C' are managed
by a component configurator C¢. Each configurator
C* has a set of hooks to which other configurators
can be attached. These are the configurators for the
components on which C' depends; they are called
hooked components. The components that depend
on C are called clients; C° also keeps a list of refer-
ences to the clients’ configurators. In general, every
time one defines that a component C; depends on a
component C5, the system should perform two ac-

tions:

1. attach C§ to one of the hooks in C'{ and

2. add Cf to the list of clients in C5.

Component configurators are also responsible for
distributing events across the inter-dependent com-
ponents. Examples of common events are the failure
of a client and destruction, internal reconfiguration,
or replacement of the implementation of a hooked
component. The rationale is that such events af-
fect all the dependent components. The component
configurator is the place where programmers must
insert the code to deal with these configuration-
related events.

Component developers can program specialized ver-
sions of component configurators that are aware of
the characteristics of specific components. These
specialized configurators can, therefore, implement
customized policies to deal with component depen-
dencies in application-specific ways.

As an example of how customized component con-
figurators could help applications, consider a QoS-
sensitive video-on-demand client that reserves a por-
tion of the local CPU for decoding a video stream.
The application developer can program a special
configurator that registers itself with the Resource
Management Service. In this way, when the Re-
source Management Service detects a change in re-
source availability that would prevent the applica-
tion from getting the desired level of service, it no-
tifies the configurator (as shown in Figure 1). The
configurator, with its customized knowledge about
the application, sends a message to the video server
requesting that the latter decrease the video frame
rate. Then, with a lower frame rate, the client is
able to process the video while the limited resource
availability persists. When the resources go back
to normal, another notification allows the video-on-
demand configurator to re-establish the initial level
of service.

3.3 Automatic Configuration Service

As described above, automatic configuration en-
ables the construction of network-centric systems
following a WYNIWYG model. To experiment with
these ideas, we developed an Automatic Configura-
tion Service for the 2K operating system [KCM*00].



Different applications domains may have different
ways of specifying the prerequisites of their appli-
cation components. Therefore, rather than limit-
ing the specification of prerequisites to a particu-
lar language, we built the Automatic Configuration
Service as a framework in which different kinds of
prerequisite descriptions can be utilized. To vali-
date the framework, we designed the Simple Pre-
requisite Description Format (SPDF), a very sim-
ple, text-based format that allowed us to perform
initial experiments. In the future, other more elab-
orated prerequisite formats including sophisticated
QoS descriptions [FK99b, LBST98] can be plugged
into the framework easily.

In addition, depending upon the dynamic availabil-
ity of resources and connectivity constraints, differ-
ent algorithms for prerequisite resolution may be de-
sired. For example, if a diskless PDA is connected to
a network through a 2Mbps wireless connection, it
will be beneficial to download all the required com-
ponents from a central repository each time they
are needed. On the other hand, if a laptop com-
puter with a large disk connects to the network via
modem, it will probably be better to cache the com-
ponents in the local disk and re-use them whenever
is possible.

Figure 3 shows how the architecture uses the
two basic classes of the Automatic Configuration
framework: prerequisite parsers and prerequisite re-
solvers. Administrators and developers can plug dif-
ferent concrete implementations of these classes to
implement customized policies.

Automatic Configuration Framework

1

load application Prerequisite resolve prereq

4 Resolver 21
recursive A
call 23 22

Prerequisite
Parser

Component
Repository

return reference

3| allocate resources

QoS—-Aware
Resorce Manager

— '
Local
Cache

Figure 3: Automatic Configuration Framework

The automatic configuration process works as fol-
lows. First, the client sends a request for loading an
application by passing, as parameters, the name of

the application’s “master” component and a refer-
ence to a component repository (step 1 in Figure 3).
The request is received by the prerequisite resolver,
which fetches the component code and prerequisite
specification from the given repository, or from a lo-
cal cache, depending on the policy being used (step
2.1).

Next, the prerequisite resolver calls the prerequisite
parser to process the prerequisite specification (step
2.2). As it scans the specification, the parser issues
recursive calls to the prerequisite resolver to load
the components on which the component being pro-
cessed depends (step 2.3). This may trigger several
iterations over steps 2.1, 2.2, and 2.3.

After all the dependencies of a given component are
resolved, the parser issues a call to the Resource
Manager to negotiate the allocation of the required
resources (step 3). After all the application compo-
nents are loaded, the service returns a reference to
the new application to the client (step 4).

3.4 A Concrete Implementation

To evaluate the framework, we created concrete
implementations of the prerequisite parser and re-
solver. The prerequisite parser, called SPDFParser,
processes SPDF specifications. The first prerequi-
site resolver, called SimpleResolver, uses CORBA
to fetch components from the 2K Component
Repository. The second, called CachingResolver,
is a subclass of SimpleResolver that caches the
components on the local file system.

3.4.1 SPDF

We designed the Simple Prerequisite Description
Format (SPDF) to serve as a proof-of-concept for
our framework. An SPDF specification is divided in
two parts, the first is called hardware requirements
and the second, software requirements. Figure 4
shows an example of an SPDF specification for a
hypothetical web browser. The first part specifies
that this application was compiled for a Sparc ma-
chine running Solaris 2.7, that it requires at least
5MB of RAM memory but that it functions opti-
mally with 40 MB of memory, and that it requires
10% of a CPU with speed higher than 300MHz.

The second part, software requirements, specifies



:hardware requirements

machine_type SPARC
os_name Solaris
os_version 2.7
min_ram 5MB
optimal_ram 40MB
cpu_speed >300MHz
cpu_share 10%

:software requirements

FileSystem CR:/sys/storage/DFS1.0 (optional)
TCPNetworking CR:/sys/networking/BSD-sockets
WindowManager CR:/sys/WinManagers/simpleWin
JVM CR:/interp/Java/jvml.2 (optional)

Figure 4: A Simple Prerequisite Description

that the web browser requires four components (or
services): a file system (to use as a local cache
for web pages), a TCP networking service (to fetch
the web pages), a window manager (to display the
pages), and a Java virtual machine (to interpret
Java Applets).

The first line in the software requirements sec-
tion specifies that the component that implements
the file system (or the proxy that interacts with
the file system) can be located in the directory
/sys/storage/DFS1.0 of the component reposi-
tory (CR). It also states that the file system is an
“optional” component, which means that the web
browser can still function without a cache. Thus, if
the Automatic Configuration Service is not able to
load the file system component, it simply issues a
warning message and continues its execution.

3.4.2 Simple Resolver and
Caching Resolver

The SimpleResolver fetches the component im-
plementations and component prerequisite specifi-
cations from the 2K Component Repository. It
stores the component code in the local file system
and dynamically links the components to the sys-
tem runtime. As new components are loaded, they
are attached to hooks in the component configu-
rator of the parent component, i.e., the compo-
nent that required it. In the web browser exam-
ple, the SimpleResolver would add hooks to the
web browser configurator, call them FileSystem,
TCPNetworking, WindowManager, and JVM, and at-
tach the respective component configurators to each

of these hooks.

Resolvers can be extended using inheritance. For
example, with very little work, we extended the
SimpleResolver to create a CachingResolver that
checks for the existence of the component in the lo-
cal disk (cache) before fetching it from the remote
repository.

3.5 Simplifying Management

The Automatic Configuration Service simplifies
management of user environments in distributed
systems greatly. Whenever a new application is re-
quested, the service downloads the most up-to-date
version of its components from the network Com-
ponent Repository and installs them locally. This
provides several advantages including the following.

e It eliminates the need to upload components to
the entire network each time a component is
updated.

o It eliminates the need to keep track manually of
which machines hold copies of each component
because updates are automatic.

e It helps machines with limited resources, which
no longer need to store all components locally.

3.6 Pushing Component Updates

The automatic configuration mechanism described
here provides a pull-based approach for code up-
dates and configuration. In other words, the service
running in a certain network node takes the initia-
tive to pull the code and configuration information
from a Component Repository.

To support efficient and scalable management in
large-scale systems, it may be desirable to allow
system administrators to push code and configura-
tion information into the network. Our architecture
achieves this by using the concept of mobile reconfig-
uration agents, which we describe in detail elsewhere
[KGAT00].



4 Resource Management Service

The Resource Management Service [Yam00] is or-
ganized as a collection of CORBA servers that are
responsible for (1) maintaining information about
the dynamic resource utilization in the distributed
system, (2) locating the best candidate machine to
execute a certain application or component based
on its QoS prerequisites, and (3) allocating local re-
sources for particular applications or components.

As shown in Figure 5, the Resource Management
Service relies on Local Resource Managers (LRMs)
present in each node of the distributed system. The
LRM’s task is to export the hardware resources
of a particular node to the whole network. The
distributed system is divided in clusters and each
cluster is managed by a Global Resource Manager
(GRM).

2K LRM

Windows
(CE, 98,NT)

Figure 5: Resource Management Service

4.1 Resource Monitoring

The LRMs running in each network node send up-
dates of the state of their resources (e.g., CPU and
memory usage) to the GRM periodically. The GRM
implementation encompasses an instance of the
standard OMG Object Trading Service [OMGY8]. A
reference to the LRM of each machine in the cluster
is stored in the GRM database as a trader “service
offer” and the state of its resources is stored as the
offer’s “properties”.

To reduce network and GRM load, it is important
to limit the frequency in which the LRMs send their
updates to the GRM. Thus, although LRMs check

the state of their local resources frequently (e.g.,
every ten seconds), they only send this information
to the GRM when (1) there were significant changes
in resource utilization since the last update (e.g., a
variation in more than 20% on the CPU load) or
(2) a certain time has passed since the last update
was sent (e.g., three minutes). In addition, when a
machine leaves the network, in case of a shutdown or
a voluntary disconnection of a mobile computer, the
LRM unregisters itself from the GRM database. If
the GRM does not receive an update from an LRM
for a period twice as long as the time in item 2
above, it assumes that the machine with that LRM
is unaccessible.

4.2 Resource Reservation

The LRMs are also responsible for performing QoS-
aware admission control, resource negotiation, reser-
vation, and scheduling of tasks on a single node.
This is achieved with the help of a Dynamic Soft
Real-Time Scheduler [NhCN98] that runs as a user-
level process in conventional operating systems like
Solaris and Windows. The LRM works as a CORBA
wrapper for this scheduler, which uses the system’s
low-level real-time API to provide QoS guarantees
to applications with soft real-time requirements.

This CORBArized scheduler can be used at any
time by CORBA clients to request QoS guarantees
on the availability of CPU and memory. For ex-
ample, as explained in Section 3.3, a prerequisite
parser may issue requests to reserve CPU and mem-
ory based on a component’s hardware prerequisite
specifications.

4.3 Executing Applications

Both the LRM and the GRM export an interface
that let clients execute applications (or components)
in the distributed system. The GRM maintains an
approximate view of the cluster resource utilization
state and it uses this information as a hint for per-
forming QoS-aware load distribution within its clus-
ter.

When a client wishes to execute a new application,
it sends an execute_application request to the lo-
cal LRM. The LRM checks whether the local ma-
chine has enough resources to execute the applica-
tion comfortably. If not, it forwards the request to



the GRM. The latter uses its information about the
resource utilization in the distributed system to se-
lect a machine that would be the best candidate to
execute that application and forwards the request,
as a oneway message, to the LRM of that machine.
The LRM of the latter machine tries to allocate the
resources locally, if it is successful, it sends a oneway
ACK message to the client LRM. If it is not possible
to allocate the resources on that machine, it sends
a NACK back to the GRM, which then looks for an-
other candidate machine. If the GRM exhausts all
the possibilities, it returns an empty offer to the
client LRM.

When the system finally locates a machine with the
proper resources, it creates a new process to host
the application. Next, it uses the Automatic Con-
figuration Service to fetch all the necessary compo-
nents (i.e. the master component’s dependencies)
from the Component Repository and dynamically
load them into that process as described in Section
3.3.

4.3.1 Client Request Format

The format of the client request to the initial LRM
is the following.

CosTrading: :0fferSeq execute_application (
in string categoryName,
in string componentName,
in string args,
in CosTrading: :PropertySeq QoS_spec,
in CosTrading::Constraint platform_spec,
in CosTrading::Preference prefs,
in CosTrading: :Lookup: :SpecifiedProps
return_props

)

categoryName/componentName specify which of the
components in the 2K Component Repository is the
master component of the application to be executed
and args contains the arguments that should be
passed to it at startup time.

QoS_spec defines the quality of service required
for this application. It is specified as a list of
<resourceName,resourceValue> pairs. As an ex-
ample, if the resource is the CPU, then the resource
value should be a structure of the following format
(specified by the scheduler’s CPU server [NhCN98]).

struct CpuReserve {
long serviceClass;
long period;
long peakProcessingTime;
long sustainableProcessingTime;
long burstTolerance;
float peakProcessingUtil;

};

platform_spec is the criteria to select a clus-
ter node and it is specified using the OMG
Trader Constraint Language. For example,
(osname == ’Linux’) and (processor_util < 40)
will select a Linux machine whose CPU utilization
is less than 40%.

prefs specifies the preferred machine in case mul-
tiple machines satisfy the requirements. For exam-
ple, max (RAM_free) will select the machine with the
maximum available physical memory.

Finally, return props specifies which properties
(resource utilization information) should be in-
cluded in the service offer that is returned. The
returned value also includes a reference to the com-
ponent configurator (see Section 3.2) of the new ap-
plication.

4.4 Fault-Tolerance and Scalability

To provide fault-tolerance and scalability, the Re-
source Management Service architecture depends
on a collection of replicated GRMs in each cluster.
LRMs send their updates as a multicast message to
all the GRMs in the cluster. Since, strong consis-
tency between the GRMs is not required, we can use
an unreliable multicast mechanism. Client requests
are sent to a single GRM and different clients may
use different GRMs for load balancing.

To enhance scalability across multiple clusters con-
nected through the Internet, GRMs can be feder-
ated in a hierarchical way. If a request cannot be
resolved in a particular cluster, the GRM forwards it
to a parent GRM in the hierarchy. The parent GRM
maintains an approximate view of the resource uti-
lization in its child clusters and uses this informa-
tion as a hint to locate a proper cluster to fulfill the
client request.

Although we have designed the protocols and algo-
rithms for fault-tolerance and scalability mentioned



in this subsection, their implementation is still un-
derway.

5 Implementation and
Experimental Results

The Automatic Configuration Service is imple-
mented as a library that can be linked to any ap-
plication. A program enhanced with this service
becomes capable of fetching components from a re-
mote Component Repository and dynamically load-
ing and assembling them into its local address-space.
The library requires only 157Kbytes of memory on
Solaris 7, which makes it possible to use it even on
machines with limited resources such as a PalmPi-
lot. In fact, we expect that services similar to this
will be extensively used in future mobile systems to
configure software automatically according to loca-
tion and user requirements.

To evaluate the performance of the Automatic Con-
figuration Service, we instrumented a test applica-
tion [KCNOO] to measure the time for fetching, dy-
namic linking, and configuring its constituent com-
ponents.

5.1 Loading Multiple Components

Figure 6 shows the total time for the service to load
from one to eight components of 19.2Kbytes each.
These experiments were carried out on two Sparc
Ultra-60 machines running Solaris 7 and connected
by a 100Mbps Fast Ethernet network. The Com-
ponent Repository was executed on one of the ma-
chines and the test application with the Automatic
Configuration Service on the other. Each value is
the arithmetic mean of five runs of the experiment.
The vertical bars in the subsequent graphs and the
numbers in parentheses in Table 1 represent the
standard deviation. As the graph shows, the varia-
tion in execution times across different runs of the
experiment was very small.

Table 1 shows, in more detail, how the service
spends its time when loading a single 19.2Kbyte
component. The current version of the Automatic
Configuration Service fetches the prerequisites file
from the remote Component Repository and saves
it to the local disk. The same is done with the file
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Figure 6: Automatic Configuration Service Perfor-
mance

containing the component code. Then, it uses the
underlying operating system to perform the local
dynamic linking of the component into the process
runtime.

The table also shows the additional time spent by
the service (row labeled as “autoconf protocol addi-
tional operations”) to detect if there are more com-
ponents or prerequisite files to load, to parse the
prerequisite file, and to reify dependencies. This
overhead accounts for 46% of the total time required
to load the component, which suggests that it would
be desirable to improve this part of the service by
optimizing the implementation of the SimpleResolver
(see Section 3.4). We believe that an optimized ver-
sion of the SimpleResolver could lead to improve-
ments in the order of 20% for components of this
size.

In the experiments described in this section, the
component code and prerequisite files were cached
in the memory of the machine executing the Compo-
nent Repository. When the Component Repository
program needs to read both files from its local disk,
there is an additional overhead of approximately 20
milliseconds.

5.2 Components of Different Sizes

To evaluate how the time for loading a single com-
ponent varies with the component size, we created
a program that generates components of different
sizes. According to its command-line arguments,
this program generates C++ source code containing
a given number of functions (which include code to
perform simple arithmetic operations) and local and



| Action | Time (ms) | % of the total |
fetching prerequisites from Component Repository 2 (0) 8
saving prerequisites to local disk 1 (0) 4
fetching component from Component Repository 4 (0) 17
saving component to local disk 1 (0) 4
local dynamic linking 5 (0) 21
autoconf protocol additional operations 11 (0.7) 46
Total 24 (0.7) 100

Table 1: Discriminated Times for Loading a 19.2Kbyte Component

global variables. Using this program, we created
components whose DLL sizes vary from 12 to 115
Kbytes. Figure 7 shows the time for the Automatic
Configuration Service to load a single component as
the component size increases.
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Figure 7: Times for Loading Components of Differ-
ent Sizes

Figure 8 shows the absolute times spent in each step
of the process3. We can notice that the time spent
in the item labeled “autoconf protocol” is approx-
imately constant®. Hence, as the component size
increases, its relative contribution to the total time
decreases. This can be noticed in Figure 9, which
shows the same data in a different form. In this
case, the figure shows the percentage of the total
time spent in each of the steps of the process.

As the size of the component increases, the time for
fetching the code from the remote repository to the
local machine becomes the dominant factor. It is
important to remember that these data were cap-
tured in a fast local network. If the access to the
repository requires the use of a lower bandwidth
connection, then this step would clearly be the most

3These steps are the same as those presented in Table 1.

4This is expected since the messages processed in this step
do not carry component code and therefore are not affected
by the size of the component.
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Figure 8: Discriminated Times for Loading Compo-
nents of Different Sizes
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Figure 9: Discriminated Percentual Times for Load-
ing Components of Different Sizes

important with respect to performance. This sug-
gests that deriving intelligent algorithms for compo-
nent caching, taking component versions and user
access patterns into consideration is an important
topic for future research.

Although there is still much room for improvements
and performance optimizations in the protocols used
by the Automatic Configuration Service, the results
presented here are very encouraging. They demon-
strate that it is possible to carry out automatic con-



figuration of a distributed component-based appli-
cation within a tenth of a second, which is what we
intended to prove.

5.3 Resource Management

We have not yet carried out an extensive perfor-
mance evaluation of the Resource Management Ser-
vice. However, preliminary results [Yam00] show
that the overhead imposed by the LRMs in the in-
dividual nodes is low and that the time for launching
a simple remote application through the GRM and
LRM is in the order of a tenth of a second. As fu-
ture work, we intend to carry out a comprehensive
evaluation of this service.

6 Related Work

The OMG CORBA Component Model (CCM) spec-
ifies a standard framework for building, packag-
ing, and deploying CORBA components [OMG99].
Unlike our model, which focuses on prerequisites
and dynamic dependencies, the CORBA Compo-
nent Model concentrates on defining an XML vo-
cabulary and an extension to the OMG IDL to sup-
port the specification of component packaging, cus-
tomization, and configuration. The CCM Software
Package Descriptor is reminiscent of our SPDF as
it contains a description of package dependencies,
i.e., a list of other packages or implementations that
must be installed in the system for a certain package
to work. CORBA Component Descriptors, on the
other hand, describe the interfaces and event ports
used and provided by a CORBA component.

We believe that our model and CCM complement
each other and could be integrated. CCM provides
a static description of component needs and inter-
actions, while our model manages the runtime dy-
namics. Although CCM was already approved by
OMG, publicly available ORBs do not support it
yet. Once this happens, we intend to work towards
the integration of the two models.

Among the major CORBA implementations, the
one that most resembles our work is Orbix 2000
[IONOO]. Tts Adaptive Runtime Architecture lets
users add functionality to the ORB by loading plug-
ins dynamically. Whenever a request is sent to the

ORB, it is processed by a chain of interceptors that
can be configured in different ways using the loaded
plug-ins. In that way, the ORB can be configured
with interceptors that implement security, transac-
tions, different transport protocols, etc. When the
ORB loads a plug-in, it checks its version and de-
pendence information. A centralized configuration
repository specifies plug-in availability and configu-
ration settings. Using this architecture it could be
relatively easy to implement the functionality pro-
vided by our Automatic Configuration and Resource
Management Services.

Enterprise JavaBeans [Tho98] is a server-side tech-
nology for the development of component-based sys-
tems. It does not support the functionality for Au-
tomatic Configuration and Resource Management
provided in our system. Nevertheless, it provides
deployment descriptors that let one define, at de-
ployment time, the configuration of individual com-
ponents (Beans). Instead of recording the configu-
ration information in a text format — like our SPDF
and CORBA’s XML formats — deployment descrip-
tors are serialized Java classes. A deployment de-
scriptor can customize the behavior of a Bean by
setting environment properties as well as define run-
time attributes of its execution context, such as se-
curity, transactions, persistence, etc. [MHO0O0].

Jini is a set of mechanisms for managing dynamic
environments based on Java. It provides protocols
to allow services to join a network and discover
what services are available in this network. It also
defines standard service interfaces for leasing, trans-
actions, and events [AOS199]. When a Jini server
registers itself with the Jini lookup service, it stores
a piece of Java byte code, called proxy, in its entry in
the lookup service. When a Jini-enabled client uses
the lookup service to locate the server, it receives,
as a reply, a Serviceltem, which is composed of a ser-
vice ID, the code for the proxy, and a set of service
attributes. The proxy is then linked into the client
address-space and is responsible for communication
with the server. In this way, the communication be-
tween the client and the server can be customized,
and optimized protocols can be adopted.

This Jini mechanism for proxy distribution can be
achieved in a CORBA environment by using the Au-
tomatic Configuration Service in conjunction with
a reflective ORB such as dynamicTAO [KRL100].
The Automatic Configuration Service would fetch
the proxy code and dynamically link it, while dy-
namicTAO would use the TAO pluggable protocols



framework [OKS*00] to plug the proxy code into
the TAO framework.

Jini is normally limited to small-scale networks and
it does not address the management of component-
based applications and inter-component depen-
dence. Due to the large memory requirements im-
posed by Java/Jini, this is not yet a viable alterna-
tive for most PDAs and embedded devices.

The Globus project [FK98] provides a “computa-
tional grid” [FK99a] integrating heterogeneous dis-
tributed resources in a single wide-area system. It
supports scalable resource management based on a
hierarchy of resource managers similar to the ones
we propose. Globus defines an extensible Resource
Specification Language (RSL) that is similar to our
SPDF (described in Section 3.4.1). RSL [Glo00] al-
lows Globus users to specify the executables they
want to run as well as their resource requirements
and environment characteristics. RSL could be inte-
grated in our system by plugging an RSLParser into
our Automatic Configuration framework. A funda-
mental difference between Globus and our work is
that we focus on component-based applications that
are dynamically configured by assembling compo-
nents fetched from a network repository. In Globus,
on the other hand, the user specifies the application
to be executed by giving the name of a single exe-
cutable on the target host file system or by giving a
URL from which the executable can be fetched.

Legion [GW97] is the system that shares most sim-
ilarities with 2K as it also builds on a distributed,
reflective object model. However, the Legion re-
searchers focused on developing a new object model
from scratch. Legion applications must be built us-
ing Legion-specific libraries, compiler, and run-time
system (the Legion’s ORB). In contrast, we focused
on leveraging CORBA technology to build an in-
tegrated architecture that could provide the same
functionality as Legion, while still preserving com-
plete interoperability with other CORBA systems.
In addition, our work emphasizes automatic config-
uration and dependence management, which are not
addressed by Legion.

Systems based on architectural connectors like Uni-
Con [SDZ96] and ArchStudio [OT98] and systems
based on software buses like Polylith [Pur94] sep-
arate issues concerning component functional be-
havior from component interaction. Our model
goes one step further by separating inter-component
communication from inter-component dependence.

Connectors and software buses require that applica-
tions be programmed to a particular communication
paradigm. Unlike previous work in this area, our
model does not dictate a particular communication
paradigm like connectors or buses. It can be used
in conjunction with connectors, buses, local method
invocation, CORBA, Java RMI, and other methods.
As demonstrated by our experiments with dynamic-
TAO [KRL™00], the model was applied to a legacy
system without requiring any modification to its
functional implementation or to its inter-component
communication mechanisms.

Communication and dependence are often inti-
mately related. But, in many cases, the dis-
tinction between inter-component dependence and
inter-component communication is beneficial. For
example, the quality of service provided by a multi-
media application is greatly influenced by the mech-
anisms utilized by underlying services such as vir-
tual memory, scheduling, and memory allocation
(e.g., through the new operator). The interaction
between the application and these services is often
implicit, i.e., no direct communication (e.g., library
or system calls) takes place. Yet, if the system in-
frastructure allows developers to establish and ma-
nipulate dependence relationships between the ap-
plication and these services, the application can be
notified of substantial changes in the state and con-
figuration of the services that may affect its perfor-
mance.

Research in software architecture [SG96] and dy-
namic configuration [PCS98] typically focuses on
the architecture of individual applications. It does
not deal with dependencies of application compo-
nents towards system components, other applica-
tions, or services available in the distributed envi-
ronment. QOur approach differs from them in the
sense that, for each component, we specify its de-
pendencies on all the different kinds of environment
components and we maintain and use these dynamic
dependencies at runtime. Approaches based on soft-
ware architecture typically rely on global, central-
ized knowledge of application architecture. In con-
trast, our method is more decentralized and focuses
on more direct component dependencies. We believe
that, rather than conflicting with the software archi-
tecture approach, our vision complements them by
reasoning about all the dependencies that may af-
fect reliability, performance, and quality of service.

The final solution to the problem of supporting reli-
able automatic (re)configuration may reside on the



combination of our model with recent work in soft-
ware architecture and dynamic (re)configuration.
This is certainly an important open research prob-
lem to be investigated in the future.

7 Future Work

Under the 2K project we have also been work-
ing on QoS compilation techniques, addressing the
problem of translating application-level QoS speci-
fications to component-level QoS specifications, and
then to resource-level QoS specifications [NWXO00].
In the near future, our group will work on the im-
plementation of the mechanisms for fault-tolerance
and scalability described in Section 4.4. Security
will be provided by a CORBA implementation of
the standard Generic Security Services (GSS) API
[Lin97].

In the previous sections, we alluded to some other
important topics for future work, namely, (1) auto-
matic creation and refinement of prerequisite spec-
ifications, (2) intelligent algorithms for component
caching taking versions into consideration, and (3)
the integration of our dependence model with recent
research in software architecture.

8 Conclusions

Component technologies will play a fundamental
role in the next generation computer systems as the
complexity of software and the diversity and per-
vasiveness of computing devices increase. However,
component technologies must offer mechanisms for
automatic management of inter-component depen-
dencies and component-to-resource dependencies.
Otherwise, the development of component-based
systems will continue to be difficult and frequently
lead to unreliable and non-robust systems.

Although there are still a number of open prob-
lems for future research, we believe that this pa-
per gives an important contribution to the area by
presenting an object-oriented architecture for au-
tomatic configuration and dynamic resource man-
agement in distributed component systems. Perfor-
mance evaluation demonstrated that our system is
able to dynamically instantiate applications by as-

sembling network components in less than a tenth
of a second.

Future work in our group will extend the Resource
Management Service implementation to improve its
fault-tolerance and scalability and enhance the syn-
ergy between dynamic resource management and
automatic configuration.
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