
THE MAGAZINE OF USENIX & SAGE
June 2002 volume 27 • number 3

inside:
CONFERENCE REPORTS

BSDCon 2002

The Advanced Computing Systems Association &

The System Administrators Guild

&

69June 2002 ;login: BSDCON 2002 ●

What made this interesting is how little
things have changed in 30 years.

The “build it quick” philosophy, which
he still holds to, says that you need to be
ready to throw a project away and that
the purpose of each piece you build is
insight into the problem space. Another
radical idea in 1977 was to use existing
tools.

One suggested practice to keep a project
small he termed the “Lifeboat Theory,”
which says that you need to get rid of a
feature to add a new one.

His conclusions were again not surpris-
ing: 1) failure is the norm; 2) build fast;
3) keep it small; 4) build it to be
changed.

His next talk, from 20 years ago, was
called “Software Army on the March,” a
discussion of project organization for
projects of about 200 people. The con-
cept is that there are different types of
contributors to a project and they can be
organized as an army.

There are scouts on motorcycles who are
far ahead of the army. They can fail and
are expendable. Instead of building the
final product, the scouts should learn
how to solve the hard problems and find
the problems that the rest of the army
isn’t even seeing as it moves forward
more methodically.

Then there are engineers with bulldozers
and cranes who build the actual thing
you want to ship (the road, bridge, etc.).

Due to the nature of the audience most
of the talk focused on the scouts and on
decision making. Decision order (what
gets done when) was what he felt was
most important.

QUESTIONS:

1) What do you see as our failures and
successes in software?
UNIX is a success even though
Microsoft makes more money. But big
coalitions have not been a success. There

conference reports
This issue’s reports focus on BSDCon,

held in San Francisco, California,

February 11-14, 2002,

OUR THANKS TO THE SUMMARIZER:

George V. Neville-Neil

BSDCon 2002
SAN FRANCISCO, CALIFORNIA

FEBRUARY 11–14, 2002
Summarized by George V. Neville-Neil

KEYNOTE ADDRESS

SOFTWARE STRATEGY FROM THE

1980 TIME CAPSULE

John R. Mashey, Sensei Partners

The opening keynote talk by John
Mashey treated us to a time capsule with
slides used in the original talks from 20
and 25 years ago.

John’s first talk, originally titled “Small Is
Beautiful and Other Thoughts on Pro-
gramming Strategies” was a proposal
from 1977 to put a UNIX machine on
everyone’s desk. The argument for this
at the time was that terminal room space
was expensive, and that smaller projects,
done by teams in their offices, would be
more effective.

The talk was really about projects and
how they get executed. His basic thesis
was that there are three ways of doing
projects:

1) complete planning (do it right);
2) pessimism (plan to do it over);
3) build small and quick (the UNIX phi-

losophy).

Some of the more interesting facts he
presented were that a survey of projects
in 1971 showed that out of 18 total, five
were infeasible, five were feasible, but
could not gain acceptance, two projects
had good fall-outs but no real monetary
return, three were partial successes, and
three were actual successes. Success is
very rare.

He then presented a list of how software
goes wrong (which, hopefully, didn’t
surprise anyone in the audience):

1) too many features (creeping featur-
ism); 2) upwards compatibility; 3) intu-
ition about what’s important is usually
wrong.

was a 1967–77 project to automate Bell
Telephone. It cost over $1 billion, and
people cheered when it died. It was
replaced by a small project run by two
managers.
2) Why have we learned so little in 20
years?
There are a couple of answers. One of
the biggest is that people are not encour-
aged to talk about failure. We have a
poor institutional memory.
There is a certain amount of pessimism
in the philosophy, and that goes against
the grain.
3) The talks speak to the human condi-
tion. The primary problem is that
humans are doing this. Most project
management is a way of smoothing over
or making them work together better.
Our ability to understand things does
not keep up with Moore’s law.

That’s actually another talk that I do,
“Hardware, Software, Wetware.”

REFEREED PAPERS

SESSION: HARDWARE AND

DOCUMENTATION

PORTING NETBSD TO THE AMD X86-641:

A CASE STUDY IN OS PORTABILITY

Frank van der Linden, Wasabi Systems,
Inc.

The first technical talk covered a port of
NetBSD. The biggest general point was
that when programming we should
never make assumptions about the sizes
of types. The assumption that an integer
is 32 bits, which was correct for more
than a decade, breaks software on 64-bit
architectures. This led to the second
general point: a programmer should
always expect someone else to use their
code on a different platform.

One simple recommendation for build-
ing more easily ported code was never to
use “#ifdef <arch>”. The comment was
that “if you use this, there is something
wrong with you or the code,” and you
should go back and check your work.

70 Vol. 27, No. 3 ;login:

Questions:

1) How is the optimized syscall different
from the normal one?
A bunch of unnecessary checks were
removed.
2) Is the way that you do the compila-
tions really separate from the host envi-
ronment?
In NetBSD we are moving toward a dif-
ferent build system which says that “if
you have an ANSI compiler you can
build our system.” This can now be
done, which means we support full
cross-builds.

PROBLEMS UPDATING FREEBSD’S PCCARD

SYSTEM FROM ISA TO PCI

M. Warner Losh, Timing Solutions, Inc.

The old method of updating PCCard
support in FreeBSD was to have an
adapter that made PCI look like ISA,
which allowed the old ISA code to work.
But this caused two major problems:
there was no IRQ sharing, so the system
consumed many IRQs, and it was hard
to configure.

EXPERIENCES ON AN OPEN SOURCE

TRANSLATION EFFORT IN JAPAN

Hiroki Sato and Keitaro Sekine, Tokyo
University of Science

Hiroki Sato presented work done in
Japan to keep up with the mainly Eng-
lish source of documentation in the
FreeBSD project. The FreeBSD Japanese
Documentation Project (doc-jp) was
started in 1996 by FreeBSD developers.
Its main goal was translation of FreeBSD
documents to Japanese. There are two
ongoing efforts: the Japanese Manual
Project and doc-jp. Currently, 70% of
the documents in the source tree are
available in Japanese.

One of the major problems the project
has to face is that evaluation of trans-
lated documents is harder than evaluat-
ing code because you can’t run the
documents. There isn’t a good parser for
the output of the translation.

Another issue is release engineering
because of the lag time between soft-
ware/doc release and translation. The
team is playing a constant game of catch
up.

To help alleviate these problems they
have developed a toolchain to process
the documents. Unfortunately, the Jade-
TeX system cannot handle Japanese
characters at the moment, so there are
no PDF or PostScript versions of the
documents available.

There were no questions for this speaker.

SESSION: KERNEL STUFF

LOCKING IN THE MULTI-THREADED FREEBSD

KERNEL

John H. Baldwin, The Weather Channel

This talk was intended to show kernel
programmers how to use the new lock-
ing system and tools. The major tool
that the FreeBSD team is using is called
Witness and was contributed to the
project by the BSD/OS team.

Witness is really a set of macros for lock-
ing the store state to ensure that locks
are always taken in the same order. An
out-of-order set of locks can lead to a
deadlock situation, which would be a
major failure for the kernel.

One of the beauties of Witness is that it
learns on the fly what locking order the
software is using. Other systems for
detecting deadlocks depend on the pro-
grammer to declare the locking order for
the whole system.

Questions:
1) Is the granularity of locking on entire
processes or are there locks on struc-
tures?
This was an example of locking for
processes but other locks are possible.
2) Do you have any results on how much
time you’re spending in the locking
code?
Not as yet because the Witness system is
very CPU intensive.

3) You mentioned that you were going
to go through one of the tools. Can you
mention others?
One tool is to use assertions. Another
tool on the horizon is a lock profiler to
tell us which locks we depend on heavily
and where we depend on those locks in
the code.
4) What sort of lock push-out has
occurred? Are there any subsystems
depending on fine-grained locks?
Ninety-five percent of the kernel is still
under the giant lock although there has
been some work on locking file descrip-
tors.
5) What advice do you have for people
maintaining device drivers with regard
to pushing locks into the drivers? Are
there any recommendations on what to
do about spl()?
Leave spl() in there for now. Device driv-
ers are the last thing you want to lock.
Subsystems should be locked first.
6) What is the difference between the
SMP efforts in NetBSD and FreeBSD?
I’m not completely familiar with
NetBSD but from what code I have seen
they’re using different APIs.
7) You were saying that VM had already
been converted.
The only thing that has been done is the
file descriptors. We have no performance
numbers now.
8) What are you doing about priority
inversion?
The mutex code from BSD/OS does
include some code to protect against
priority inversion.

ADVANCED SYNCHRONIZATION IN MACOS

X: EXTENDING UNIX TO SMP AND

REAL-TIME

Louis G. Gerbarg, Apple Computer, Inc.

This talk discussed Xnu, which is Dar-
win’s kernel and is based on Mach 3.0
and 4.4BSD-Lite2.

The system provides a novel synchro-
nization primitive called Funnels, which
are like mutexes but they allow non-
reentrant code to run safely. It is not a

71June 2002 ;login:

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Slocking construct. At the present time
there are two funnels, one for the net-
work and one for everything else.

Another difference in working with
Xnu/Darwin is that it depends on a
completely different driver model called
IOKit. IOKit abstracts the drivers from
the rest of the kernel and provides a sta-
ble interface.

Drivers handle multi-threading by using
IOWorkLoops. They are used to serialize
event sources such as timers and inter-
rupts.

IOKit can also filter interrupt events.
This makes it easier to handle a large
number of interrupts because they
appear to the system as a single event.

Questions:
1) You said that you have a network fun-
nel and a kernel funnel when you read
from a socket. Which do you get?
The system calls have flags saying which
funnel to get.
2) Do you intend to adopt a particular
locking strategy from a particular ker-
nel?
I do not handle policy. The answer is
that it’s very difficult.
3) It seems to me that the IOWorkLoop
that you mentioned is similar in concept
to the networking ISR code on *BSD. Is
that the same concept?
Yes, they are similar, but the implemen-
tation details are different. IOKit is more
generic.
4) As more and more devices get
attached via USB, does that change your
viewpoint on how device drivers should
be written?
The USB stack does, in fact, hook up
functions to handle asynchronous events
instead of depending on interrupts.
There is only one IOWorkLoop for all of
USB.
5) Have you analyzed the performance
of this implementation? What are the
interesting effects of the model?
People have done extensive measure-
ments. Just how fast, I cannot say.

6) How many context switches are
involved from a NIC card to user space?
I couldn’t tell you. Could be less than
five, but it is definitely not less than
three.
7) Have you benchmarked performance
with Darwin vs. something else on the
same hardware?
There are answers on the Net. It is not
better or worse in totality than anything
else.
8) What does the CPU context switch
cost?
I don’t know.

AN IMPLEMENTATION OF THE YARROW

PRNG ON FREEBSD

Mark R.V. Murray, FreeBSD Services,
Ltd.

Mark’s talk discussed the problem that
random numbers aren’t random
enough.

One of the claimed advantages of this
system is that it is number-theoretically
correct. The software that was imple-
mented does not block when giving out
a random number so it is vulnerable to
DoS attacks. Asking for a lot of random
numbers does not slow the system
down.

Other advantages are that it’s resistant to
entropy starvation, prediction attacks, as
well as being fast and simple to aug-
ment.

The target market for this work is the
kernel (process IDs, TCP serial num-
bers) and user-land (SSL/SSH, Kerberos,
simulation).

The non-target market is “real” entropy
users for things like one-time pads.

The system was designed in an open way
from theory to practice.

Questions:
1) Has this been merged from FreeBSD’s
-CURRENT branch to -STABLE?
No.

BSDCON 2002 ●

2) What is the source of the word
“yarrow”?
On http://www.counterpane.com take the
labs link. A plant with a straw like stalk
that is used in China to tell fortunes.

BSD STATUS REPORTS

This session consisted of status reports
from representatives of each BSD proj-
ect. Each section lists the name of the
project (OpenBSD, NetBSD, FreeBSD,
etc.) the person who spoke, and a laun-
dry list of their latest achievements.

OPENBSD

Todd Miller

■ Version 3.0 released in December of
2001 is the 11th release.

■ Concentration is on security.
Robust code equals safe code. This
means using the safe variants of the
libc code.

■ Integrated cryptography, IPSec,
OpenSSH support for hardware
crypto

■ Much improved UltraSPARC with
support

■ Alpha resurrection
■ Better support for crypto boards

Hifn 7951 Broadcom 5820
■ Improved 802.11 support
■ Support for I2O adapters
■ Gigabit Ethernet
■ New “pf” packet filter has IPv6 sup-

port – easy conversion of IPF-based
filters; packet normalization.

■ BSD authentication from BSD/OS
used throughout the system, includ-
ing OpenSSH.

■ Integrated ALTQ
■ Heimdal (Kerberos V)
■ Better behavior in low kmem situa-

tions
■ Updated RAIDframe
■ Updated Adaptec AIC7XXX driver
■ Better sizing of kernel buffers

Long-term plans:
■ IPSec-aware TCP hardware crypto

in OpenSSL rate limiting within

72 Vol. 27, No. 3 ;login:

crypto framework striping network
interface

NETBSD

Jason Thorpe

■ New toolchain and build frame-
work for fast cross-building

■ Highly optimized buffer cache and
NFS implementation

■ Vastly improved paging behavior
■ Performance enhancements for FFS
■ Ports to many new platforms

(PlayStation 2), including several
systems on Chips

■ Improved locale support
■ Improved standards compliance
■ Too many new drivers to count
■ Getting ready to branch the 1.6

release

Waiting in the wings:
■ devvp: deprecate dev_t in favor of

vnodes
■ devfs: the end of dev_t as we know

it
■ wedges: a new approach to disk par-

titioning
■ Sun-style LWPs: finer-grained

scheduling
■ Scheduler activations: scalable ker-

nel support for threads
■ New pthreads library based on

scheduler activations
■ POSIX real-time extensions
■ Support for MIPS64 and PA-RISC
■ Performance improvement data

structures and algorithms; data
movement primitives; concurrency
for multi-processors; page replace-
ment algorithms

■ Better quality control
■ Automated regression testing
■ Automated weekly snapshots
■ Better bug tracking
■ Instant releases
■ Embedded
■ No persistent storage
■ Improved flash support
■ Run-in-place support

FREEBSD

Jordan Hubbard

■ There are now almost 6500 ports.
■ Biggest changes in the last year were

social or structural. These included
the purchase of Walnut Creek,
which was then bought by Wind
River and the later spin-off of the
FreeBSD team from Wind River.

■ The system is still used by lots of
large customers (Hotmail, Yahoo,
etc.).

■ Still doing three releases per year
■ More government funding (secu-

rity)
■ Project management is now more

work because of the increased num-
ber of contributors.

■ FreeBSD Foundation has gotten full
version of Java for FreeBSD.

■ Doc project is doing really well.
■ SMP progress continues; a lot of

work to be done there.
■ KSE (thread scheduler) has reached

a milestone.
■ SPARC is multi-user but does not

self-host yet.
■ PowerPC is single user.
■ CardBus and PCCard support has

taken a leap forward.
■ C99 and POSIX are moving for-

ward.
■ devfs are used by default.
■ Polling network driver support is in

-CURRENT and is backported to -
STABLE.

■ PAM has been cleaned up.
■ POSIX ACL support was added to

FS.
■ Hardware drivers for NVIDIA and

other 3D stuff
■ Audio drivers improved
■ Improved resilience to DoS attacks

Future:
■ Wait for NetBSD to get bug tracking

right and take it into FreeBSD
■ Figure out hosting third-party proj-

ects (e.g., SourceForge)
■ Continue to work on security infra-

structure

http://www.counterpane.com

BSD/OS

Don Seeley

■ Focus on networking and storage
■ Snags: tech shakeout, RIFs, FreeBSD

debacle, licensing carryover,
BSD/OS 4.3 delays

■ Wind River is backing BSD in a big
way.

In the Pipeline:
■ Itasca Release
■ Preemptive kernel with locking
■ Real embedded release
■ Native BSD tools with visionWARE
■ Intel IA32, PowerPC targets
■ Margaux release
■ Tornado IDE
■ Cross-development from a Win-

dows host

Future History:
■ Building alliances and partnerships
■ Spreading BSD through the indus-

try

DARWIN

■ MacOS X released on March 24
■ Targeted the consumer market
■ Deployed in a hardened mode
■ Released Darwin 1.3 in April
■ MacOS 10.1 released in September

– a lot of software updates.
■ Darwin release with 10.1 was sup-

posed to be 5.0.
■ WebDAV is now open source.
■ A lot of software is coming out.
■ MacOS X will now be the default

with every system Apple ships.
■ BSD on the desktop now outnum-

bers Linux by 2:1.
■ All hardware comes with developer

tools.
■ Next event is the World Wide

Developer conference, which will be
UNIX oriented.

■ New release focuses on gcc3.0,
FreeBSD synchronization, better
pthreads, Kerberos, QuickTime 6,
package management.

Questions:

73June 2002 ;login:

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SThe questions were put to all the speak-
ers, whose answers are noted by project
name.

1) I’d like to hear the plan that will stabi-
lize the API for device driver authors.
Darwin: Has its own and it’s open
source. No plans to change.
BSD/OS: Is going toward the CardBus-
based system.
FreeBSD: Most problems are legal and
not technical.
NetBSD: Closest to BSD/OS.

2) (Comment) I created the API mailing
list after a recent debacle. No one else
seems to want to care. The lists are mod-
erated. There is an announcement list
and a discussion list:
bsd-api-announce@wasabi-systems.com
bsd-api-discuss@wasabi-systems.com

3) Where lies the official support for
Darwin Intel? Is there a plan to ship any-
thing?
Apple will only ship a CD-ROM, no
hardware.
4) What’s up with the OpenPackages
project?
Project on hold waiting for developer
time but can be found at
http://www.openpackages.org.
5) Darwin/MacOS X plans for IPv6?
No formal plans as there is no real
demand yet, but the code is in the repos-
itory.
6) Four different platforms are doing
locks differently. Would it make sense to
reduce the divergence?
BSD/OS is synced up with FreeBSD
APIs.
Perhaps there should be a forum for
SMP.
7) LFS is cool — why not use it?
Although we’ve made the cleaner a little
more robust it’s still not ready for prime
time.
8) What are the current plans for trans-
ferring the FreeBSD trademark to
FreeBSD from Wind River?
No comment.

9) Very little seems to happen with
merging the user-land. Speaker proposes
that we get someone to drive this.
Most people are waiting for automated
tools to help with this.
The core problem is a difference in
goals.
Best off collaborating on APIs and not
on implementations.
It’s not always true that multiple imple-
mentations are bad.
10) (Comment) At the recent FAST con-
ference there was a paper presented on
the write buffering LFS that significantly
improved the garbage collection. Over-
head was very small.

KEYNOTE ADDRESS

UNIX: NOT JUST FOR GEEKS ANYMORE

Brett R. Halle, Director, Core OS Engi-
neering, Apple Computer, Inc.

The second-day keynote was presented
by Brett R. Halle from Apple Computer.
He made the usual assertion that UNIX
has for decades been designed for engi-
neers but is not usable by mere humans.

Most modern UNIX’s primary cus-
tomers remain servers, scientific users,
colleges and universities, specialized
workstations. These are fundamentally
highly educated technical users in cen-
trally managed environments.

What’s missing?

General purpose desktop/mobile com-
puting. This means that the current UI
is un-acceptable and that applications
are important.

He then presented a MacOS X architec-
tural slide that shows how applications
are supported independent of the ker-
nel.

Apple found that UNIX on the desktop
uncovered many challenges and pre-
sented some interesting opportunities. A
central question is, “Who uses the desk-
top?” Apple found that desktop users
include PC users (kids and parents), cre-

BSDCON 2002 ●

http://www.openpackages.org

ative professionals (in advertising, film
etc.), and people working in higher edu-
cation and scientific/technical fields.

In general desktop users have no access
to central administration, aren’t com-
puter scientists, and want to use the
computer as a tool. These users run
every type of software imaginable and
are in highly dynamic environments.

One of the major challenges to UNIX in
this environment is the file system lay-
out. Names like “/etc /usr /bin” do not
mean anything to a typical desktop user.
Files are often removed accidentally in
some environments because it’s com-
mon for users to clean their disks and
remove things they don’t think they’re
using. For this reason MacOS X provides
a filtered view of the file system.

Metaphorically this is a “trees vs. forest”
argument. The UNIX file system tree is
an extremely powerful concept, but
desktop users expect to see a forest and
not the trees. Another important feature
is that devices should be visible as
objects in the system as should remote
file systems.

Desktop users often identify files with a
descriptive phrase used for identifica-
tion, including spaces and punctuation.
To most users case doesn’t matter.
Another complication is that paths can
change because users reorganize their
data frequently.

Another area that UNIX does not
address on the desktop is security. On a
personal computer, users are the admin-
istrators. Unfortunately, root is too
granular and highly dangerous. In
MacOS X, support for administrative
roles is much more flexible, and roles
may change during a session. All systems
are shipped with root turned off.

What makes this all more difficult is that
security issues scare most computer
users. A personal computer should have
most network services turned off by

74 Vol. 27, No. 3 ;login:

default. Services should come online in
the most secure manner. Updating soft-
ware for security fixes is difficult and so
support for this is built in.

File system permissions are another area
of security that has to be dealt with. The
UNIX permission model is too restric-
tive for desktop users, and it falls apart
with removable media because of the
problems with administrating UIDs and
GIDs on someone else’s desktop com-
puter. File system permissions only work
in a managed environment.

Next Brett turned to the role cron and
other background services play in main-
taining the system. These are typically
used for housekeeping, but they don’t
work well for computer users with
portables or energyStar support, which
routinely put systems in sleep mode.
These services can also have unpre-
dictable side effects.

The software development cycle is also
different for desktops. Commands and
libraries are part of the public API, not
just what’s inside libc. Commercial
applications depend on these and do not
update on the same schedule as OS
releases. Unlike open source projects,
source compatibility isn’t good enough.
Customers cannot be expected to update
third-party applications for each OS
release.

UNIX could improve by avoiding fixed
length data such as usernames, pass-
words, etc. Brett challenged the audience
by asking, “What if the API you were
working on had to survive 10–20 years?
In a binary compatible way?”

He also pointed out that people make
products that extend the kernel to such
as file systems, VPN, and device drivers.
We’ve got a lot of work to do here!!!

Apple has put a lot of work into user
interface issues. A command is not a
good interface for a desktop user and
neither is X Windows. Consistency is a

very important goal for the UI. There
are also accessibility requirements for all
users.

Interoperability between applications –
data interchange, cut/paste, drag and
drop – also has to be addressed.

One of the major goals for OS X was to
be able to have multiple localizations
from a single binary. This has now been
achieved.

Other challenges to UNIX on the desk-
top are:

■ Power management
■ Systems can be expected to change

speeds
■ Subsystems will power down disks,

displays
■ Systems will sleep when idle
■ Mobility
■ Wireless networking
■ Moving from managed to unman-

aged networks

In summary Apple believes we in the
UNIX community still have a long way
to go but that we can surmount these
challenges, in part because we now know
what some of them are.

Questions:
1) (Comment) There was one thing I
think you might not have gotten right.
The problem of backwards compatibility
has been solved. You can run old
NetBSD or Sys V.3 on NetBSD. I think
we’ve been concerned about that as
naïve users. All the old syscalls are still
there.
I accept that there are areas where this is
true, but I’d like to propose a stronger
challenge including evolving kernel
plug-ins. We still have the command-
line problem as it is an API.
2) I do object very strenuously to the
Apple thread of bashing UNIX by refer-
ring to us as geeks.
I’m sorry you interpreted it that way.

3) With respect to roles, are these dis-
tinctions obvious in Darwin?
It’s visible in Darwin; there are authori-
zation APIs. There are no setuid apps.
4) Why did Apple choose UNIX with all
of its current problems on the desktop?
I think the choice of UNIX for the base
system was the right decision. It’s the
right technology, but we need to solve
these broader issues. I think this is the
right way to do an OS.
5) There is a distinction between UNIX
programs and Mac applications. It’s a
different way of writing things. You have
to be aware of that.
UNIX has this notion that files should
be in plaintext ASCII; the Mac does not
have this.
With MacOS X we’re trying to balance
the goals of original UNIX with building
a real Mac.
6) The UNIX security model is pretty
well understood. How do you go about
ensuring that the new models don’t have
holes?
Good question. As a commercial entity
we have more resources to throw at the
problem. The model of moving from a
most secure system to a least secure one
helps.
7) One thing that concerns me is Net-
info.
This will be addressed in a near-future
release.
8) When will I get multiple mouse but-
tons?
I’ll give that feedback to our people.
9) What about central administration?
UNIX already does that well.
10) Is there some thought within Apple
to get some ideas in this talk out to open
source?
Yes, that’s why I’m here.

SESSION: FILE SYSTEMS

RUNNING “FSCK” IN THE BACKGROUND

Marshall Kirk McKusick, Author and
Consultant

This paper was one of two given the
“Best Paper Award.”

75June 2002 ;login:

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

SThe goal of this work is to be able to
quickly and reliably restore file systems
to a consistent state after a crash. The
work is intimately tied to soft updates.
In a soft updates enabled file system, the
only possible inconsistencies are that
there might be blocks or inodes marked
in use that are free.

With this in mind it is safe to run imme-
diately after a crash, though, eventually,
the lost space must be reclaimed. The
problem is the loss of resources during
this period.

To address these issues there is back-
ground resource recovery. The steps to
achieve this are to snapshot the file sys-
tem and then run standard fsck on the
snapshot. Making this happen requires
adding a system call to allow fsck to put
lost blocks and inodes back into the file
system map.

Information on the creation and man-
agement of snapshots and background
file system checking can be found in the
paper.

The status of the work is that snapshots
and background fsck have been running
on FreeBSD 5.0 (-CURRENT) systems
since April 2001. All relevant code is
under BSD license and can be found on
http://www.freebsd.org.

Questions:
1) Can this work be re-used to revive the
union mount system?
That’s an independent system, so it’s
unrelated.
2) What are the potential failure modes
during snapshot generation?
There is no failure mode since a snap-
shot is not a snapshot until it’s marked
as finished.
3) When you’re performing copy-on-
write is there a failure mode?
There are problems there because you
have to write synchronously to make the
snapshot consistent.

4) Modern ATA disks have problems
with soft updates due to their lying
about operations.
If you have disks that lie to you then
you’re hosed no matter what. The cur-
rent answer is tagged queuing, which is
only in SCSI right now.
5) Since you can adjust the link count on
any file, how does that interact with
security?
These operations can only be done at
security level 1 (root).
6) Your modifications to the scheduler
— how do these affect multi-user per-
formance?
By default everyone runs at nice 0, so if
you aren’t running niced you won’t
notice it. If you do nice things it will
slow you down. It makes nice a CPU and
I/O thing now.
7) Have you given any thought to mak-
ing the whole process FS independent?
This is too tightly integrated and is not
generalizable.

DESIGN AND IMPLEMENTATION OF A DIRECT

ACCESS FILE SYSTEM (DAFS) KERNEL SERVER

FOR FREEBSD

Kostas Magoutis, Harvard University

This paper was one of two given the
“Best Paper Award.”

DAFS is an NFS derivative that provides
user-level file access for data-center
applications. The protocol itself is speci-
fied by the DAFS Collaborative led by
Network Appliance and Intel and is tar-
geted for virtual memory mapped net-
works.

A VM mapped network has user appli-
cation memory mapped directly into the
network interface controller. This gives
user-level access to network data with
low overhead. It is most commonly used
in Server Area Networks (SAN).

The protocol supports both remote
DMA and reliable, in order, message
passing. Like NFS the protocol is based
on Remote Procedure Call (RPC).

BSDCON 2002 ●

http://www.freebsd.org

Within the kernel the DAFS server talks
to the vnode layer for file access. All file
I/O goes through the buffer cache. Con-
nection setup is through its own driver.
Network data transfer is direct via the
NIC. The system uses the PMAP layer of
the VM system to register the protocol
with the NIC.

As part of ongoing work, they are trying
to provide asynchronous vnode file I/O
and to integrate NIC MMU directly into
the VM system.

For more information: http://www.eecs.
harvard.edu/vino/fs-perf/dafs
http://www.dafscollaborative.org

Questions:
1) What’s the security model for RDMA.
Security is kind of weak right now. At
the device level it is possible to corrupt
exported pages.
2) This work shows that UNIX I/O is
problematic for user space. Perhaps we
need a new model.
Conversation taken offline.

SESSION: NETWORKING

FLEXIBLE PACKET FILTERING: PROVIDING A

RICH TOOLBOX

Kurt J. Lidl, Zero Millimeter LLC; Debo-
rah G. Lidl and Paul R. Borman, Wind
River Systems

Paul Borman discussed packet filtering
in the BSD/OS system. Although their
system is named IPFW it has no relation
to FreeBSD’s ipfw subsystem. The sys-
tem was developed in the early 1990s
when the only technology available was
based on rules and not programmatic
(screend, IPFirewall, IPFilter, etc.)

BSD/OS’s IPFW is a framework for IP
filtering that supports multiple types of
filters and is agnostic about how filtering
is done. It provides a programmatic
interface to the system. The primary
method of programming is based on the
Berkeley Packet Filter. Filters can have
names.

76 Vol. 27, No. 3 ;login:

IPFW filters packets at several points in
the network stack. Each filter point is a
chain of filters and each chain can have
zero or more filters. Filters can be of
multiple types and are normally pushed
onto the list like a stack. They can be
prioritized and named as well.

Types of filters and some examples are
given in the paper. Paul presented these
to the audience. The examples showed
how to deal with things such as the
NIMDA and Code Red worms.

Questions:
1) Is the language static? Is there a com-
piler?
You need the source.
2) Is this going to be open source?
Currently undecided by their employer
(Wind River Systems).
3) Can the system handle IPv6?
Yes.

RESISTING SYN FLOOD DOS ATTACKS WITH

A SYN CACHE

Jonathan Lemon, FreeBSD Project

Jonathan presented work with TCP SYN
caches and SYN cookies for resisting
denial of service attacks. A SYN-based
DoS attack floods the machine with SYN
request packets. Each SYN tries to set up
a new connection to the machine, and
this ties up machine resources, including
CPU and memory. Eventually, the
machine under attack becomes unre-
sponsive or crashes.

Prior solutions had performance that
was a function of the connections in the
socket listen to the backlog which is
O(N); this consumed 30% of system
time. Socket state allocated with incom-
ing SYN was also roughly 512 bytes, and
the data accompanying the attacking
SYN was preserved.

The SYN cache implementation bor-
rowed from NetBSD, which in turn bor-
rowed from BSD/OS. This implemented
a hash table, with limits on the size of
the hash chains. The maximum number

of entries was also limited so that data
within the initial SYN is not preserved.

The hash function used a boot-time
secret, so an attacker could not target a
specific hash bucket to create a specific
DoS attack on the SYN cache itself. The
SYN cache only keeps a small amount of
state, about 100 bytes.

SYN cookies had advantages over a SYN
cache. They allocate no state on the
server. The system creates a TCP initial
sequence of numbers that is an
encrypted cookie returned in ACK, to
determine whether a connection is
accepted. The ISN is a secret with a finite
lifetime. SYN cookies allow an infinitely
deep queue of connections.

The SYN cookie system has some prob-
lems. It does not allow for the use of any
TCP options and cannot handle retrans-
mission of SYNs or ACKs. Other issues
are that it is possible for a connection to
be accepted with no initial SYN, and it
requires a crypto hash on an incoming
ACK.

Questions:
1) Do you have any performance com-
parison to NetBSD?
No comparison is made to other BSDs.
The algorithm is roughly identical, but
they don’t implement SYN cookies.

A FREEBSD-BASED LOW-COST

BROADBAND VPN ROUTER FOR A

TELEMEDICINE APPLICATION

Gunther Schadow, Regenstrief Institute
for Health Care

This talk focused on applying various
pieces of *BSD technology to a user
installation. The work was funded by the
National Institutes of Health to study a
next generation Internet as applied to
remote medicine. The test system pro-
vided for direct physician-patient tele-
conferencing between 6-9 physicians
and a 240-bed nursing facility, serving
high-risk, multiply ill patients.

http://www.eecs
http://www.dafscollaborative.org

The telemedicine VPN provided H323
video on top of UDP within a wireless
network. The physicians’ homes were
hooked up through cable modems to the
rest of the system. Because of the pub-
lic/private nature of the connections,
IPSec technology was used for private
data over the public network.

To provide for a decent quality of service
the system used ALTQ. This was to pre-
vent starvation of more important sig-
nals by outgoing video. Initially camera
control was impossible and outgoing
audio was useless. ALTQ literally rescued
the project.

As routers they used the Soekris
net4501. This is a small, cheap ($250),
embedded router that can run *BSD and
other operating systems
(http://www.soekris.com).

The router throughput maxes out at 30
Mbps, but this is sufficient for their
needs.

Questions:
1) Were there problems with cable
modems degrading performance?
Initially we had a 6Mbps downlink. In
some neighborhoods we have a problem
with going down to 1.5Mbps.
2) On the PicoBSD mailing list someone
showed how to use NFS.
I thought about using NFS also but the
problem with that is the path length
between the systems.
3) You mentioned NAT at some point.
How did you get IPSec to get through
NAT?
IPFilter will be on the outside and IPSec
with be on the inside. You must let IPSec
packets through the filter. You trust your
tunnel.
I wanted to make it all a package but
there is too much fiddling.
4) You mention that you use DNS to get
information from the central system?
What they have is a certificate. This is
what distinguishes boxes/sites. They

77June 2002 ;login:

●

C

O
N

FE
RE

N
C

E
RE

PO
RT

Squery for their internal IP overlay
addresses using DNS.
5) Is this HIPA compliant?
Yes.

SESSION: SYSTEM ADMINISTRATION

SYSTEMSTARTER AND THE MACOS X

STARTUP PROCESS

Wilfredo Sanchez, MIT; Kevin Van
Vechten, UC Berkeley

This talk was a discussion of the MacOS
X startup process, which is completely
different from any of the other *BSDs.
The system grew out of work done in
NextStep and Rhapsody. Originally it
was a hybrid BSD/System V solution.

Some basic problems with the original
system were that it depended on lexo-
graphic ordering to indicate who ran
first. This is fragile. For MacOS they
must go into GUI right away and need
to launch the display system early.

The new design defines the startup
sequence as a progressive bring-up of
services. A single startup item describes
a service and contains logic to start or
stop that service. The SystemStarter
manages startup items.

The startup items themselves are con-
tained in the /sys/library directly.

Each startup item contains an executable
(typically a script), a StartupParame-
ters.plist, which contains a description,
the list prerequisites, and the list of serv-
ices.

In the future they hope to provide for
the partial startup and shutdown of
services. This would allow system
administrators to bring up all services
that X depends on and service X but
nothing more.

The implementation provides for paral-
lel startup. Each script is run as its own
process via fork/exec. As soon as a
script’s prerequisites are met, the script
is executed. When a script terminates,

the list of waiting scripts is reevaluated
to look for scripts newly eligible to run.

The new startup system created new
needs for the Inter-Process Communica-
tion system. Scripts need to display mes-
sages, get configuration information,
and report success or failure.

To fill these needs SystemStarter listens
for messages on a Mach port, and the
scripts themselves use a tool to send
messages. Messages can go to the con-
sole or query for information.

The system is currently deployed on
MacOS X and is used by vendor pack-
ages.

Questions:
1) Will this be open sourced?
Yes, it’s in Darwin.
2) How portable is this?
Have to port part of CoreServices.
3) Documentation?
Not much documentation but there is
stuff in the sysadmin manual.
4) Why is there a duplication on the
startup messages?
Because plists are going away.
5) Does this deal with things like walk-
ing into range of a wireless network?
Right now this only works for boot.
There is another state change system
called Configuration or something.
That’s all a little further down the road.
6) How do you handle deadlocks in the
dependency change? What if someone
messes it up?
The algorithm is dumb. It goes through
each item and says, “Are you ready to
run?” In your case they would just never
get to run.
7) Why do we run /etc/rc to start Sys-
temStarter?
There is a migration plan.

LOG MONITORS IN BSD UNIX

Brett Glass, Glassware

A log monitor is an intelligent agent that
automatically responds to conditions
revealed by one or more system-log

BSDCON 2002 ●

http://www.soekris.com

messages. A log analyzer does the same
thing but offline.

A log monitor can detect abnormal
usage patterns, recognize abuse, catch
worms, detect vulnerability scans, and
detect intruders.

The reason for much of this work is that
logging via syslogd is now antique.

One of the major applications for this
work was the Apache Web server.
Apache does not normally use syslogd
for logging. Conditional logging in
Apache can be done in the configuration
files but this is a dirty hack.

The author used SNOBOL4 to imple-
ment a powerful worm blocker. The rea-
sons for choosing SNOBOL4 were that it
is a powerful string matcher, can call
programs to go upstream to inject a fire-
wall rule and can be implemented in 28
lines of executable code.

Some future enhancements are an
option to turn off log compression in
FreeBSD, integration of algorithms from
MIT AI Lab work on determining
“interestingness,” and a drop in replace-
ment for syslogd, specifically tuned to
allow efficient log monitoring.

Questions:
1) (Suggestion) If you want those flags
to appear, use the bsd-api-discuss list.

SUSHI: AN EXTENSIBLE HUMAN INTERFACE

FOR NETBSD

Tim Rightnour, NetBSD Project

SUSHI (Simple-to-Use System-Human
Interface) is a menu-based sysadmin
tool. Application is based on curses and
CDK and is easily extensible. The main
thrust of the system is around system
administration.

SUSHI provides a hierarchical menu
structure that can be used to group sim-
ilar actions together. The system is based
around forms (which are a series of
questions and answers). Because the sys-

78 Vol. 27, No. 3 ;login:

tem’s menus are stored in plaintext, it
can be updated without recompilation.

In terms of implementation of the sys-
tem, the menus are defined by a hierar-
chy of directories and command files.
Forms and menu indices are stored in
text files in each directory. Each form
can execute arbitrary programs or spe-
cific scripts. Scripts can be written in any
language or be an executable.

Questions:
1) How does this relate to SMIT on AIX?
Similar but not the same behind-the-
scenes.
2) Doesn’t this need to be integrated
with the rc/system startup?
It’s an adjunct.
3) What about having things changed
out from under you?
The system reads the rc.conf file and
works with what you did.
4) Is this difficult to port to FreeBSD?
No. The only issue might be curses vs.
ncurses.
5) Are you planning to make an install
replacement with this library?
No, because SUSHI is more of a ques-
tion/answer system. An installer would
be difficult because the user would
already have to know what to do.

