Low Cost Working Set Size Tracking

Weiming Zhao, Xinxin Jin, Zhenlin Wang, Xiaolin Wang, Yingwei Luo, Xiaoming Li

USENIX ATC'11

Motivation

- Page Level Miss Ratio Curve (MRC)
 - Wide Applications:
 - Working Set Size (WSS) Estimation
 - Memory Resource Balancing
 - Expensive
 - Mean Runtime Overhead of SPEC CPU 2006: 16%
- Goal of This Research
 - Low Cost MRC Construction With Enough Accuracy

Background

- Overhead & Existing Optimizations
 - Memory Intercept # x (time to find LRU distance)
 - Dynamic hot set sizing
 - Less interception if overhead is too high
 - Undermines accuracy

- Bounded by WSS
- AVL-Tree LRU list \rightarrow Linked List
- LRU list
- $O(log(WSS)) \rightarrow O(WSS)$

- Program Phases
 - Most programs show phasing behaviors
 - IPC, WSS, branch prediction, etc.
 - Stable within a phase, disruptive transitions between phases

MichiganTech

Our Idea

- Intermittent Memory Tracking (IMT)
 - When WSS is stable, disable memory tracking
 - Re-enable when a phase change occurs
 - How to detect when memory tracking is off?
 - <u>A key observation:</u>

- Monitor HW events (PMCs) => detect PMC phase changes
 => predict WSS phase changes
- Challenge
 - Quick and accurate online phase detection

Examples: Correlation Between WSS And Hardware Events

—Mem —L1 Access —L2 Misses —DTLB Misses

HW Events: degree of fluctuation varies among programs

473.astar

A challenge to PMC phase detector

All data are normalized

Design of Phase Detector

Phase Detection

- Moving average filter for de-noising, *f(i)*
- Stable phase: $f(i) / (historic mean) \in [1 \pm T]$
- <u>*T*</u>: detection threshold
- T For WSS Phase Detection
 - A fixed, empirical value of T_{wss} = 0.05
 Works well because of relatively small fluctuations
- T For PMC Phase Detection
 - A fixed value of T_{PMC}
 - ⁽²⁾ Average performance, not the best fit for all programs

Framework of IMT

- Adaptive Threshold for PMC Phase Detection
 - Compare detection results, if inconsistent:
 - WSS is stable but PMC phase detected: $\uparrow T_{PMC}$
 - WSS phase detected but PMC is stable: $\downarrow T_{PMC}$

"Checkpointing": periodically wake up WSS tracker

Experimental Results

- Implementation
 - WSS Tracker in Xen 3.2
 - IMT in Dom–0
- IMT Configuration
 - Use Data TLB misses for PMC phase detection

Evaluation of IMT

- Metrics
 - Mean Relative Error (MRE): $\sum_{i=1}^{n} \frac{|M_i m_i|}{M_i} / n$
 - Up Ratio (UR) : memory tracking time / total time

Overhead Of WSS Tracking

SPEC CPU 2006

Reg Opt Reg Opt + IMT (adaptive)

Regular optimizations: dynamic hot set sizing, AVL-tree based LRU list

Application to Memory Balancing For Virtual Machines

Speed–Ups With Memory Balancing 4 3.56 2.96 3 Speed up 1.85 1.63 2 0 470.lbm 433.milc Overall Bal. w/ Reg Opt Bal. w/ Reg Opt + IMT (adapt.)

Two VMs on one host: VM1: 470.lbm VM2: 433.milc

Baseline: 700 MB Memory / VM

Conclusion

- Our Novel Design Is Capable Of Tracking WSS
 - With very low cost
 - With little accuracy loss
 - Orthogonal to existing optimizations
- More Details Are In Our Technical Report
 - <u>http://cs.mtu.edu/html/trs.html</u>

