
ORDER: Object centRic
DEterministic Replay for Java

ZheMin Yang, Min Yang, Lvcai Xu, Haibo Chen and
Binyu Zang

Parallel Processing Institute, Fudan University

2011 USENIX Annual Technical Conference (USENIX ATC’11)

Debugging

Buggy Execution

Crash

T1

T2

T3

T4

Run again…

Bug

Normal
Run

T1

T2

T3

T4

Deterministic Replay

Record Mode

Crash

T1

T2

T3

T4

Checkpoint B Checkpoint C

log A log B log C

Checkpoint A

Crash

Read Checkpoint B

Replaying from

log B, C
Replay Mode

Bug

Bug

Primary Backup

State-of-the-art

Mostly focus on native systems
Address-based dependency tracking

Special hardware support (FDR ISCA’03, Bugnet ISCA’05,
Lreplay ISCA’10, etc.)

Software approach: large overhead, inscalable (SMP-Revirt,
VEE’07, etc.)

Replay for managed runtime
Not counting data race (JaRec, SPE’04)

Not cover external dependency, large overhead (Leap,
FSE’10)

Not cover non-determinism inside managed runtime

Contribution

Key observations
False positive in garbage collection

Access locality in object level

ORDER

 Record and replay at object-level
 Eliminate false positive in GC

 Good locality and less contention

 Scalable performance (108% for JRuby, SpecJBB,
 SPECJVM)

Cover more non-determinisms than before

 Good bug reproducibility

Outline

Why object centric deterministic replay?

Recording object access timeline

Non-determinism mitigated

Optimizations

Evaluation Result

Java Runtime Behavior

Garbage Collection

Movement of object is quite often

Object-oriented design

Inherently good access locality

Address-based dependency
tracking

• Ordering shared memory accesses:

(space)

– Two instructions are tracked if:

 1) They both access the same memory

 GC operates on the same heap space as the

 original application

 2) At least one of them is a write

 Huge write operations in GC

 3) They are operated in different threads

 GC threads are always different from Java threads

Dependencies Introduced by GC

• Write operations in GC introduce

dependencies…

– Two instructions are tracked if:

 1) They both access the same memory

 GC operates on the same heap space as the

 original application

 2) At least one of them is a write

 Huge write operations in GC

 3) They are operated in different threads

 GC threads are always different from Java threads

Dependencies Introduced by GC

• They DO affect the address-based dependency

tracking system

– Root cause: object movement

– So they can not be ignored

 Before Garbage Collection Mark&Sweep Compression(Copying GC)

Replay System

Dependency
Tracking

Information

Inconsistent

False Positives by GC

8X more dependency by GC

16-core
16-threads

Interleaving of Object Accesses

Java programs are commonly designed around

objects

Objects accessed by a thread are very likely to be

accessed by the same thread soon

Interleaving of Object Accesses

Object level interleaving rate: All less than 7%!

Object Centric Deterministic Replay

Reveal new granularity: object

Reduction of GC dependencies

Reduced contention of synchronization

Improved locality

Outline

Why Object centric deterministic replay?

Recording object access timeline

Non-determinism mitigated

Optimizations

Evaluation Result

Design of ORDER

Dynamic Instrumentation in Java compilation pipeline

Handle dynamic loaded library and external code by default

Extend object header with accessing information

Object identifier (OI)

Accessing thread identifier (AT)

Access counter (AC)

Object level lock

Read-write flag

Recording Object Access Timeline

Recording Timeline

Replaying timeline

Inconsistent

Outline

Why Object centric deterministic replay?

Recording object access timeline

Non-determinism mitigated

Optimizations

Evaluation Result

Handling Non-determinisms

Interleaved object accesses

Lock acquirement

Garbage collection

In paper:
 Signal

 Program Input

 Library invocation

 Configuration of OS/JVM

 Adaptive Compilation

 Class Initialization

Recording object access timeline

Recording interfaces between
GC/Java threads

Outline

Why Object centric deterministic replay?

Recording object access timeline

Non-determinism mitigated

Optimizations

Evaluation Result

Opt: Unnecessary Timeline Recording

Thread-local objects

Identified by Escape Analysis [OOPSLA’99]

Assigned-once objects

Continuous write operations during initialization

After initialization, no thread will write to the fields of

these objects

Identified by modifying the Escape Analysis

Outline

Why Object centric deterministic replay?

Recording object access timeline

Non-determinism mitigated

Optimizations

Evaluation Result

Evaluation Environments

Implemented in Apache Harmony

By modifying the compilation pipeline

Machine setup

16-core Xeon machine (1.6GHz, 32G Memory)

Linux 2.6.26

Benchmarks

SPECjvm2008, Pseudojbb2005, JRuby

Evaluation Questions

How much overhead ORDER incurs in record and

replay?

• How does it compare to the state-of-the-art?

How large is the log size?

How about the bug reproducibility?

Evaluation Results: Record Slowdown

About 2x slowdown, overhead most comes from

tracing timeline in memory

16-threads

Record slowdown(compared to LEAP)

1.5x to 3x faster than LEAP

ORDER records more non-determinism

16-threads

Scalability(Record Phase)

(from 1 thread to 16 threads)

Almost scalable

Replay Slowdown

(from 1 thread to 16 threads)

Log size

Bug Reproducibility

Real-world concurrent bugs

reproduced by ORDER. Each of

them comes from open source

communities and causes real-world

buggy execution.

Bug reproducibility(JRuby-2483)

Concurrent bug caused by thread unsafe library

HashMap

Non-determinism in Library is also important

Some discussion before:

Conclusion

Java Deterministic Replay is unique
Two observations on Java Runtime Behavior

Object centric deterministic replay
Reveal new granularity: Object

Cover more non-determinisms than before

Record timeline

Performance
About 108% performance slowdown, and scalable.

 Thanks

Parallel Processing Institute

http://ppi.fudan.edu.cn

Questions? ORDER

Object-centRic
Deterministic Replay for

Java

Backup Slides

Comparison with Leap

LEAP uses static instrumentation

Cannot reproduce concurrent bugs caused by external

code

such as libraries or class files dynamically loaded during

runtime.

LEAP does not distinguish between instances of

the same type

may lead to large performance overhead when a class

is massively instantiated

Dependency-based Deterministic Replay:
JRuby

Correct

In dependency based replay , 2->3 or 3->2 is normally recorded
 Shared-memory(entry.method) is accessed in both 2 and 3
 One of them(instruction 3) is write

Whether 1->3 is recorded depends on:
 Whether 1 and 3 access a shared memory
 Depends on the record granularity

Opt: Unnecessary Timeline Recording

Use soot to annotate such objects offline

Reduce record/replay overhead as well as log size

Static analysis is imprecise, so further log reduction is

necessary

Use a log compressor to eliminate the remaining

thread local/assigned once objects after recording

– Used to reduce replay overhead as well as log size

Handling Other Non-Det (1/2)

Signal
Usually wrapped to wait, notify, and interrupt operations
for thread

Records return values and status of the pending queue

Program Input
Log the content of input

Library invocation
E.g., System.getCurrentTimeMillis(),
Random/SecureRandom classes

Logs return values of these methods

Handling Other Non-Det (2/2)

Configuration of OS/JVM

records the configuration of OS/JVM

Class Initialization

Records initialization thread identifier

Forces same thread initialize same class in replay

Adaptive Compilation

Not supported yet, can be done similarly as Ogata et al.

OOPLSA’2006

