

TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments

Shinpei Kato*, Karthik Lakshmanan*, Raj Rajkumar*, and Yutaka Ishikawa**
* Carnegie Mellon University
** The University of Tokyo

Graphics Applications

Graphics Processing Unit (GPU)

Peak Performance

Peak Performance "per Watt"

General-Purpose Computing on GPU (GPGPU)

3-D On-line Game

Autonomous Driving

Virtual Reality

3-D Interface

Computer Vision

Scientific Simulation

Outline

1. Introduction

2. What's Problem

- 3. Our Solution "TimeGraph"
- 4. Evaluation
- 5. Summary

GPU Is Command-Driven

Multi-Tasking Problem

Impact of Interference

Outline

- **1. Introduction**
- 2. What's Problem
- 3. Our Solution "TimeGraph"
- 4. Evaluation
- 5. Summary

TimeGraph Architecture

Priority Support – Predictable Response Time (PRT) Policy

- When GPU is not idle, GPU commands are queued
- When GPU gets idle, GPU commands are dispatched

Priority Support – High Throughput (HT) Policy

- When GPU is not idle, GPU commands are queued, only if priority is lower than current GPU context
- When GPU gets idle, GPU commands are dispatched

Reservation Support – Posterior Enforcement (PE) Policy

- Enforce GPU resource usage *optimistically*
- Specify capacity (C) and period (P) per task (/proc/GPU/\$TASK)

Reservation Support – Apriori Enforcement (AE) Policy

- Enforce GPU resource usage *pessimistically*
- Specify capacity (C) and period (P) per task (/proc/GPU/\$TASK)

GPU Execution Time Prediction

- History-based approach
 - Search records of previous sequences of GPU commands that match the incoming sequences of GPU commands
 - Works for 2-D but needs investigation for 3-D and Compute
- Please see the paper for the detail

Outline

- **1. Introduction**
- 2. What's Problem
- 3. Our Solution "TimeGraph"
- 4. Evaluation
- 5. Summary

Experimental Setup

- GPU: NVIDIA GeForce 9800 GT
- CPU: Intel Xeon E5504
- **OS**: Linux Kernel 2.6.36
 - Nouveau open-source driver
- Benchmark:
 - Phoronix Test Suite http://www.phoronix-test-suite.com/
 - Including OpenGL 3-D game programs
 - Gallium3D Demo Suite http://www.mesa3d.org/
 - Including OpenGL 3-D widget and graphics-bomb programs

Performance Protection

Frame Rate of 3-D Game competing with Graphics Bomb in background

Interference on Time

Standalone Performance

Overhead is acceptable for protecting GPU

Outline

- **1. Introduction**
- 2. What's Problem
- 3. Our Solution "TimeGraph"
- 4. Evaluation
- **5. Summary**

Concluding Remarks

- **TimeGraph** enables **prioritization** and **isolation** for **GPU** applications in multi-tasking environments
 - Device-driver solution: no modification to user-space
 - Scheduling of GPU commands
 - Reservation of GPU resource usage
- http://rtml.ece.cmu.edu/projects/timegraph/

Current Status

- GPGPU support (collaboration with PathScale Inc.)
 - Visit http://github.com/pathscale/pscnv
- Making open-source fast and reliable
 - It's getting competitive to the proprietary driver!
 - Some result from our OSPERT'11 paper (*) below:

■Launch ■HtoD □DtoH

* Available at http://www.contrib.andrew.cmu.edu/~shinpei/papers/ospert11.pdf

Thank you for your attention! Questions?

