
Pegasus: Coordinated
Scheduling for Virtualized

Accelerator-based Systems

Vishakha Gupta, Karsten Schwan @ Georgia Tech

Niraj Tolia @ Maginatics

Vanish Talwar, Parthasarathy Ranganathan @ HP Labs

USENIX ATC 2011 – Portland, OR, USA

Increasing Popularity of Accelerators

2

2007

• IBM Cell-
based-
Playstation

2008

• IBM Cell-
based
RoadRunner

• CUDA
programmab
le GPUs for
developers

2009

• Increasing
popularity of
NVIDIA GPUs
powered
desktops and
laptops

2010

• Amazon EC2
adopts GPUs

• Tianhe-1A
and Nebulae
supercomput
ers in Top500

2011

• Tegras in
cellphones

• Keeneland

Example x86-GPU System

3

PCIe

Example x86-GPU System

4

PCIe

Proprietary NVIDIA Driver and
CUDA runtime
• Memory management
• Communication with device
• Scheduling logic
• Binary translation

Example x86-GPU System

5

PCIe

Proprietary NVIDIA Driver and
CUDA runtime
• Memory management
• Communication with device
• Scheduling logic
• Binary translation

C-like CUDA-based applications
(host portion)

Example x86-GPU System

6

PCIe

CUDA Kernels

Proprietary NVIDIA Driver and
CUDA runtime
• Memory management
• Communication with device
• Scheduling logic
• Binary translation

C-like CUDA-based applications
(host portion)

Example x86-GPU System

7

PCIe

CUDA Kernels

Proprietary NVIDIA Driver and
CUDA runtime
• Memory management
• Communication with device
• Scheduling logic
• Binary translation

C-like CUDA-based applications
(host portion)

Design flaw: Bulk of logic in drivers which were meant to be
for simple operations like read, write and handle interrupts
Shortcoming: Inaccessibility and one scheduling fits all

Sharing Accelerators

8

2010

• Amazon EC2 adopts GPUs

• Other cloud offerings by
AMD, NVIDIA

2011

• Tegras in cellphones

• HPC GPU Cluster
(Keeneland)

Sharing Accelerators

• Most applications fail to occupy GPUs completely

− With the exception of extensively tuned (e.g.
supercomputing) applications

9

2010

• Amazon EC2 adopts GPUs

• Other cloud offerings by
AMD, NVIDIA

2011

• Tegras in cellphones

• HPC GPU Cluster
(Keeneland)

Sharing Accelerators

• Most applications fail to occupy GPUs completely

− With the exception of extensively tuned (e.g.
supercomputing) applications

• Expected utilization of GPUs across applications in
some domains “may” follow patterns to allow sharing

10

2010

• Amazon EC2 adopts GPUs

• Other cloud offerings by
AMD, NVIDIA

2011

• Tegras in cellphones

• HPC GPU Cluster
(Keeneland)

Sharing Accelerators

• Most applications fail to occupy GPUs completely

− With the exception of extensively tuned (e.g.
supercomputing) applications

• Expected utilization of GPUs across applications in
some domains “may” follow patterns to allow sharing

11

2010

• Amazon EC2 adopts GPUs

• Other cloud offerings by
AMD, NVIDIA

2011

• Tegras in cellphones

• HPC GPU Cluster
(Keeneland)

Need for accelerator sharing: resource sharing is now
supported in NVIDIA’s Fermi architecture
Concern: Can driver scheduling do a good job?

NVIDIA GPU Sharing – Driver Default
• Xeon Quadcore with

2 8800GTX NVIDIA
GPUs, driver 169.09,
CUDA SDK 1.1

• Coulomb Potential
[CP] benchmark
from parboil
benchmark suite

• Result of sharing two
GPUs among four
instances of the
application

12

Max

Min

50%
Median

NVIDIA GPU Sharing – Driver Default
• Xeon Quadcore with

2 8800GTX NVIDIA
GPUs, driver 169.09,
CUDA SDK 1.1

• Coulomb Potential
[CP] benchmark
from parboil
benchmark suite

• Result of sharing two
GPUs among four
instances of the
application

13

Max

Min

50%
Median

Driver can: efficiently implement computation and data interactions
between host and accelerator
Limitations: Call ordering suffers when sharing – any scheme used is
static and cannot adapt to different system expectations

Re-thinking Accelerator-based Systems

 14

Re-thinking Accelerator-based Systems

• Accelerators as first class citizens

− Why treat such powerful processing resources as devices?

− How can such heterogeneous resources be managed
especially with evolving programming models, evolving
hardware and proprietary software?

 15

Re-thinking Accelerator-based Systems

• Accelerators as first class citizens

− Why treat such powerful processing resources as devices?

− How can such heterogeneous resources be managed
especially with evolving programming models, evolving
hardware and proprietary software?

• Sharing of accelerators

− Are there efficient methods to utilize a heterogeneous pool
of resources?

− Can applications share accelerators without a big hit in
efficiency?

 16

Re-thinking Accelerator-based Systems

• Accelerators as first class citizens

− Why treat such powerful processing resources as devices?

− How can such heterogeneous resources be managed
especially with evolving programming models, evolving
hardware and proprietary software?

• Sharing of accelerators

− Are there efficient methods to utilize a heterogeneous pool
of resources?

− Can applications share accelerators without a big hit in
efficiency?

• Coordination across different processor types

− How do you deal with multiple scheduling domains?

− Does coordination obtain any performance gains?

 17

18

Pegasus addresses the urgent need for systems support to
smartly manage accelerators.

19

Pegasus addresses the urgent need for systems support to
smartly manage accelerators.

 (Demonstrated through x86--NVIDIA GPU-based systems)

20

Pegasus addresses the urgent need for systems support to
smartly manage accelerators.

 (Demonstrated through x86--NVIDIA GPU-based systems)

It leverages new opportunities presented by increased
adoption of virtualization technology in commercial, cloud

computing, and even high performance infrastructures.

21

Pegasus addresses the urgent need for systems support to
smartly manage accelerators.

 (Demonstrated through x86--NVIDIA GPU-based systems)

It leverages new opportunities presented by increased
adoption of virtualization technology in commercial, cloud

computing, and even high performance infrastructures.
(Virtualization provided by Xen hypervisor and Dom0

management domain)

ACCELERATORS AS FIRST CLASS
CITIZENS

22

Manageability
Extending Xen for Closed NVIDIA GPUs

Management Domain (Dom0) Management Domain (Dom0)

Hypervisor (Xen) Hypervisor (Xen)

Traditional
Device
Drivers

General purpose multicores General purpose multicores

Traditional Devices Traditional Devices

VM

Linux

23

Manageability
Extending Xen for Closed NVIDIA GPUs

Management Domain (Dom0) Management Domain (Dom0)

Hypervisor (Xen) Hypervisor (Xen)

Traditional
Device
Drivers

General purpose multicores General purpose multicores

Compute Accelerators (NVIDIA GPUs) Compute Accelerators (NVIDIA GPUs) Traditional Devices Traditional Devices

VM

Linux

24

Manageability
Extending Xen for Closed NVIDIA GPUs

Management Domain (Dom0) Management Domain (Dom0)

Hypervisor (Xen) Hypervisor (Xen)

Traditional
Device
Drivers

General purpose multicores General purpose multicores

Compute Accelerators (NVIDIA GPUs) Compute Accelerators (NVIDIA GPUs) Traditional Devices Traditional Devices

VM

Linux
Runtime +
GPU Driver

25

Manageability
Extending Xen for Closed NVIDIA GPUs

Management Domain (Dom0) Management Domain (Dom0)

Hypervisor (Xen) Hypervisor (Xen)

Traditional
Device
Drivers

General purpose multicores General purpose multicores

Compute Accelerators (NVIDIA GPUs) Compute Accelerators (NVIDIA GPUs) Traditional Devices Traditional Devices

VM

Linux

NVIDIA’s CUDA – Compute Unified Device Architecture for managing GPUs

Runtime +
GPU Driver

CUDA API

GPU Application

26

Manageability
Extending Xen for Closed NVIDIA GPUs

Management Domain (Dom0) Management Domain (Dom0)

Hypervisor (Xen) Hypervisor (Xen)

GPU
Backend

Traditional
Device
Drivers

General purpose multicores General purpose multicores

Compute Accelerators (NVIDIA GPUs) Compute Accelerators (NVIDIA GPUs) Traditional Devices Traditional Devices

VM

GPU Frontend

Linux

NVIDIA’s CUDA – Compute Unified Device Architecture for managing GPUs

Runtime +
GPU Driver

CUDA API

GPU Application

27

Manageability
Extending Xen for Closed NVIDIA GPUs

Management Domain (Dom0) Management Domain (Dom0)

Hypervisor (Xen) Hypervisor (Xen)

GPU
Backend

Traditional
Device
Drivers

General purpose multicores General purpose multicores

Compute Accelerators (NVIDIA GPUs) Compute Accelerators (NVIDIA GPUs) Traditional Devices Traditional Devices

VM

GPU Frontend

Linux

NVIDIA’s CUDA – Compute Unified Device Architecture for managing GPUs

Runtime +
GPU Driver

CUDA API

GPU Application

VM

GPU Frontend

Linux

CUDA API

GPU Application

28

Manageability
Extending Xen for Closed NVIDIA GPUs

Management Domain (Dom0) Management Domain (Dom0)

Hypervisor (Xen) Hypervisor (Xen)

Mgmt
Extension

GPU
Backend

Traditional
Device
Drivers

General purpose multicores General purpose multicores

Compute Accelerators (NVIDIA GPUs) Compute Accelerators (NVIDIA GPUs) Traditional Devices Traditional Devices

VM

GPU Frontend

Linux

NVIDIA’s CUDA – Compute Unified Device Architecture for managing GPUs

Runtime +
GPU Driver

CUDA API

GPU Application

VM

GPU Frontend

Linux

CUDA API

GPU Application

29

Accelerator Virtual CPU (aVCPU) Abstraction

30

Pegasus
Frontend

Frontend
driver

Interposer library

 CUDA calls + Responses

Xen shared ring for
CUDA calls (per VM)

– call buffer

Shared pages
for data

Application data

VM

Accelerator Virtual CPU (aVCPU) Abstraction

31

Pegasus
Frontend

Frontend
driver

Interposer library

 CUDA calls + Responses

Xen shared ring for
CUDA calls (per VM)

– call buffer

Shared pages
for data

Application data

 CUDA calls + Responses

Polling
thread

Application data

Pegasus Backend

VM Dom0

Accelerator Virtual CPU (aVCPU) Abstraction

32

Pegasus
Frontend

Frontend
driver

Interposer library

 CUDA calls + Responses

Xen shared ring for
CUDA calls (per VM)

– call buffer

Shared pages
for data

Application data

 CUDA calls + Responses

Polling
thread

Application data

CUDA Runtime +
Driver

Pegasus Backend

VM Dom0

Accelerator Virtual CPU (aVCPU) Abstraction

33

Pegasus
Frontend

Frontend
driver

Interposer library

 CUDA calls + Responses

Xen shared ring for
CUDA calls (per VM)

– call buffer

Shared pages
for data

Application data

 CUDA calls + Responses

Polling
thread

Application data

CUDA Runtime +
Driver

Polling thread is the VM’s representative for call execution

It can be queued or scheduled to pick calls and issue them
for any amount of time
the accelerator portion of the VM can be scheduled

Hence, we define an “accelerator” virtual CPU or aVCPU

Pegasus Backend

VM Dom0

First Class Citizens

• The aVCPU has execution context on both, CPU (polling
thread, runtime, driver context) and GPU (CUDA kernel)

• It has data used by these calls

34

aVCPU

Runtime and
driver context

CUDA calls + data

Polling Thread

VCPU

Data

Execution
context

First Class Citizens

• The aVCPU has execution context on both, CPU (polling
thread, runtime, driver context) and GPU (CUDA kernel)

• It has data used by these calls

35

aVCPU

Runtime and
driver context

CUDA calls + data

Polling Thread

VCPU

Data

Execution
context

VCPU: first class schedulable entity on a physical CPU
aVCPU: first class schedulable entity on GPU (with a CPU
component due to execution model)

Manageable pool of heterogeneous resources

SHARING OF ACCELERATORS

36

Scheduling aVCPUs

Per call
granularity

Per application
granularity

37

Too fine

Too coarse

Time slot based methods

Scheduling aVCPUs

Per call
granularity

Per application
granularity

RR: Fair
share

38

Too fine

Too coarse

Time slot based methods

Scheduling aVCPUs

Per call
granularity

Per application
granularity

RR: Fair
share

39

aVCPUs are given equal
time slices and scheduled
in a circular fashion

Too fine

Too coarse

Time slot based methods

Scheduling aVCPUs

Per call
granularity

Per application
granularity

RR: Fair
share

XC: Proportional
fair share

40

Too fine

Too coarse

Time slot based methods

Adopt Xen credit scheduling for
aVCPU scheduling. E.g. VMs 1, 2
and 3 have 256, 512, 1024 credits,
they get 1, 2, 4 time ticks
respectively, every scheduling cycle

Scheduling aVCPUs

Per call
granularity

Per application
granularity

RR: Fair
share

XC: Proportional
fair share

41

Too fine

Too coarse

Time slot based methods

Scheduling aVCPUs

Per call
granularity

Per application
granularity

RR: Fair
share

XC: Proportional
fair share

AccC: Prop.
fair share

42

Too fine

Too coarse

Time slot based methods

Scheduling aVCPUs

Per call
granularity

Per application
granularity

RR: Fair
share

XC: Proportional
fair share

AccC: Prop.
fair share

43

Instead of using the assigned VCPU
credits for scheduling aVCPUs,
define new accelerator credits.
These could be some fraction of
CPU credits

Too fine

Too coarse

Time slot based methods

Scheduling aVCPUs

Per call
granularity

Per application
granularity

RR: Fair
share

XC: Proportional
fair share

AccC: Prop.
fair share

44

SLAF: Feedback-
based prop. fair
share

Too fine

Too coarse

Time slot based methods

Scheduling aVCPUs

Per call
granularity

Per application
granularity

RR: Fair
share

XC: Proportional
fair share

AccC: Prop.
fair share

45

SLAF: Feedback-
based prop. fair
share

Too fine

Too coarse
Periodic scanning can lead to
adjustment in the timer ticks
assigned to aVCPUs if they do not
get or exceed their
assigned/expected time quota

Time slot based methods

Performance Improves but Still High Variation

46

• BlackScholes <2mi,128>
• Xen 3.2.1 with 2.6.18

linux kernel in all
domains

• NVIDIA driver 169.09 +
SDK 1.1

• Dom1, Dom4 = 256,
Dom2 = 512, Dom3 =
1024 credits

Max

Min

50%
Median

Performance Improves but Still High Variation

47

• BlackScholes <2mi,128>
• Xen 3.2.1 with 2.6.18

linux kernel in all
domains

• NVIDIA driver 169.09 +
SDK 1.1

• Dom1, Dom4 = 256,
Dom2 = 512, Dom3 =
1024 credits

Still high variation: due to the hidden driver and runtime
Coordination: Can we do better?

Max

Min

50%
Median

COORDINATION ACROSS
SCHEDULING DOMAINS

48

Coordinating CPU-GPU Scheduling

• Hypervisor co-schedule [CoSched]

− Hypervisor scheduling determines which domain should run on
a GPU depending on the CPU schedule

− Latency reduction by occasional unfairness

− Possible waste of resources e.g. if domain picked for GPU has
no work to do

49

Coordinating CPU-GPU Scheduling

• Hypervisor co-schedule [CoSched]

− Hypervisor scheduling determines which domain should run on
a GPU depending on the CPU schedule

− Latency reduction by occasional unfairness

− Possible waste of resources e.g. if domain picked for GPU has
no work to do

• Augmented credit [AugC]

− Scan the hypervisor CPU schedule to temporarily boost credits
of domains selected for CPUs

− Pick domain(s) for GPU(s) based on GPU credits + remaining
CPU credits from hypervisor (augmenting)

− Throughput improvement by temporary credit boost

50

Coordination Further Improves Performance

51

• BlackScholes <2mi,128>
• Xen 3.2.1 with 2.6.18

linux kernel in all
domains

• NVIDIA driver 169.09 +
SDK 1.1

• Dom1, Dom4 = 256,
Dom2 = 512, Dom3 =
1024 credits

Coordination Further Improves Performance

52

Coordination: Aligning the CPU and GPU portions
of an application to run almost simultaneously,
reduces variation and improves performance

• BlackScholes <2mi,128>
• Xen 3.2.1 with 2.6.18

linux kernel in all
domains

• NVIDIA driver 169.09 +
SDK 1.1

• Dom1, Dom4 = 256,
Dom2 = 512, Dom3 =
1024 credits

Pegasus Scheduling Policies

• No coordination:

− Default – GPU driver based – base case (None)

− Round Robin (RR)

− AccCredit (AccC) – credits based on static profiling

• Coordination based:

− XenCredit (XC) – use Xen CPU credits

− SLA feedback based (SLAF)

− Augmented Credit based (AugC) – temporarily augment
credits for co-scheduling

• Controlled

− HypeControlled or coscheduled (CoSched)

53

Pegasus Scheduling Policies

• No coordination:

− Default – GPU driver based – base case (None)

− Round Robin (RR)

− AccCredit (AccC) – credits based on static profiling

• Coordination based:

− XenCredit (XC) – use Xen CPU credits

− SLA feedback based (SLAF)

− Augmented Credit based (AugC) – temporarily augment
credits for co-scheduling

• Controlled

− HypeControlled or coscheduled (CoSched)

54

Pegasus Scheduling Policies

• No coordination:

− Default – GPU driver based – base case (None)

− Round Robin (RR)

− AccCredit (AccC) – credits based on static profiling

• Coordination based:

− XenCredit (XC) – use Xen CPU credits

− SLA feedback based (SLAF)

− Augmented Credit based (AugC) – temporarily augment
credits for co-scheduling

• Controlled

− HypeControlled or coscheduled (CoSched)

55

Application Application

56
56

Logical View
of the

Pegasus
Resource

Management
Framework

Acc1
(Compute)

Acc2
(Compute)

C1 C3 C2 C4

Physical Platform

Management
Domain

 OS OS

Guest VM

Hypervisor

Application Application

57
57

Logical View
of the

Pegasus
Resource

Management
Framework

Acc1
(Compute)

Acc2
(Compute)

C1 C3 C2 C4

Physical Platform

Management
Domain

 OS OS

Guest VM

CPU Ready
Queues

Domains to
Schedule

Picked

VCPU

CPU Scheduler

Hypervisor

Domains (Credits)

…

Application Application Accelerator Application Accelerator Application

58
58

Logical View
of the

Pegasus
Resource

Management
Framework

Acc1
(Compute)

Acc2
(Compute)

C1 C3 C2 C4

Physical Platform

Management
Domain

 OS OS

Guest VM

CPU Ready
Queues

Domains to
Schedule

Picked

VCPU

CPU Scheduler

Hypervisor

Domains (Credits)

…

Application Application Accelerator Application Accelerator Application

59
59

Logical View
of the

Pegasus
Resource

Management
Framework

Acc1
(Compute)

Acc2
(Compute)

C1 C3 C2 C4

Physical Platform

Doms (Credits)
Accelerator

Ready
Queues

Domains to
Schedule

DomA Scheduler DomA Scheduler

Accelerator
Selection Module

Accelerator
Selection Module

Management
Domain

 OS OS Acc. Frontend

Guest VM

CPU Ready
Queues

Domains to
Schedule

Picked

VCPU

CPU Scheduler

Hypervisor

Domains (Credits)

…

Application Application Accelerator Application Accelerator Application

60
60

Logical View
of the

Pegasus
Resource

Management
Framework

Acc1
(Compute)

Acc2
(Compute)

C1 C3 C2 C4

Physical Platform

Doms (Credits)
Accelerator

Ready
Queues

Domains to
Schedule

DomA Scheduler DomA Scheduler

Accelerator
Selection Module

Accelerator
Selection Module

Management
Domain

 OS OS Acc. Frontend

Guest VM

Host Part

CPU Ready
Queues

Domains to
Schedule

Picked

VCPU

CPU Scheduler

Hypervisor

Domains (Credits)

…

Application Application Accelerator Application Accelerator Application

61
61

Logical View
of the

Pegasus
Resource

Management
Framework

Picked

Acc1
(Compute)

Acc2
(Compute)

C1 C3 C2 C4

Physical Platform

aVCPU

Doms (Credits)
Accelerator

Ready
Queues

Domains to
Schedule

DomA Scheduler DomA Scheduler

Accelerator
Selection Module

Accelerator
Selection Module

Management
Domain

 OS OS Acc. Frontend

Guest VM

Accelerator Part Host Part

CPU Ready
Queues

Domains to
Schedule

Picked

VCPU

CPU Scheduler

Hypervisor

Domains (Credits)

…

Application Application Accelerator Application Accelerator Application

62
62

Logical View
of the

Pegasus
Resource

Management
Framework

Picked

Acc1
(Compute)

Acc2
(Compute)

C1 C3 C2 C4

Physical Platform

aVCPU

Monitoring/Feedback Monitoring/Feedback

Doms (Credits)
Accelerator

Ready
Queues

Domains to
Schedule

DomA Scheduler DomA Scheduler

Accelerator
Selection Module

Accelerator
Selection Module

Management
Domain

 OS OS Acc. Frontend

Guest VM

Accelerator Part Host Part

CPU Ready
Queues

Domains to
Schedule

Picked

VCPU

CPU Scheduler

Hypervisor

Domains (Credits)

…

Application Application Accelerator Application Accelerator Application

63
63

Logical View
of the

Pegasus
Resource

Management
Framework

Picked

Acc1
(Compute)

Acc2
(Compute)

C1 C3 C2 C4

Physical Platform

aVCPU

Monitoring/Feedback Monitoring/Feedback

Doms (Credits)
Accelerator

Ready
Queues

Domains to
Schedule

DomA Scheduler DomA Scheduler

Accelerator
Selection Module

Accelerator
Selection Module

Management
Domain

 OS OS Acc. Frontend

Guest VM

Accelerator Part Host Part

CPU Ready
Queues

Domains to
Schedule

Picked

VCPU

CPU Scheduler

Hypervisor

Domains (Credits)

Schedule

Acc. Data

…

Application Application Accelerator Application Accelerator Application

64
64

Logical View
of the

Pegasus
Resource

Management
Framework

Picked

Acc1
(Compute)

Acc2
(Compute)

C1 C3 C2 C4

Physical Platform

aVCPU

Monitoring/Feedback Monitoring/Feedback

More
aVCPUs

…

Doms (Credits)
Accelerator

Ready
Queues

Domains to
Schedule

DomA Scheduler DomA Scheduler

Accelerator
Selection Module

Accelerator
Selection Module

Management
Domain

 OS OS Acc. Frontend

Guest VM

Accelerator Part Host Part

CPU Ready
Queues

Domains to
Schedule

Picked

VCPU

CPU Scheduler

Hypervisor

More
VCPUs

…

Domains (Credits)

 OS OS Acc. Frontend

Guest VM

Accelerator Application Accelerator Application
Accelerator Part Host Part

Schedule

Acc. Data

…

Testbed Details

• Xeon 4 core @3GHz, 3GB RAM, 2 NVIDIA GPUs G92-450

• Xen 3.2.1 – stable, Fedora 8 Dom0 and DomU running
Linux kernel 2.6.18, NVIDIA driver 169.09, SDK 1.1

• Guest domains given 512M memory and 1 core mostly

• Pinned to different physical cores

• Launched almost simultaneously: worst case measurement
due to maximum load

• Data currently sampled over 50runs for statistical
significance despite driver/runtime variation

• Scheduling plots report h-spread with min-max over
85% readings or total work done over all runs in an
experiment

65

Benchmarks

66

Category Source Benchmarks

Financial SDK Binomial (BOp), BlackScholes (BS),
MonteCarlo (MC)

Media
processing

SDK/parboil ProcessImage(PI)=matrix
multiply+DXTC, MRIQ,
FastWalshTransform(FWT)

Scientific Parboil CP, TPACF, RPES

Benchmarks

67

Category Source Benchmarks

Financial SDK Binomial (BOp), BlackScholes (BS),
MonteCarlo (MC)

Media
processing

SDK/parboil ProcessImage(PI)=matrix
multiply+DXTC, MRIQ,
FastWalshTransform(FWT)

Scientific Parboil CP, TPACF, RPES

• Diverse benchmarks: from different application domains show -
(a) different throughput and latency constraints, (b) varying data
and CUDA kernel sizes and (c) different number of CUDA calls

Benchmarks

68

Category Source Benchmarks

Financial SDK Binomial (BOp), BlackScholes (BS),
MonteCarlo (MC)

Media
processing

SDK/parboil ProcessImage(PI)=matrix
multiply+DXTC, MRIQ,
FastWalshTransform(FWT)

Scientific Parboil CP, TPACF, RPES

• Diverse benchmarks: from different application domains show -
(a) different throughput and latency constraints, (b) varying data
and CUDA kernel sizes and (c) different number of CUDA calls

• BlackScholes worst in the set: Throughput + latency sensitive
due to large number of CUDA calls (depending on iteration)

Benchmarks

69

Category Source Benchmarks

Financial SDK Binomial (BOp), BlackScholes (BS),
MonteCarlo (MC)

Media
processing

SDK/parboil ProcessImage(PI)=matrix
multiply+DXTC, MRIQ,
FastWalshTransform(FWT)

Scientific Parboil CP, TPACF, RPES

• Diverse benchmarks: from different application domains show -
(a) different throughput and latency constraints, (b) varying data
and CUDA kernel sizes and (c) different number of CUDA calls

• BlackScholes worst in the set: Throughput + latency sensitive
due to large number of CUDA calls (depending on iteration)

• Latency sensitive FastWalshTransform: multiple computation
kernel launches and large data transfer

Ability to Achieve Low Virtualization Overhead

Speed improvement for most benchmarks

Increased #

of CUDA

Calls

70

Cuda Time: Time within application to execute CUDA calls
Total Time: Total execution time of benchmark from command line

Appropriate Scheduling is Important

71

Scheduler - RR

Appropriate Scheduling is Important

72

Scheduler - RR

Appropriate Scheduling is Important

73

Without resource management, calls can be variably delayed due to interference
from other application(s)/domain(s), even in the absence of virtualization

Scheduler - RR

Pegasus Scheduling
Black Scholes – Latency and throughput sensitive

74

Equal credits
for all domains

Work done =

 𝒐𝒑𝒕𝒊𝒐𝒏𝒔

𝒕𝒊𝒎𝒆𝒂𝒍𝒍 𝒓𝒖𝒏𝒔

Pegasus Scheduling
FWT – Latency sensitive

75

Dom1, Dom4 –

256, Dom2 -

1024, Dom3 –

2048 credits

Insights

• Pegasus approach efficiently virtualizes GPUs

76

Insights

• Pegasus approach efficiently virtualizes GPUs

• Coordinated scheduling is effective

− Even basic accelerator request scheduling can improve sharing
performance

− While co-scheduling is really useful [CoSched], other methods
can come close [AugC], keep up utilization and give desirable
properties

77

Insights

• Pegasus approach efficiently virtualizes GPUs

• Coordinated scheduling is effective

− Even basic accelerator request scheduling can improve sharing
performance

− While co-scheduling is really useful [CoSched], other methods
can come close [AugC], keep up utilization and give desirable
properties

• Scheduling lowers degree of variability caused by un-
coordinated use of the NVIDIA driver.

78

Insights

• Pegasus approach efficiently virtualizes GPUs

• Coordinated scheduling is effective

− Even basic accelerator request scheduling can improve sharing
performance

− While co-scheduling is really useful [CoSched], other methods
can come close [AugC], keep up utilization and give desirable
properties

• Scheduling lowers degree of variability caused by un-
coordinated use of the NVIDIA driver.

79

No single `best' scheduling policy
Clear need for diverse policies geared to match different system
goals and to account for different application characteristics

Conclusion

• We successfully virtualize GPUs to convert them into
first class citizens

80

Conclusion

• We successfully virtualize GPUs to convert them into
first class citizens

• Pegasus approach abstracts accelerator interfaces
through CUDA-level virtualization

− Devise scheduling methods that coordinate accelerator use
with that of general purpose host cores

− Performance evaluated on x86-GPU Xen-based prototype

81

Conclusion

• We successfully virtualize GPUs to convert them into
first class citizens

• Pegasus approach abstracts accelerator interfaces
through CUDA-level virtualization

− Devise scheduling methods that coordinate accelerator use
with that of general purpose host cores

− Performance evaluated on x86-GPU Xen-based prototype

• Evaluation with a variety of benchmarks shows

− Need for coordination when sharing accelerator resources,
especially for applications with high CPU-GPU coupling

− Need for diverse policies when coordinating resource
management decisions made for general purpose vs.
accelerator core

 82

Future Work: Generalizing Pegasus

• Applicability: concepts applicable to open as well as
close accelerators due lack of integration with runtimes

− Past experience with IBM Cell accelerator [Cellule]

− Open architecture allows finer grained control of resources

83

Future Work: Generalizing Pegasus

•

−

−

• Toolchains: sophistication through integration

− Instrumentation support from Ocelot [GTOcelot]

− Improve admission control, load balancing and scheduling

84

Future Work: Generalizing Pegasus

•

−

−

•

−

−

• Heterogeneous platforms: Scheduling different
personalities for a virtual machine [Poster session]

− More generic problem where even processing resources on the
same chip can be asymmetric

85

Future Work: Generalizing Pegasus

•

−

−

•

−

−

•

−

• Scale: Extensions to cluster-based systems with
Shadowfax [VTDC`11]

86

Related Work

• Heterogeneous and larger-scale systems – [Helios],
[MultiKernel]

• Scheduling extension – [Cypress], [Xen Credit Scheduling], [QoS
Adaptive Communication], [Intel Shared ISA Heterogeneity],
[Cellular Disco]

• GPU Virtualization: [OpenGL], [VMWare DirectX], [VMGL],
[vCUDA], [gVirtuS]

• Other related work

− Accelerator Frontend or multi-core programming models: [CUDA],
[Georgia Tech Harmony], [Georgia Tech Cellule], [OpenCL]

− Some examples: [Intel Tolapai], [AMD Fusion], [LANL Roadrunner]

− Application domains: [NSF Keeneland], [Amazon Cloud]

− Interaction with higher levels: [PerformancePointsOSR]

− Cluster level: [rCUDA], [Shadowfax]

87

Thank you!

