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Increasing Popularity of Accelerators 
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2007 

• IBM Cell-
based-
Playstation 

2008 

• IBM Cell-
based 
RoadRunner 

• CUDA 
programmab
le GPUs for 
developers 

2009 

• Increasing 
popularity of 
NVIDIA GPUs 
powered 
desktops and 
laptops 

2010 

• Amazon EC2 
adopts GPUs 

• Tianhe-1A 
and Nebulae 
supercomput
ers in Top500 

2011 

• Tegras in 
cellphones 

• Keeneland  
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Example x86-GPU System 
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PCIe 

CUDA Kernels 

Proprietary NVIDIA Driver and 
CUDA runtime 
• Memory management 
• Communication with device 
• Scheduling logic 
• Binary translation 

C-like CUDA-based applications 
(host portion) 

Design flaw: Bulk of logic in drivers which were meant to be 
for simple operations like read, write and handle interrupts 
Shortcoming: Inaccessibility and one scheduling fits all 
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• Other cloud offerings by 
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2010 

• Amazon EC2 adopts GPUs 

• Other cloud offerings by 
AMD, NVIDIA 

2011 

• Tegras in cellphones 

• HPC GPU Cluster 
(Keeneland ) 

Need for accelerator sharing: resource sharing is now 
supported in NVIDIA’s Fermi architecture 
Concern: Can driver scheduling do a good job? 



NVIDIA GPU Sharing – Driver Default 
• Xeon Quadcore with 

2 8800GTX NVIDIA 
GPUs, driver 169.09, 
CUDA SDK 1.1 

• Coulomb Potential 
[CP] benchmark 
from parboil 
benchmark suite 

• Result of sharing two 
GPUs among four 
instances of the 
application 
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Max 

Min 

50% 
Median 

Driver can: efficiently implement computation and data interactions 
between host and accelerator 
Limitations: Call ordering suffers when sharing – any scheme used is 
static and cannot adapt to different system expectations 
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Re-thinking Accelerator-based Systems 

• Accelerators as first class citizens 

− Why treat such powerful processing resources as devices? 

− How can such heterogeneous resources be managed 
especially with evolving programming models, evolving 
hardware and proprietary software? 
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Re-thinking Accelerator-based Systems 

• Accelerators as first class citizens 

− Why treat such powerful processing resources as devices? 

− How can such heterogeneous resources be managed 
especially with evolving programming models, evolving 
hardware and proprietary software? 

• Sharing of accelerators 

− Are there efficient methods to utilize a heterogeneous pool 
of resources? 

− Can applications share accelerators without a big hit in 
efficiency? 

• Coordination across different processor types 

− How do you deal with multiple scheduling domains? 

− Does coordination obtain any performance gains? 

 17 



18 

Pegasus addresses the urgent need for systems support to 
smartly manage accelerators. 

                                                        
 

                                                        
                                                            
                                                      

                                                      
                   



19 

Pegasus addresses the urgent need for systems support to 
smartly manage accelerators. 

 (Demonstrated through x86--NVIDIA GPU-based systems)  
 

                                                        
                                                            
                                                      

                                                      
                   



20 

Pegasus addresses the urgent need for systems support to 
smartly manage accelerators. 

 (Demonstrated through x86--NVIDIA GPU-based systems)  
 

It leverages new opportunities presented by increased 
adoption of virtualization technology in commercial, cloud 

computing, and even high performance infrastructures. 
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Pegasus addresses the urgent need for systems support to 
smartly manage accelerators. 

 (Demonstrated through x86--NVIDIA GPU-based systems)  
 

It leverages new opportunities presented by increased 
adoption of virtualization technology in commercial, cloud 

computing, and even high performance infrastructures. 
(Virtualization provided by Xen hypervisor and Dom0 

management domain) 
 



ACCELERATORS AS FIRST CLASS 
CITIZENS 
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Manageability 
Extending Xen for Closed NVIDIA GPUs 

Management Domain (Dom0) Management Domain (Dom0) 

Hypervisor (Xen) Hypervisor (Xen) 

Traditional 
Device 
Drivers 

General purpose multicores General purpose multicores 

Traditional Devices Traditional Devices 

VM 
 

Linux 
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Accelerator Virtual CPU (aVCPU) Abstraction 
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Frontend 

 

Frontend 
driver 

Interposer library 

 CUDA calls + Responses 

Xen shared ring for 
CUDA calls (per VM) 

– call buffer 

Shared pages 
for data  

Application data 

VM 
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Pegasus 
Frontend 

 

Frontend 
driver 

Interposer library 

 CUDA calls + Responses 

Xen shared ring for 
CUDA calls (per VM) 

– call buffer 

Shared pages 
for data  

Application data 

 CUDA calls + Responses 

Polling 
thread 

Application data 

CUDA Runtime + 
Driver 

Polling thread is the VM’s representative for call execution 
 
It can be queued or scheduled to pick calls and issue them 
for any amount of time  
the accelerator portion of the VM can be scheduled 
 
Hence, we define an “accelerator” virtual CPU or aVCPU 

Pegasus Backend 

VM Dom0 



First Class Citizens 

• The aVCPU has execution context on both, CPU (polling 
thread, runtime, driver context) and GPU (CUDA kernel) 

• It has data used by these calls 
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aVCPU 
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VCPU 
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aVCPU 
 

Runtime and 
driver context 

CUDA calls + data 

Polling Thread 

VCPU 
 

Data 

Execution 
context 

VCPU: first class schedulable entity on a physical CPU 
aVCPU: first class schedulable entity on GPU (with a CPU 
component due to execution model) 
 
Manageable pool of heterogeneous resources 



SHARING OF ACCELERATORS 
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Per call 
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Per application 
granularity 
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aVCPUs are given equal 
time slices and scheduled 
in a circular fashion 

Too fine 

Too coarse 

Time slot based methods 
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Adopt Xen credit scheduling for 
aVCPU scheduling. E.g. VMs 1, 2 
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Instead of using the assigned VCPU 
credits for scheduling aVCPUs, 
define new accelerator credits. 
These could be some fraction of 
CPU credits  

Too fine 

Too coarse 

Time slot based methods 
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SLAF: Feedback-
based prop. fair 
share 

Too fine 

Too coarse 
Periodic scanning can lead to 
adjustment in the timer ticks 
assigned to aVCPUs if they do not 
get or exceed their 
assigned/expected time quota 

Time slot based methods 



Performance Improves but Still High Variation 
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• BlackScholes <2mi,128> 
• Xen 3.2.1 with 2.6.18 

linux kernel in all 
domains 

• NVIDIA driver 169.09 + 
SDK 1.1 

• Dom1, Dom4 = 256, 
Dom2 = 512, Dom3 = 
1024 credits 
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Min 
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• BlackScholes <2mi,128> 
• Xen 3.2.1 with 2.6.18 

linux kernel in all 
domains 

• NVIDIA driver 169.09 + 
SDK 1.1 

• Dom1, Dom4 = 256, 
Dom2 = 512, Dom3 = 
1024 credits 

Still high variation: due to the hidden driver and runtime 
Coordination: Can we do better? 

Max 

Min 

50% 
Median 



COORDINATION ACROSS 
SCHEDULING DOMAINS 
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Coordinating CPU-GPU Scheduling 

• Hypervisor co-schedule [CoSched] 

− Hypervisor scheduling determines which domain should run on 
a GPU depending on the CPU schedule 

− Latency reduction by occasional unfairness 

− Possible waste of resources e.g. if domain picked for GPU has 
no work to do 
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Coordinating CPU-GPU Scheduling 

• Hypervisor co-schedule [CoSched] 

− Hypervisor scheduling determines which domain should run on 
a GPU depending on the CPU schedule 

− Latency reduction by occasional unfairness 

− Possible waste of resources e.g. if domain picked for GPU has 
no work to do 

• Augmented credit [AugC]  

− Scan the hypervisor CPU schedule to temporarily boost credits 
of domains selected for CPUs 

− Pick domain(s) for GPU(s) based on GPU credits + remaining 
CPU credits from hypervisor (augmenting) 

− Throughput improvement by temporary credit boost 

 
50 



Coordination Further Improves Performance 
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• BlackScholes <2mi,128> 
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linux kernel in all 
domains 
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Coordination: Aligning the CPU and GPU portions 
of an application to run almost simultaneously, 
reduces variation and improves performance 

• BlackScholes <2mi,128> 
• Xen 3.2.1 with 2.6.18 

linux kernel in all 
domains 

• NVIDIA driver 169.09 + 
SDK 1.1 

• Dom1, Dom4 = 256, 
Dom2 = 512, Dom3 = 
1024 credits 



Pegasus Scheduling Policies 

• No coordination: 

− Default – GPU driver based – base case (None) 

− Round Robin (RR) 

− AccCredit (AccC) – credits based on static profiling  

• Coordination based: 

− XenCredit (XC) – use Xen CPU credits 

− SLA feedback based (SLAF) 

− Augmented Credit based (AugC) – temporarily augment 
credits for co-scheduling 

• Controlled 

− HypeControlled or coscheduled (CoSched) 
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Testbed Details 

• Xeon 4 core @3GHz, 3GB RAM, 2 NVIDIA GPUs G92-450 

• Xen 3.2.1 – stable,  Fedora 8 Dom0 and DomU running 
Linux kernel 2.6.18, NVIDIA driver 169.09, SDK 1.1   

• Guest domains given 512M memory and 1 core mostly  

• Pinned to different physical cores 

• Launched almost simultaneously: worst case measurement 
due to maximum load  

• Data currently sampled over 50runs for statistical 
significance despite driver/runtime variation  

• Scheduling plots report h-spread with min-max over 
85% readings or total work done over all runs in an 
experiment 
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Benchmarks 
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Category Source Benchmarks 

Financial SDK Binomial (BOp), BlackScholes (BS), 
MonteCarlo (MC) 

Media 
processing 

SDK/parboil ProcessImage(PI)=matrix 
multiply+DXTC, MRIQ, 
FastWalshTransform(FWT) 

Scientific Parboil CP, TPACF, RPES 
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Category Source Benchmarks 

Financial SDK Binomial (BOp), BlackScholes (BS), 
MonteCarlo (MC) 

Media 
processing 

SDK/parboil ProcessImage(PI)=matrix 
multiply+DXTC, MRIQ, 
FastWalshTransform(FWT) 

Scientific Parboil CP, TPACF, RPES 

• Diverse benchmarks: from different application domains show -  
(a) different throughput and latency constraints, (b) varying data 
and CUDA kernel sizes and (c) different number of CUDA calls  

• BlackScholes worst in the set: Throughput + latency sensitive 
due to large number of CUDA calls (depending on iteration) 

• Latency sensitive FastWalshTransform: multiple computation 
kernel launches and large data transfer 
 



Ability to Achieve Low Virtualization Overhead 

Speed improvement for most benchmarks 

Increased # 

of CUDA 

Calls 
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Cuda Time: Time within application to execute CUDA calls 
Total Time: Total execution time of benchmark from command line 



Appropriate Scheduling is Important 
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Scheduler - RR 
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Scheduler - RR 



Appropriate Scheduling is Important 
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Without resource management, calls can be variably delayed due to interference 
from other application(s)/domain(s), even in the absence of virtualization 

Scheduler - RR 



Pegasus Scheduling 
Black Scholes – Latency and throughput sensitive 
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Equal credits 
for all domains 

Work done = 

         𝒐𝒑𝒕𝒊𝒐𝒏𝒔

𝒕𝒊𝒎𝒆𝒂𝒍𝒍 𝒓𝒖𝒏𝒔  



Pegasus Scheduling 
FWT – Latency sensitive 
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Dom1, Dom4 – 

256, Dom2 - 

1024, Dom3 – 

2048 credits  



Insights 

• Pegasus approach efficiently virtualizes GPUs  
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Insights 

• Pegasus approach efficiently virtualizes GPUs  

• Coordinated scheduling is effective 

− Even basic accelerator request scheduling can improve sharing 
performance 

− While co-scheduling is really useful [CoSched], other methods 
can come close [AugC], keep up utilization and give desirable  
properties 
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No single `best' scheduling policy  
Clear need for diverse policies geared to match different system 
goals and to account for different application characteristics 



Conclusion 

• We successfully virtualize GPUs to convert them into 
first class citizens 
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Conclusion 

• We successfully virtualize GPUs to convert them into 
first class citizens 

• Pegasus approach abstracts accelerator interfaces 
through CUDA-level virtualization  

− Devise scheduling methods that coordinate accelerator use 
with that of general purpose host cores 

− Performance evaluated on x86-GPU Xen-based prototype  
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Conclusion 

• We successfully virtualize GPUs to convert them into 
first class citizens 

• Pegasus approach abstracts accelerator interfaces 
through CUDA-level virtualization  

− Devise scheduling methods that coordinate accelerator use 
with that of general purpose host cores 

− Performance evaluated on x86-GPU Xen-based prototype  

• Evaluation with a variety of benchmarks shows  

− Need for coordination when sharing accelerator resources, 
especially for applications with high CPU-GPU coupling 

− Need for diverse policies when coordinating resource 
management decisions made for general purpose vs. 
accelerator core 
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Future Work: Generalizing Pegasus 

• Applicability: concepts applicable to open as well as 
close accelerators due lack of integration with runtimes  

− Past experience with IBM Cell accelerator [Cellule] 

− Open architecture allows finer grained control of resources  
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Future Work: Generalizing Pegasus 

•

−

−

• Toolchains: sophistication through integration 

− Instrumentation support from Ocelot [GTOcelot] 

− Improve admission control, load balancing and scheduling  
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Future Work: Generalizing Pegasus 

•

−

−

•

−

−  

• Heterogeneous platforms: Scheduling different 
personalities for a virtual machine [Poster session] 

− More generic problem where even processing resources on the 
same chip can be asymmetric 
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Future Work: Generalizing Pegasus 

•

−

−

•

−

−

•

−

• Scale: Extensions to cluster-based systems with 
Shadowfax [VTDC`11] 
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Related Work 

• Heterogeneous and larger-scale systems – [Helios], 
[MultiKernel] 

• Scheduling extension – [Cypress], [Xen Credit Scheduling], [QoS 
Adaptive Communication], [Intel Shared ISA Heterogeneity], 
[Cellular Disco] 

• GPU Virtualization: [OpenGL], [VMWare DirectX], [VMGL], 
[vCUDA], [gVirtuS] 

• Other related work 

− Accelerator Frontend or multi-core programming models: [CUDA], 
[Georgia Tech Harmony], [Georgia Tech Cellule], [OpenCL]  

− Some examples: [Intel Tolapai], [AMD Fusion], [LANL Roadrunner] 

− Application domains: [NSF Keeneland], [Amazon Cloud] 

− Interaction with higher levels: [PerformancePointsOSR] 

− Cluster level: [rCUDA], [Shadowfax] 
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Thank you! 


