
Usenix ATC’11 

Raluca Ada Popa, MIT; Jacob R. Lorch, David Molnar, Helen J. Wang,  
and Li Zhuang, Microsoft Research  



Mo#va#on	  

      A main concern is security 
  Data leakage/corruption due to bugs, hackers,

 employees 
  Many customers perceive security as main concern 

  Cloud storage provides extensive resources,
 scalability, and reliability 



Security	  proper#es	  
  Confidentiality (C): only authorized users can read data 
  Integrity (I): 

  Each get returns the content put by an authorized user 
  Write-serializability (W): 

  Each user committing an update is aware of the latest
 update to the same block 

  Freshness (F): 
  Each get returns the data from the latest committed put 

Problem: cloud services do not guarantee security 
in SLAs 

Need proofs of misbehavior 



CloudProof	  

1.  Security mechanisms needed for SLAs with security: 
  Detection of violations for integrity, write-serial., and

 freshness (IWF) 
  Publicly-verifiable proofs of violation for IWF 

  Any external party can be convinced of cloud
 misbehavior 

  Users cannot falsely accuse cloud  

2.  Scalable design of security mechanisms 
  Scalable access control using modern cryptographic

 tools 

  A secure storage system for the cloud: 



Model	  

•  fully untrusted 

Data owner 

Data users 

Cloud 
•  assigns permissions 
to users (R, RW) 

•  may attempt to bypass 
permissions 

Application 

get/put 
blocks 

•  may try to 
frame the cloud 



Strawman	  

For each block: 
  Confidentiality: owner gives a secret key for

 encryption, sk, to allowed readers 
  Integrity: owner gives public key pair for

 signing, SK, PK to allowed writers 

Block 

Encsk[content] 

SigSK[encr. content] 

  Problems:  
  No detection for write-serial., freshness 
  No proofs of violation 
  Access control/key distrib. not scalable 

in this talk 

see paper 

Version no. 



Detec#on	  and	  proofs	  of	  viola#on	  for	  IWF	  

  Attestations 

Cloud User 

get( block id) 

block content, cloud-get-attestation  

put(block id, content), client-put-attestation 

 cloud-put-attestation  

  Proofs verifiable by any outside party 
  Non-repudiable signature scheme [Micali et. al.,’99] 
  Each party verifies attestation signatures 



Audi#ng	  

  Integrity: users check attestations from cloud 

  W and F: Owner does probabilistic auditing 
  Time divided in epochs (e.g., day) 

0.5 1 0.1 0.2 0.2 probability: 

  Only owner and authorized users know in which epochs
 a block is audited 

B1 B3 B5 B2 B4 



During	  the	  epoch	  

B2 B4 

Cloud Users 
get.. 

…, cloud-get-attestation  

put …  
 cloud-put-attestation  

Cloud 
Users 

put.. 
…, cloud-put-attestation  

put …  
 cloud-put-attestation  

Data owner cloud-get-attestation  
 cloud-put-attestation  
 cloud-put-attestation  
cloud-put-attestation  



At	  the	  end	  of	  epoch	  

  For the blocks to audit: 
  Owner requests all cloud-attestations from the

 cloud  
  Audits attestations from clients and from cloud 
  Audit guarantees write-serial. and freshness for

 entire epoch 



A@esta#on	  Structure	  

“CLOUD 
GET 

ATTEST.” 

BLOCK 
ID … 

Hashed and 
signed by 

cloud 

“USER 
PUT 

ATTEST.” 

BLOCK 
ID … Hashed and signed 

by user with SK 

“CLOUD 
PUT 

ATTEST.” 

BLOCK 
ID 

NEW 
VERSION 

NO. 
… 

Hashed and 
signed by 

cloud 

NEW 
VERSION 

NO. 

 VERSION 
NO. 



Integrity	  

  Detection: signature does not verify 

“CLOUD 
GET 

ATTEST.” 

BLOCK 
ID 

BLOCK 
VERSION 

NO. 
… 

Hashed and 
signed by 

cloud 

Block 

Encsk[content] 
version no. 

SigSK[encr. content] 

BLOCK  
HASH 

  Proof of violation: attestation 



Write-‐serializability	  

  Detection: Fork in sequence of put attestations 
  Proof of violation: the forked sequence of attestations 

version 4, hash: xd242 

version 5, hash: xae97 version 5, hash: x3166 

fork 

“CLOUD 
PUT 

ATTEST.” 

BLOCK 
ID 

NEW 
VERSION 

NO. 
… 

Hashed and 
signed by 

cloud 

NEW 
BLOCK 
HASH 



Freshness	  

  chain	  hash	  =	  hash	  (data	  in	  current	  a@esta#on,	  previous	  a@esta#on)	  

  Detection: attestations do not chain correctly 

“CLOUD 
GET 

ATTEST.” 

BLOCK 
ID 

BLOCK 
VERSION 

NO. 

Hashed and 
signed by 

cloud 

“CLOUD 
PUT 

ATTEST.” 

BLOCK 
ID 

NEW 
VERSION 

NO. 

Hashed and 
signed by 

cloud 

NEW 
HASH 

BLOCK  
HASH 

CHAIN 
HASH 

CHAIN  
HASH 
… 

… 



Freshness	  (cont’d)	  

  Detection: attestations do not chain correctly 

  Proof of violation: broken chain of attestations 

Cloud Users 
put: blockid 5, hash x18, … 

 A1 = (cloud-put-attestation, blockid 5, version 1, 
hash x18, …)  

put: blockid 5, hash x22, … 
A2 = (cloud-put-attestation, blockid 5, version 2, 
hash x22, h(A1, data in A2), …)  

get: blockid 5  

 A3 = (cloud-get-attestation, blockid 5, version 1, hash x18,  

h(A1, data in A3)? h(A2, data in A3)? Detected! 



Implementa#on	  

  C#, Windows Azure: 
  Storage component: blobs and queues 
  Compute component: web and worker roles 

  Four modules: owner, user, cloud, auditor 
  .NET crypto tools: AES, SHA-1, RSA 



Evalua#on	  

  What is the overhead at users/cloud? 
  Latency/throughput 

   What is the workload of the owner? 
  Access control/auditing 



User/server	  overhead	  
  Mostly from sign-verify of attestations 

SIGN VERIFY 

SIGN VERIFY 

  Delay added per request: 30 ms at server, 40 ms at user 
  Can optimize: e.g., batch many attestations in one

 signature using a Merkle hash 

  Throughput scales roughly linearly at server 



Owner	  work	  
  Two offline tasks: 

  Key distrib.: for a widely-used software with > 5000
 developers, membership changes take <1.6 sec/month 

  Auditing cost is modest and parallelizable 

•  4 min for 108 attestations 

  Detection probability increases exponentially in no. of
 epochs of violation 



Related	  work	  

  Secure file/storage systems (e.g., SiRiUS, SUNDR, Plutus): 
  No proofs of violation 
  No W and F detection due to different model 
  Access control not as scalable 

  Proofs of retrievability/possession (e.g., POR, HAIL) 

  Byzantine fault tolerance (e.g., BFT) 



Conclusions	  

  CloudProof is a secure storage system for the cloud: 
  Detection of WF via auditing 
  Proofs of violation for IWF via attestations 
  Scalable access control using broadcast encryption 

Thanks! 


