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Abstract
Data-center network designers now have many

choices for high-bandwidth, multi-path network topolo-
gies. Some of these topologies also allow the designer
considerable freedom to set parameters (for example, the
number of ports on a switch, link bandwidths, or switch-
to-switch wiring patterns) at design time. This free-
dom of choice, however, requires the designer to bal-
ance among bandwidth, latency, reliability, parts cost,
and other real-world details.

Designers need help in exploring this design space,
and especially in finding optimal network designs. We
describe the specific challenges that designers face, and
we present Perseus, a framework for quickly guiding a
network designer to a small set of candidate designs. We
identify several optimization problems that can be ac-
commodated within this framework, and present solution
algorithms for many of these problems.

1 Introduction
Imagine that you have been given the task to design

a shipping-container (“pod”) cluster containing 1000
server-class computers. The container provides the nec-
essary power and cooling, you have already chosen the
servers, and now you must choose a network to connect
the servers within the pod.

Suppose that you know the pod will be used for large
Hadoop (MapReduce-style) computations, and so appli-
cation performance will depend on achieving high bisec-
tion network bandwidth within the pod. Therefore, you
would like to use a multipath-optimized network topol-
ogy, such as FatTree [4] or HyperX [3].

Each of the basic topologies has numerous parameters,
such as the number of ports per switch, and you also must
consider the cost of the network: switches, cables, con-
nectors, and the labor to install it. So, how do you decide
which topology and parameters are best for your pod?
The design space, as we will show, can be complex and
not always intuitive.

Now consider the problem from the point of view of
a server-pod vendor: how do we decide what network
designs to offer customers who expect us to ship them a
container with a pre-wired network? The vendor would

like to meet the needs of many different kinds of cus-
tomers (e.g., Hadoop, scientific computing, Web hosting,
Cloud computing) without having to support too many
different designs, and without having to stock too many
different kinds of parts.

In this paper, we expose the challenges of the network
design problem for pod clusters, as well as other (non-
containerized) data-center networks, and we describe a
framework, called Perseus,1 to assist the network de-
signer in making the best choices, given a set of con-
straints. Our goal is to quickly quantify the costs and
benefits of a large set of possible designs, and thus sig-
nificantly reduce the search space. (Speedy design really
does matter; good engineers are overworked.)

While other investigators have tried to analyze the rel-
ative merits of topology families (e.g., FatTree, HyperX,
or BCube) [1, 13], we know of no prior work that de-
scribes how to efficiently search the design space for a
given family.

The overall network-design problem gives rise to a va-
riety of optimization sub-problems, many of which we
will describe in this paper. Our framework allows us to
incorporate optimizers for these problems.

Our contributions in this paper include:
• An overall characterization of the problem of topology

optimization for data-center networks on the scale of a
single container, or similar-sized clusters.

• A description of the workflow for designing a cost-
effective network, given specified performance targets
and parts costs.

• Description and solution of several interesting opti-
mization problems, which (to our knowledge) have not
previously been discussed in the literature.

• Results, based on semi-plausible parts costs, showing
that overall network cost depends on topology param-
eters in ways that are sometimes hard to predict, rein-
forcing the need for a tool to explore the design space.

1.1 Problems this paper does not address
The topic of exploring the topology space includes

several important problems, such as practical solutions
to the flow-routing problem within multipath networks,

1Perseus slew the snake-haired Medusa.
1
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or accurate estimates of network costs, or comparing the
general merits of HyperX vs. FatTree networks, that we
do not intend to solve in this paper.

The actual bandwidth attainable in a multipath net-
work depends on how flows are routed, and is likely to
be less than the network’s bisection bandwidth. Various
papers have described computationally-feasible methods
for routing in such networks [3, 5]. However, without a
realistic traffic model, it is hard to choose routes or pre-
dict actual bandwidths; we therefore follow the lead of
others (e.g., [13]) in using bisection bandwidth as a crude
approximation of a network’s useful capacity.

We developed our framework in response to a re-
quest from product architects and engineers, who must
make cost vs. performance tradeoffs. The engineers we
work with have accurate volume-cost estimates for parts,
which we cannot use in this paper, because these costs
are subject to non-disclosure agreements. In this paper,
so as to provide an illustration of the results of our ap-
proach, we use Web-retail prices instead of the true parts
costs. Further, such retail prices would be a meaningless
basis for comparing between (say) HyperX and FatTree
topologies for a 1K-server cluster, because the ratios be-
tween these prices do not reflect the ratios between actual
costs; therefore, we do not attempt to make such compar-
isons. (Popa et al. [13] have made the attempt.)

We also note that the choice between topology fam-
ilies (FatTree, HyperX, BCube, etc.) depends on other
considerations beyond bandwidth and parts costs – e.g.,
which topologies best support energy proportionality at
data-center scale [1], or whether a server-based topology
such as BCube is acceptable to customers. This paper
does not address those considerations.

Although there are similar design constraints for the
network that connects multiple pods into a data-center-
wide network, quantitatively this is a significantly differ-
ent problem, and appears to require qualitatively differ-
ent networking solutions (e.g., hybrid electrical/optical
switch architectures [7]). Therefore, we do not currently
attempt to extend our approach to this scale.

2 Defining the problem
Our goal is to help a data-center network designer in

a world with too many choices, both for how to design a
network, and for how to evaluate a set of designs.

2.1 Points of view
We know of several different types of network design-

ers, with somewhat different points of view: large-scale
data-center operators, and external design consultants,
with sufficient expertise to design their own networks;
moderate-scale data-center operators who prefer to stick
to well-understood choices; and system vendors.

Our goal is to serve all of these points of view, al-

though the full flexibility of our approach may be of most
interest to a system vendor, who has the most ability
to choose the low-level parts. System vendors are in-
creasingly asked, by large customers, to do rack-scale or
container-scale pre-integration of servers and networks.
Vendor designers have a lot of freedom in terms of the
parts they can use; however, they are constrained by the
need to choose designs that apply to a large number of
customers.

Our work on this problem was, in fact, inspired by a
request from pod system designers, who need to know
how to design rack-level switches that will be useful for
a wide variety of customers (and thus must evaluate net-
work design tradeoffs long before knowing the traffic
matrix for any specific customers).

2.2 Design choices
At an abstract level, a data-center network is com-

posed of hosts, switches, and links. We focus our atten-
tion on flat Layer-2 designs; the use of IP subnets within
data centers complicates some of the design choices and
is worth further work.

Recent papers have described a variety of scalable,
multi-path Ethernet-based data-center network topolo-
gies. These designs use a regular topology (we discuss
topologies in Sec. 3) and are typically intended to exploit
low-cost, “merchant silicon”-based Ethernet switches.

Generally, these topologies have several free parame-
ters, including the number of end-hosts (“terminals”) at-
tached to edge switches (in some designs, all switches
are edge switches), the number of ports per switch (the
switch “radix”), and link speeds, both of which can vary
even within a single network. Switch port count, link
speeds, and table sizes all affect overall system cost; we
defer detailed discussion of costs until Sec. 4.

For example, some existing merchant-silicon switch
products support at least 64 10GbE ports; we expect
more and faster ports in the relatively near future.

Each host may have one or more NICs, with per-NIC
link speeds of 10 Gbps or even higher. In this paper,
we generally ignore the details of end-hosts, including
issues such as host virtualization (and therefore the use
of virtual switches.)

At a level below the abstraction of switches and links,
the network designer must consider more mundane is-
sues, such as cables and connectors. These issues can
significantly affect costs (see Sec. 4).

The designer must also consider the physical layout
of the equipment. We assume that we will need multi-
ple switches per rack (since most inexpensive switches
do not have enough ports for all of the server-NIC down-
links in a rack, as well as for all of the necessary switch-
to-switch links in a modern topology). Even so, as we
will show, the designer then faces a choice between pack-
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ing the racks with as many servers as will fit, or avoiding
cables that connect a server in one rack with a switch in
another rack.

2.3 Design constraints
Network designers face not just choices, but con-

straints. These can include:
• number of connectors: connectors take up area on the

faceplates of switches; as cabling complexity increases,
this can become a limiting factor.

• copper cable length: Copper cables at multi-gigabit
speeds have practical length limits, typically 5–10 me-
ters or less.

There are other similar issues (e.g., the weight of copper
cables, the finite capacity of cable plenums, the propen-
sity of massive cable bundles to block airflow and com-
plicate cooling, and limits on the bending radius of all
kinds of cables) that we have not yet considered. In ad-
dition, switch power consumption is both a major con-
cern and beyond our current ability to model; see [1] for
relevant work.

The algorithms that we are developing for Perseus can
handle some of these constraints; we currently defer oth-
ers to future work.

2.4 Evaluation metrics
Given a set of candidate network designs, we must

compare them on some bases. There are usually numer-
ous metrics by which to compare two designs, and they
seldom agree. Rather than trying to find a single optimal
design, our approach is to narrow the design space and
then to expose the relative merits of the alternatives to a
human designer.

We focus on two primary performance metrics: band-
width and latency.

We use “bisection bandwidth” as a way to measure
the capacity of an entire network design.2 Following
Dally [6], we define “bisection bandwidth” as the “min-
imum bandwidth over all bisections of the network.” In
this paper, we do not consider any particular multipath
routing scheme, but instead assume that whatever routing
scheme is chosen can fully utilize the network hardware
and cables.

For reasons of cost, designers must often design net-
works with non-uniform oversubscription (NUO). Our
topology generators can easily create NUO networks, but
optimizing these designs and visualizing the results re-
quires us to define a scalar performance metric other than
network-wide bisection bandwidth. This is a straightfor-
ward change to our algorithms (although it can invalidate
some of our heuristics, such as H3 in Sec. 6.3), but space
does not permit us to discuss the various possible metrics
or how they change the results.

2Sometimes we use the related term “oversubscription ratio.”

We approximate latency in terms of hop count. Ignor-
ing the considerable latency in end-host stacks, switch
hops are still the primary source of delay in an uncon-
gested data-center network, and is of great importance to
applications such as scientific and financial computing.
Characterizing the actual per-switch delay is beyond the
scope of this paper.

In addition to performance, a network designer must
also consider other metrics, including reliability and
power. We discuss some prior work on power in Sec. 9.

Note that the topologies we discuss are all multi-path
and hence inherently redundant. One could quantify re-
liability in terms of the vulnerability of the network to
a certain number of randomly-chosen link and/or switch
failures, but we are not aware of prior work that describes
data-center network failure rates. Some researchers have
described their designs as fault-tolerant, but (for exam-
ple) Mysore et al. [11] discuss the reconvergence time of
PortLand, but do not quantify its underlying vulnerabil-
ity. However, Guo et al. [9] do show how the aggregate
throughput of several topologies, including FatTree and
their own BCube design, degrade under random failures.

We believe that it would be quite interesting to under-
stand how to simultaneously optimize the tradeoff be-
tween bandwidth, latency, fault tolerance, energy, and
cost – but this is beyond our current abilities.

3 Multipath topologies
In recent years, researchers have proposed a wide va-

riety of topologies for data-center networks, all with the
goal of providing high bisection bandwidth at low cost.
Most of these topologies also require choices to be made
for a variety of parameters.

Table 1: Symbols used in this paper

N total number of servers (or external connections)
R switch radix (port count)
T terminals connected to a single switch
S total number of switches
L levels of a tree
D dimensions in a HyperX network
K link bandwidth
W total number of links in a network
C number of top switches in a tree

In this paper, we consider these topology families:
• FatTree: Rather than limiting our approach to the

three-level k-ary fat tree structures described by Al
Fares et al. [4], we consider a generalized version of
the Clos topologies with parametrized levels and fat-
ness at each level, which were first defined by Öhring
et al. [12] as Extended Generalized Fat Trees (EGFTs).

We recursively define an L level EGFT as follows:
A level L = l EGFT connects Ml of L = l − 1 level
EGFTs with Cl top switches; each top switch has a Kl-
wide connection to each of the l−1 level EGFTs. (I.e.,
Kl is the Link Aggregation (LAG) factor.) A level L =
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1 EGFT has just one switch (C1 = 1), with M1 servers
directly connected to the switch with K1 = 1 (i.e., unit-
bandwidth) links. Note that the level-1 EGFT can be
generalized further to consider servers with multiple in-
terfaces. We represent an EGFT as EGFT(L, ~M, ~C, ~K)
where ~M, ~C, ~K are vectors of size L.

Properties: The total number of switches S, num-
ber of nodes N , and number of links W in a
EGFT(L, ~M, ~C, ~K) can be computed as follows:

S = CL + ML(CL−1 +

ML−1(...(C3 + M3(C2 + M2))...))

N =
LY

l=1

Ml

W = CLMLKL + ML(CL−1ML−1KL−1 +

ML−1(...(C2M2K2 + M2(M1))...))

If all of the multiple links between two switches can
be aggregated into a single cable, then the cable count
W ′ will be:

W ′ = CLML + ML(CL−1ML−1 +

ML−1(...(C2M2 + M2(M1))...))

At a level l ∈ [1, L] of EGFT(L, ~M, ~C, ~K), each of
the Cl top switches provides MlKl bandwidth to all the
terminal servers in that sub-fattree. Hence, the oversub-
scription ratio at level l, referred to as Ol is

Ol =

Ql
i=1 Mi

ClMlKl
(1)

The oversubscription ratio O of a EGFT(L, ~M, ~C, ~K)
is O = maxL

l=1 Ol. The bisection bandwidth is N/O
and the maximum number of hops between any two
servers is 2L.

• HyperX: HyperX [3] is an extension of the hypercube
and flattened butterfly topologies. Switches are points
in a D-dimensional integer lattice, with Sk switches
in each dimension k = 1..D. The dimensions need
not be equal. A switch connects to all other switches
that share all but one of its coordinates. (E.g., in a 2-D
HyperX, a switch connects to all switches in the same
row and in the same column.) The link bandwidths
K1, ...,KD are assumed to be fixed in each dimension,
but can vary across dimensions. At each switch, T
ports are assigned to server downlinks.

We can describe a network as HyperX(D, ~S, ~K, T ),
with ~S and ~K as vectors. HyperX(D, ~S, ~K, T )
has

∏D
k=1 Sk switches, T.

∏D
k=1 Sk servers, and

(S/2).
∑D

k=1[(Sk − 1).Kk] links.
In this paper we focus on EGFT and HyperX topolo-

gies because they are considered attractive for high bi-
section bandwidth data-center networks. However, we
plan to support other interesting server-to-server topolo-
gies such as BCube [9] and CamCube [2], as well as tra-
ditional 2- or 3-tier topologies, to allow designers im-
proved flexibility.

4 Cost model
In order to optimize the total cost of a network, we

must have a cost model. Some costs are relatively easy
to model; these include:
• Parts costs: These cover things that a system vendor

would buy from other suppliers, such as switches, ca-
bles, and connectors.

• Manufacturing costs: Given the large physical size
of a container-based cluster and the relatively small
quantities manufactured, cables for these systems are
installed by hand. Sec. 4.2.1 discusses this cost.

Other costs are harder for us to model, especially since
they depend on factors beyond the costs to manufacture
a specific cluster:
• Design costs: A network designer must spend consid-

erable time understanding the requirements for a net-
work, then generating and evaluating specific options.
Our approach aims to reduce this cost, while improving
the designs produced.

A vendor of container-based clusters would prefer
to deal with a limited number of designs, since each
new design requires new Quality Assurance (QA) pro-
cesses, and each new design must be explained to jus-
tifiably skeptical customers.

• SKU costs: When a system vendor must deal with
a large variety of different parts (often called Stock-
Keeping Units or SKUs), this creates complexity and
generally increases costs. One of our goals, therefore,
is to generate network designs that require only a small
set of SKUs – generally this means only a few types
and lengths of pre-built cables.

• Cost to reconfigure the network: Some clusters are
born large; others have largeness thrust upon them,
later on. A good network design allows for the incre-
mental installation of capacity – for example, one rack
of servers at a time – without requiring the re-wiring of
the existing network. When such rewiring is required,
it should be minimized.

• Maintenance costs: Electronics, cables, and connec-
tors do fail. A network design that confuses repair peo-
ple will lead to higher repair costs and/or more frequent
mis-repairs.
In the current version of our framework, we model

only the parts costs. Because system vendors and their
suppliers are reluctant to reveal their actual volume-
purchase parts costs, in this paper we instead use Web-
published retail prices as proxies for real costs.

We do not claim that these are the costs that would
be paid by a system vendor, but they serve to illustrate
many of the important tradeoffs, and we can use them as
a plausible input to our topology cost evaluation.
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4.1 Switch costs
One can choose from a wide variety of switches for

use in a data-center network. Switch costs vary tremen-
dously based on feature set, port count, and performance.

For the sake of simplicity, based on a survey of vari-
ous switch list prices, we will arbitrarily model switches
at $500 per 10GbE port, consistent with the value of
$450/port used by Popa et al. [13]. (Our tool can eas-
ily use table-based inputs for specific switch configura-
tions if they are available.) We also assume that switches
are available with exactly the mix of connectors that we
would like to use, although these might not currently be
off-the-shelf configurations.

We assume that all switches are non-blocking – that
is, they do not impose a bandwidth limit beyond what is
imposed by their port speeds.

Some researchers have considered the use of
merchant-silicon Ethernet switch ASICs, along with the
associated supporting parts (CPU, PHYs, power supply
and fans, circuit board, etc.) to build low-cost special-
purpose switches for data-center networks. This might
also seem to be a way to model the cost of higher-radix
switches (for example, the Broadcom BCM56840 sup-
ports 64 10GbE ports). Farrington et al. [8] analyzes the
costs of one example of such an approach. However, it
turns out to be extremely difficult to estimate the parts
costs for such switches; prices for these ASICs are usu-
ally non-disclosure information, and it is tricky to esti-
mate the cost of the additional parts (not to mention the
cost of engineering, manufacturing, QA, and compliance
with standards and regulations). Therefore, in this paper
we do not attempt to estimate the costs of this approach,
although one could guess that it might not be a lot lower
until one is dealing with very large quantities of switches.

We note that some recent data-center network designs,
such as CamCube [2], dispense entirely with discrete
switch hardware. In such designs, all switching is done
within a multi-port server/NIC complex – “each server
connects directly to a small set of other services, with-
out using any switches or routers” [2]. We believe our
approach could easily be extended to model the costs of
switchless networks, by setting the switch cost to zero
and including appropriate costs for the required addi-
tional NIC ports. It might be harder to model the achiev-
able bandwidth and delay in these networks, since the
involvement of NICs or server CPUs at each hop could
affect performance in complex ways.

4.2 Cabling costs
High-performance cables are expensive, and can eas-

ily amount to a significant fraction of the cost of the
servers in a cluster. In Sec. 7.4, we will discuss the
problem of optimizing the choice among a number of
different cable options. In this section, we discuss cable-

cost issues, based on published prices.
There are many options for cabling a high-

performance network, and Perseus could easily be ex-
tended to cover them, but for this paper we have nar-
rowed our focus to a few likely choices: copper or single-
mode fiber, using SFP+ or QSFP+ connectors in either
case, with 10GbE connectivity in all cases.3

For simplicity of both manufacturing and presenta-
tion in this paper, we will assume that any given net-
work design uses only a single connector type. QSFP+
connectors have the benefit of working with either
electrical or optical cables, which allows flexibility in
cable choice without creating complexity in switch-
configuration choice. Fiber QSFP+ cables have the
electrical-optical conversion chips integral to the connec-
tors, which adds cost but supports this flexibility. There-
fore, we assume the use of single-channel SFP+ cables
between servers and switches (and sometimes between
switches, for short runs), and quad-channel QSFP+ ca-
bles for longer or wider paths between switches. 4

Table 2: Cable prices (dollars) for various lengths

Single channel Quad channel
Length SFP+ QSFP QSFP+ QSFP+

(M) copper copper copper optical
1 45 55 95 —
2 52 74 — —
3 66 87 150 390
5 74 116 — 400
10 101 — — 418
12 117 — — —
15 — — — 448
20 — — — 465
30 — — — 508
50 — — — 618

100 — — — 883
Sources: http://www.cablesondemand.com/ and

http://www.elpeus.com/

Table 2 shows cable prices, in dollars, for various
lengths of copper and fiber cables certified to run at 10
Gbps. Although these are quantity-50 list prices, not the
actual costs to a system vendor, for simplicity we will
treat cable costs as equal to cable prices.

One implication of these costs is that a container-sized
network might well need to use a mix of copper and opti-
cal cables to minimize total cost. This is because copper
cables are significantly cheaper than optical cables of the
same length; however, quad-channel copper cables can-
not support 10GbE over more than 5 meters (SFP+ ca-
bles can support longer lengths because they use thicker
cables, but consume more connector area as a result). 5

Above 5 meters, we must generally use optical cables.
3Popa et al. [13] advocate using CAT6 cables, which are cheaper

but which require perhaps 3 times more power, and may be harder to
use in dense wiring plans.

4Some cost-optimal configurations might “waste” channels in these
quad-channel cables.

5“Active” QSFP copper cables can span 20 meters, but cost almost
as much as fiber QSFP+ cables and so we do not consider them.
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Thus, the cost-optimal network might depend on finding
a topology that exploits short cables as much as possi-
ble, which in turn affects the optimization of the physical
wiring plan (see Sec. 7.1). On the other hand, physical
constraints might force the use of fiber cables even when
copper cables would be short enough; see Sec. 7.4.

Based on the prices in Table 2, we can model quad-
channel copper cables as costing ca. $16 per meter,
plus $20 for each connector. Similarly, we can model
quad-channel optical cables as costing ca. $5/meter, plus
$188/connector. We model single-channel copper ca-
bles at $6/meter, and $20/connector. Custom lengths in
small quantities will cost more than high-volume stan-
dard lengths, but we are offering these as only crude es-
timates of costs, and they will suffice for our purposes.

We cannot currently model the extra cost of using
more than the minimal number of cable SKUs. Instead,
our physical layout algorithm (see Sec.7.1) can either
generate networks using custom-length cables or using
only the standard cable lengths from Table 2, to illustrate
the effect on SKU count, which we quantify in Sec. 8.1.

4.2.1 Cable installation costs
Independent of the parts cost for cables, we also must

pay to install them. As far as we know, current manu-
facturing practices require manual installation of cables
between switches.

We estimated cable-installation costs based on a recent
experience in a 9-rack, 256-server cluster. A skilled in-
staller can install about 20 intra-rack cables per hour, and
about 8 inter-rack cables per hour, although the times de-
pend a lot on cable length and distance between racks.
(This experience also points out that the installation rate
drops a lot if the installer must deal with cables that are
cut too long – finding space for the excess cabling is
tricky – so an accurate 3-D model for cable runs could
be quite useful. Our algorithm in Sec. 7.1 attempts to
model cable lengths as accurately as possible.)

In our area, skilled cable installers can charge ca.
$50/hour, so for this paper, we assume a cost of $2.50
for installing an intra-rack cable, and $6.25 for an inter-
rack cable. These costs are significantly less than optical-
cable costs, but they are not negligible when compared
to copper-cable costs.6 In the long run, we expect cable
part costs to decline, but installation labor costs could
rise unless there are process improvements that make in-
stallation quicker.

5 The topology planning workflow
We can now describe a workflow by which a network

designer can explore the space of possible topologies. In
brief, the steps of this workflow are: (1) The user speci-

6Popa et al. [13] argue that labor costs dominate the costs of CAT6
cables.

fies the problem, and chooses one or more basic topolo-
gies to compare; (2) Perseus generates acceptable candi-
date topologies, generates optimized wiring plans, esti-
mates overall system cost, and generates a visualization
of the resulting space. We describe each of these steps in
more detail.

5.1 User-specified inputs
The process of network design starts with a set of

goals, constraints and other inputs, which must be pro-
vided by the user. These fall into several categories:

System parameters:
• Number of servers to support.
• Server NIC bandwidth (e.g., 1GbE or 10GbE).
While many systems include redundant NICs for fault
tolerance, we will consider only non-redundant NICs in
this paper. While our tools can handle a variety of NIC
and switch-port bandwidths, for simplicity we assume
10GbE throughout this paper.

System goals:
• Desired minimum bisection bandwidth, internal to the

cluster.
• Desired minimum outgoing bandwidth from the entire

cluster. To simplify the rest of the process, we convert
this into an equivalent number of “phantom” servers.
For example, if the designer wants a 1024-server clus-
ter with 10GbE NICs and 100 Gbps of external band-
width, we design a network for 1024 + (100/10) =
1034 server-equivalent ports. This gives the designer
freedom to attach external connections to any switch in
the cluster.

This approach to external bandwidth creates some
potential inaccuracy in our bandwidth calculations, as
we discuss in Sec. 10.

• Desired maximum hop count.
• Desired maximum number of racks.

Parts available:
• Server size, in rack units.
• Switch types: a set of possible switch parts, with port

counts and speeds (e.g., “48 1GbE ports + 4 10GbE
ports”), and their sizes in rack units.

• Cable types (copper or fiber) and available lengths and
bundling factors. We would also like to know a cable’s
cross-sectional dimensions.

For each kind of part, the user must also supply a cost
model. (See Sec. 4 for some example cost models.)

System constraints:
• The maximum number of uplink connectors per switch.

(If cables are bundled, a single connector supports mul-
tiple logical links.)

• Rack height.
• Desired physical layout of racks: maximum row

length, maximum number of rows, and width of aisles
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between rows.
• Plenum cross-section dimensions.

The user must also decide on one or more of the base
topology types that the tool supports (currently, just Fat-
Tree and HyperX). This choice might depend on consid-
erations that we cannot currently model, such as the ex-
pandability of a basic design, or the willingness of cus-
tomers to accept it.

5.2 Generating candidate topologies
The Perseus tool starts by generating a set of candidate

abstract topologies: those that meet the constraints and
requirements provided by the user. (If no such candidates
exist, the user will have to loosen the requirements and
try again.)

This step varies depending on the base topology type,
and we describe several appropriate algorithms in Sec. 6.

5.3 Converting abstract to physical wiring
plans

After choosing a set of candidate topologies, we must
then generate physically valid wiring plans before we can
assign costs, since cable costs depend on their lengths.
Sec. 7 describes this process in detail, including several
topology-specific algorithms. Once we have chosen a
physical topology for each candidate abstract topology,
we can calculate cable lengths and types.

The least-cost wiring plan might use copper cables for
shorter distances, since these could be cheaper than fiber
cables of the same lengths. Because plenum space might
be a concern, especially for copper cables, we then have
to calculate whether the cables will fit. If not, we must re-
place copper with fiber until everything fits. See Sec. 7.4
for more details.

5.4 Visualization of results
Once we have a list of parts, including specific cable

types and lengths, we can easily generate an estimate of
the total system cost.

Given the large design space, it would be nice to have a
clever multi-dimensional, navigable visualization of the
space, including costs, bandwidths, and latencies for a
large range of designs.

So far, however, we are using 2-D plots (e.g., network
cost vs. bisection bandwidth), with curves for a small
variety of parameter settings, as a way to approximate
slices of a fancy visualization. Sec. 8 includes some ex-
amples. We also have a simple tool that shows how wires
are laid out in 2-D space, but for any interesting-sized
network, the pictures are too dense to fit into this paper.

6 Generating candidate topologies
In this section, we describe our algorithms for gener-

ating candidate topologies of several basic types.

Algorithm 1 Generate HyperX candidate topologies
1: Given:
2: N : Number of servers in the pod
3: S: Number of switches
4: R: Number of ports per switch
5: T : Number of terminals per switch
6: Goal:
7: An HyperX config with the minimum cabling cost.
8: Rh = R− T /* number of HyperX ports per switch */
9: if Rh ≤ 1 then

10: return infeasible /* not enough ports */
11: /* Initialize the set of candidates with the 1-dim config */
12: C = {D = 1, S1 = S}
13: while C 6= ∅ do
14: config = next config(C)
15:
16: if Rh ≥ (

P
i(Si)−D) then

17: assign Ks(config) /* see Sec. 6.2 */
18: output config details(config)
19:
20: C = C ∪ split dimensions(config)
21: End

6.1 Generating HyperX candidate topologies
When designing an abstract HyperX topology, the de-

signer must evaluate a potentially large space of candi-
dates. Recall that the parameters that characterize this
family of topologies are HyperX(D, ~S, ~K, T ), where D

is the number of dimensions, ~S is the vector of num-
ber of switches along each dimension, ~K is the vector
of link bandwidths along each dimension, and T is the
number of terminals (servers) attached to each switch.
(As noted in Sec. 5.1, we currently treat external band-
width requirements as additional phantom servers.)

The goal of the algorithm described in this section is to
generate all of the plausible candidate topologies (based
on several constraints), which can then be ranked accord-
ing to their costs. For the sake of simplicity, we assume
that all NICs and server ports have the same unit band-
width, and that all switches are identical and have the
same number of servers attached. (In Sec. 6.1.1 we dis-
cuss relaxing the last constraint.)

We state the problem formally: Given N servers (or
server-equivalents, to account for external bandwidth),
and S switches of radix (port count) R, generate a set of
the best feasible HyperX topologies.

Algorithm 1 shows our algorithm in pseudo-code. The
first step simply derives the number of ports per switch
available for intra-cluster links; we call these the “Hy-
perX ports” to distinguish them from terminal (server
and external) ports.

The algorithm then iterates over all possible dimen-
sionalities (values for D) and adds the feasible candi-
dates to the candidate set. For each iteration, we:
• Generate the candidate topologies for this dimension-

ality D. That is, we generate all possible values of ~S
for D.

For D = 1, the only candidate is a linear topology.
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For each D > 1, we take each of the candidates for
D − 1 and, if possible, split one of its dimensions. For
example, a 6x6 2-dimensional lattice can be split into a
6x3x2 lattice, and on the next iteration into a 3x3x2x2
lattice.

• Test the structural feasibility of the candidate; each
switch must have enough HyperX ports to connect to
all the remaining switches along each dimension.

• For a feasible candidate, find the optimal trunking fac-
tor (LAG factor) along each dimension – that is, we
generate ~K. The designer might prefer LAG factors
that are a multiple of the connector and cable width (for
example, QSFP connectors that support four-channel
cables). A naive approach would require us to examine∏D

i=1 (R − T − i) (which, in case of a 5-dimensional
HyperX with a 96-port switches, translates to about 3.8
billion) different configurations. Sec. 6.2 presents an
O(R) algorithm that derives the optimal trunking fac-
tors without exploring this huge space.

Note that when we split solutions from dimension D− 1
in order to generate new candidates for dimension D, we
must include as starting points all of the previous candi-
dates, including the infeasible ones – the progeny of an
infeasible candidate might themselves be feasible.

From the feasible candidates, we should then prune
out those that require too many connectors to fit on a
switch faceplate. We defer this step to future work, al-
though it is fairly simple.

The complexity of Algorithm 1 is determined by the
number of unique partitions of the set of prime factors
of S; this can be very large, but the algorithm runs fast
enough for practical values of S.

Once we have generated the entire set of feasible can-
didates, we can compute bisection bandwidths (using
min(SiKi)(S/4) [3]) , maximum hop counts, and con-
struction costs for each of these.

6.1.1 Optimizing HyperX by adding switches
In the description above, we generate a set of Hy-

perX topologies that exactly match the specific number
of switches S. We assume that the designer would like to
minimize the number of switches, hence the choice of S.
However, the construction in Alg. 1 finds only topologies
with exactly the requested number of switches.

Sometimes, adding a few switches might enable much
better configurations. For example, suppose the designer
specifies a 31-switch network. Since 31 is prime, this
forces a single linear design (effectively, a full mesh).
However, adding one switch allows a much wider vari-
ety of candidates (e.g., 8x4 or 4x4x2), which could make
the design feasible with fewer switch ports. Even if the
specified number of switches is not prime, it might have
inconvenient factors, that could be difficult to satisfy un-
less the number of ports per switch is quite large – e.g.,

Algorithm 2 Optimal ~K assignment
1: Given:
2: D: Number of dimensions of HyperX
3: ~S = (S1, S2, ..., SD): Size of each dimension of HyperX
4: R: Switch radix,
5: T : Number of terminals per switch,
6:
7: Initialize:
8: P = R− T
9: ∀i ∈ [1, D], Ki = 0

10: found=TRUE
11:
12: while (P > 0) AND (found=TRUE) do
13: minSK= minD

i=1 SiKi

14: found= FALSE
15: for i ∈ [1, D] do
16: if (SiKi = (minSK) AND (P ≥ Si − 1) then
17: Ki = Ki + 1
18: P = P − (Si − 1)
19: found=TRUE
20:
21: return ~K = (K1, K2, ..., KD)

S = 94 would require switches with at least 49+T ports,
but S = 95 would work with 24 + T -port switches.

We have not yet designed an algorithm to help opti-
mize this parameter choice.

6.2 Optimal HyperX ~K assignment
The bisection bandwidth of a HyperX(D, ~S, ~K, T )

depends both on the topology dimensions ~S and the per-
dimension link bandwidth multipliers (LAG factors) ~K.
Here we show how to optimize ~K. This is the same as
finding an optimal distribution of each switch’s available
ports among the different dimensions, such that the bi-
section bandwidth is maximized.

Given: (i) switches with radix R, of which T ports
are used for links to servers and (ii) a HyperX network
with D dimensions, with sizes ~S = (S1, S2, ..., SD).
Our goal is to distribute the remaining R − T ports of
each switch among the D dimensions such that the bi-
section bandwidth of the topology is maximized. Note
that for HyperX(D, ~S, ~K, T ), the bisection bandwidth
is minD

i=1 SiKi.
Problem: Maximize minD

i=1 SiKi under the follow-
ing constraints:

∀i, Ki ∈ Z (2)
DX

i=1

(Si − 1)Ki ≤ R− T (3)

Our algorithm for assigning the Kis is shown in Algo-
rithm 2. We first set Ki = 0 for all i, and initialize the
number of spare ports P to R − T . At every step, we
consider any dimension i with the minimal SiKi prod-
uct. If enough spare ports are available to increase the
bandwidth in that dimension, then we increment Ki by
1. Notice that we reduce the spare ports P by Si − 1, as
each switch connects to Si − 1 switches in that dimen-
sion. We continue this until we do not have enough spare
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ports left to increase the bisection bandwidth.
We have a proof that this algorithm returns the optimal

assignment of Kis, but it is too lengthy for this paper.

6.3 Generating Fat Tree topologies
As described in Section 3, we consider Extended Gen-

eralized Fat Trees (EGFTs) parametrized with number
of levels L, a vector for the number of modules aggre-
gated at each level ~M , a vector for the number of top
switches at each level ~C, and a vector for the lag fac-
tor at each level ~K. The goal of the algorithm presented
here is to generate feasible EGFTs with a given number
of switches, each with a fixed radix, and connect a given
number of servers.

Construction constraints: Given switches with radix
R, a EGFT(L, ~M, ~C, ~K) can be constructed only if the
following constraints hold:
• The top-most switches (level L top switches) should

have enough ports to connect to all ML L − 1 EGFTs
with KL links.

MLKL ≤ R (4)

• At each level 1 ≤ l < L, a top switch should have
enough ports to connect to all Ml l − 1 EGFTs with
Kl links, along with the ports to connect to the top
switches at the l + 1 level (we refer to these as “up-
links”). Note that there are Cl+1 top switches at level
l + 1 with Kl+1 downlinks, and the Cl top switches
should have enough uplink ports to account for those
downlinks.

1 ≤ l < L, MlKl +
Cl+1Kl+1

Cl
≤ R (5)

Finding suitable EGFTs: Given S switches with
radix R and N servers, there are various EGFTs possi-
ble with different oversubscription ratios, maximum hop-
counts, and numbers of cables required. We use a re-
cursive procedure (pseudocode shown in Algorithm 3)
to systematically explore the space of possible EGFTs.
This O(LS) algorithm constructs EGFTs bottom-up, and
currently it outputs all feasible EGFTs it finds. It is
easy to modify this algorithm to generate only those
EGFTs with oversubscription below a maximum thresh-
old. For instance, setting this threshold to 1 outputs only
the EGFTs with full bisection.

We start the recursion with the following inputs: an
empty EGFT=(0, , , ), the number of modules NM=N ,
the number of uplinks at this lowest level NUP=1, and
the number of remaining switches RS=S. If number of
terminals per switch T is also provided, we run recursion
with EGFT=(1, 〈T 〉, 〈1〉, 〈1〉), NM=dN

T e, NUP=R − T ,
and RS=S−NM.

In each recursive call, we add another level to the ex-
isting EGFT, until all modules are aggregated into one
single topology (base case for recursion: NM== 1).
Note that at each level l + 1, this routine systematically
explores all possible options for picking the number of
lower level modules to aggregate Ml+1, the number of

Algorithm 3 EGFTRecurse: Recursive function for con-
structing EGFTs
1: Input:
2: EGFT: Current topology (l, ~M, ~C, ~K)
3: NM: Number of modules at this level
4: NUP: Number of uplinks available at each module
5: RS: Remaining switches
6: Global:
7: R: Switch radix
8:
9: /* Base case for recursion */

10: if NM == 1 then
11: Output EGFT as a possible topology
12:
13: /* For each possible aggregation size */
14: for 2 ≤Ml+1 ≤MIN(NM, R) do
15: /* For each possible number of top switches */
16: for 1 ≤ Cl+1 ≤MIN(NUP, RS/(NM/Ml+1)) do
17: /* For each possible K value */
18: for 1 ≤ Kl+1 ≤MIN(R/Ml+1, NUP/Cl+1) do
19: EGFTRecurse(
20: EGFT(l + 1, ~M ∪Ml+1, ~C ∪ Cl+1, ~K ∪Kl+1),
21: NM/Ml+1,
22: (R− (Ml+1 ∗Kl+1)) ∗ Cl+1,
23: RS −(Cl+1∗NM/Ml+1)) ;

top switches to use Cl+1, and the bandwidth from each
top switch to each module Kl+1. We make sure that the
constraints in equations 4 and 5 are satisfied as we con-
sider possible values for Ml+1, Cl+1, and Kl+1.

This recursive exploration can generate a lot of topolo-
gies. For example, an execution with N = 1024, R =
48, T = 32 results in more than 1 billion possible topolo-
gies. However, many of these topologies are clearly infe-
rior, with respect to oversubscription ratios, to other sim-
ilar topologies. Therefore, we implemented four heuris-
tics to prune the output set:
• H1: If all modules are being aggregated (i.e.,

Ml+1 == NM in the pseudocode), then it does not
make sense to consider all possible values for Kl+1. To
minimize oversubscription, we need to consider only
the maximum possible value for Kl+1.

• H2: Note that the oversubscription ratio of a topology
is the maximum ratio across all levels. So, when build-
ing up a EGFT, we do not consider any assignment of
M,C, and K that achieves a lower ratio than that has
already been imposed by choices at the lower levels.

• H3: If all modules at a level can be aggregated into one
module, i.e., switch radix R is greater than the number
of modules NM at a level, then use the maximum ag-
gregation size instead of trying smaller sizes. Smaller
aggregation sizes increase the number of levels, con-
suming more switches and links without improving bi-
section bandwidth.

• H4: At the top-most level, we use the maximum possi-
ble and available top switches that use all uplinks at the
next lower level, instead of iterating over all possible
values for C.
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Table 3: Reduction in search space with heuristics

Parameter Heuristics used
N R T None H1 H2 H3 H4 All
1K 48 16 >1.8B 303.9M 64.3M 315.6K 56.2M 521
1K 48 32 1.0B 61.8M 17.8M 16 13.3M 1
2K 48 16 >1.8B 1.2B 205.5M 471.4M 95.8M 31.0K
2K 48 32 >1.8B 220.1M 64.4M 87.9K 21.5M 521
1K 144 16 >1.9B >1.5B 184.2M 128 >1.7B 1
1K 144 32 >1.9B >1.5B 331.8M 112 >1.7B 1
2K 144 16 >1.9B >1.5B 757.8M 128 >1.7B 1
2K 144 32 >1.8B >1.5B >994.5M 112 >1.7B 1

Values above are sizes of the search space

Table 3 shows how these heuristics, both independently
and together, reduce the search space for several exam-
ples of N,R and T – by at least five orders of magni-
tude, for N ≤ 2048. We explored up to 4 levels, and
terminated incomplete jobs (shown as “> x”) after 5
hours. Run-times when using all heuristics took less than
200msec, except for one case that took 6 sec.

7 Physical layout of data-center cables
In order to convert an abstract topology into a physical

wiring plan, we must know the physical dimensions of
the data center, including constraints on where cables can
be run between racks.

We use Manhattan routing, rather than trying to route
cables on diagonals, which could save some cable costs,
but might be infeasible given typical cable plenums.

In some cases, the designer must choose between
packing servers and switches as densely as possible
into racks (generally a good idea, since POD or data-
center floor space is often expensive), or ensuring that
all server-to-switch cables stay within the server’s rack
(which can be useful if racks are shipped pre-wired.) We
expose this policy choice, and its consequences (in terms
of the number of racks required) to the designer.

We assume the use of standard-size racks (about 24
inches wide, 36 inches deep, and 78 inches tall). We
assume that racks are arranged in rows; best practices
for cooling call for no space between each rack in a
row. Rows are separate either by “cold aisles” or “hot
aisles” (i.e., either sources of cool air or sinks of heated
air). Several considerations govern the choice of aisle
widths [14], but generally the cold aisle must be at least
4 feet wide and the hot aisle at least 3 feet wide. For
this paper, we assume that both aisles are 4 feet wide;
extending our algorithm to handle mixed widths requires
another set of decisions, and is future work.

In modern data centers, network cables do not run
under raised floors, because it becomes too painful to
trace underfloor cables when working on them. There-
fore, inter-rack cables run in ceiling-hung trays above the
racks. One tray runs directly above each row of racks,
but there are relatively few trays running between rows,
because too many cross trays are believed to excessively

restrict air flow. We believe that the minimum reasonable
separation between cross trays is about two rack widths.
(We have not yet done the airflow simulations to validate
this assumption.)

We note in passing that if the cables are cut much
longer than necessary, the bundles of excess cable can
create additional air-flow problems, and can also lead to
space problems (not enough room), weight problems (es-
pecially for overhead trays), and installation problems
(someone has to find a place to put these bundles, and
to tie them down).

One other issue to note is that rack dimensions, and
rack and tray spacings, are generally given in units of feet
and inches, while standard cable lengths are in meters.
We suspect this use of incommensurable units could lead
to some complications in avoiding excess cable loops.

Algorithm 4 Algorithm for wiring cost computation
1: Given:
2: Gl(Vl, El): Logical topology
3: PMap(v): maps v ∈ Vl to position (x, y, z)
4: RW : Rack Width
5: CHTH: Distance: top of the rack to ceiling-hung tray
6: GCT : Gap, in racks, between two cross trays
7: Cost(d): maps cable with length d to its cost
8:
9: Initialize:

10: CableCost= 0
11:
12: for e = (v1, v2) ∈ El do
13: len = 0
14: (x1, y1, z1)← PMap(v1)
15: (x2, y2, z2)← PMap(v2)
16:
17: /* Add length to pull the two ends of the cable to the side of the

rack */
18: len + = RW
19:
20: if x1 == x2 AND y1 == y2 then
21: /* both ends are in the same rack */
22: len + = |z1 − z2|
23: else
24: /* not in the same rack; add length to reach trays */
25: len + = z1 + z2 + 2 ∗ CHTH
26:
27: if x1 6= x2 AND y1 mod GCT > 0 AND y2 mod

GCT > 0 AND y1/GCT == y2/GCT then
28: /* Exception: Manhattan distance does not work */
29: distanceToCrossTray1 = RW ∗(y1 mod GCT +y2 mod

GCT )
30: distanceToCrossTray2 = RW ∗ (2 ∗ GCT − (y1 mod

GCT + y2 mod GCT ))
31: len + = |x1 − x2|+ MIN(distanceToCrossTray1, dis-

tanceToCrossTray2) ;
32: else
33: len + = |x1 − x2|+ |y1 − y2|
34: CableCost += Cost(len)
35:
36: return CableCost
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7.1 A general algorithm to create wiring plans
In this section, we describe an algorithm (Algorithm 4,

in pseudo-code) to generate a physical wiring plans, in-
cluding specific cable lengths, from an abstract logical
topology. The algorithm also computes the total cost
of the cables in the wiring plan, including the server-to-
switch cables. The algorithm is generic; it works for all
topology types.

The logical topology is provided as a graph
Gl(Vl, El), where the set of vertices Vl contains both
servers and switches of the logical topology and edges
El represents the links. Also given is a function T (v)
that provides the size of node v ∈ Vl in terms of Rack
Units (RU). One RU is 1.75 inches.

We assume that the designer provides the number of
racks, their arrangement in rows (X rows with Y racks
per row), and their two-dimensional spacing (in particu-
lar, the widths of the cold and hot aisles).

Therefore, the wiring problem is to figure out a feasi-
ble distribution of the servers and switches in the logical
topology to the positions in the racks, such that the cable
cost is the lowest. We denote the position of a node that
is z RU from the top of the y-th rack in row x as (x, y, z).

Although Algorithm 4 is generic, it depends on a
topology-specific function PMap() that assigns servers
and switches from the logical topology to a point in
three-dimensional space. This is a difficult problem, and
we discuss it in detail in Sec. 7.2.

The algorithm also depends on a generic function
Cost(len) which, for a cable of length len, determines
the appropriate cable type and then computes a cable
cost. We discuss this issue in Sec. 7.3.

Note that given two vertices v1, v2 and their positions
(x1, y1, z1), (x2, y2, z2) the Manhattan distance metric
between these two positions is not enough to estimate
the length of the cable needed in practice because of sev-
eral reasons: (i) Switch ports and server NIC interfaces
can be located anywhere in the middle of the rack, (ii)
For proper airflow, cables are pulled to the side of the
rack before they are routed up or down in a rack, (iii)
Connections between racks have to run via ceiling-hung
cable trays, (iv) Cable trays are a few feet – we assume
24 inches – above racks, (v) There are fewer cross trays
(trays across the rows) than the number of racks in a row,
to allow sufficient air flow.

To account for (i) and (ii), we add half of the rack
width for each end of the link in cable length calcula-
tions. To account for (iii) and (iv), we consider the length
for reaching the trays above the racks.

We note that even with constraint (v), except in one
case, we can use the Manhattan distances between racks
to compute the length of cables within the trays them-
selves. The only exception is when connecting two racks
Ri and Rj in different rows, when neither rack is directly

under a cross tray, but both Ri and Rj are between a pair
of consecutive cross trays. In this case, we pick the cross
tray that minimizes the cable length.

7.2 Logical to physical mapping functions
Algorithm 4 imports a topology-specific function

PMap(v) that assigns physical space positions to
servers and switches in the logical topology (v ∈ Vl).
Finding a PMap(.) that minimizes cable cost is a hard
problem (we believe it is NP-hard, but we have not yet
worked out a reduction). The solution space is huge, be-
cause any permutation of nodes in the logical topology is
a legal assignment for any subset of rack positions with
size |Vl|.

We have designed heuristics for PMap(.) for the Hy-
perX and EGFT topology types.

For FatTree networks, we pack servers and switches
in order to fill racks as much as possible. For HyperX
networks, we chose instead to avoid any cable that runs
between a server in one rack and a switch in another;
this means that some of our HyperX results might require
more racks than strictly necessary. In the future we will
modify our algorithms to give the designer the choice
between these options.

HyperX: Note that a HyperX topology is symmetric
along its dimensions. Also, in HyperX topologies, all
switches are edge switches. We leverage these observa-
tions to treat all the switches within a dimension as iden-
tical, which reduces the search space for rack space as-
signments. We consider all permutations (orderings) of
the dimensions. Each permutation defines the sequence
in which switches are assigned to racks. Suppose rh de-
notes the rack height and eh denotes the height of an edge
switch plus the height of the associated servers. Then we
can pack brh/ehc edge switches and associated servers
into each rack, using the chosen sequences.

We currently assume eh = 1+T RU (i.e., servers and
switches are all 1 RU high); this is probably wrong for
high-radix switches, but not significantly wrong.

EGFT: We employ a simple heuristic for packing the
nodes of an EGFT. We first pack the edge switches and
associated servers in a fashion similar to the one we de-
scribe for HyperX, except that we do not have any di-
mensions in an EGFT on which to randomize. We then
iterate from bottom to top and left to right of the log-
ical topology, distributing the switches at each level to
the first available space in each of the partially-populated
racks. If no such rack is available, then we choose an
empty rack. We fill rows before crossing between aisles;
this heuristic seems to give shorter cable lengths.

7.3 Cable cost calculation
For the function Cost(len) used in Algorithm 4, we

must compute the cost of a cable of length len. We
support either of two scenarios: standard-length cables,
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based on data such as in Table 2, or custom-length cables.
We first attempt to use a single-channel SFP copper

cable for any logical link with LAG factor 1. For wider
links, we use quad-channel QSFP copper cables for runs
up to 5 meters, or quad-channel QSFP+ fiber cables for
longer runs.

When using standard cables, we always choose a cable
from the list of standard parts whose length is at least as
long as required, and we obtain the cable cost from that
list. Sometimes this results in a lot of excess cabling to
hide, for longer cable runs.

When using custom cables, our current implementa-
tion calculates the cost for a cable of the exact length re-
quired.7 We use the cost model for connectors and cables
from Sec. 4.2. We then inflate these costs by an arbitrary
25% to account for the extra costs of purchasing custom
cables and carrying them in inventory.

7.4 Choosing between copper and optical
Because high-speed optical network cables cost more

than copper cables (see Table 2 for examples), normally
we would prefer to use copper cables – if the cable length
is below the limit on 10GbE copper cables, approxi-
mately 5 meters.

However, if plenum space is limited and we have to
route a lot of cables, copper cables might not fit. In this
case, we would need to replace some of the copper cables
with optical cables.

We have deferred the solution of this problem to fu-
ture work, especially because (based on some prelimi-
nary estimates) it does not appear to be a real problem
for moderately large networks.

8 Examples of Perseus results
In this section, we present some results showing the

ranges of cost vs. performance tradeoffs that Perseus ex-
poses to the network designer. (Remember, these results
are based on only semi-plausible parts costs, and should
never be quoted as realistic network costs.)

For reasons of space, we limit the results presented
here to configurations with N (servers) set to either 1024
or 8192. We consider a variety of switch radices: 32,
48, 64, 96, and 144, and we consider T (servers/switch)
values of 16, 24, and 32. For HyperX networks, we ex-
plored designs with “excess” bisection bandwidth, since
HyperX is not an “equal-cost multipath” topology, and
optimal routing could be difficult.

Figures 1 and 2 show cost vs. bandwidth curves for
HyperX and FatTree configurations for, respectively, 1K
and 8K servers. Cost is based on our models for switch

7We plan to modify this so that it quantizes the lengths in multiples
of perhaps 0.5 meters, thus reducing SKU count at the cost of having
to hide some slight excess cabling. This would also allow us to use
standard cables if they are available in the right length.

cost and for standard-length cables, including installa-
tion labor, and includes server-to-switch cables. For the
HyperX curves, we plot curves for just a few values of
S (number of switches) to preserve readability, and the
points on each curve reflect various choices for D and
~S. For the FatTree curves, the points on each curve re-
flect various choices for S, but we plot curves only for
selected values of T , to keep the graphs readable. In
all cases, we plot only the least-cost configuration that
achieves a target bisection bandwidth. The curves show
only the points for the least-cost physical layout for a
given abstract topology. Note that naive designs could
have much higher costs than the designs we generate.

Figures 1 and 2 lead to several observations. First,
total network cost generally increases with increasing
bandwidth, but not always; especially for larger HyperX
networks, one can often find a “better” configuration at
a much lower cost through a small parameter changes.
Second, for a given target bandwidth, there are often
several possible parameter choices with widely varying
costs. Finally, although the figures suggest that FatTree
networks might be somewhat less expensive than Hy-
perX networks for the same target bandwidth, our cost
models are currently too crude to support this as a gen-
eral conclusion.

Total costs obviously depend on our models for parts
costs; Fig. 3 shows how the HyperX(N = 8192) results
would change if switches cost just 20% as much as in
Fig. 2 (the same low-cost model as in [13]). Note that the
relative ranking of the curves usually does not change,
but some of the “sweet spots” do.

Figure 4 shows how cost varies with HyperX network
worst-case hop counts. (For FatTree networks, the worst-
case hop count is simply 2L; L=6 for all of the configura-
tions plotted in Fig. 2.) One can sometimes, by spending
more money, reduce the worst case hop count by one or
two, but generally high-bandwidth topologies also have
low hop counts.

Computation time: Computation costs are tolerable,
especially since generating these graphs parallelizes eas-
ily. Table 4 shows elapsed times for various N .

Table 4: Computation costs (wall times)
Network N Xeon CPUs Jobs Worst-case Total
HyperX 8K 3GHz 166 155s 3.4hr
HyperX 16K 3GHz 68 20min 14.6hr
FatTree 8K 2.33GHz 96 55min 28.8hr

8.1 Secondary metrics
We found that using custom cables does not increase

costs very much, based on our crude model for their parts
cost. (Space does not permit us to show these graphs.)

However, custom cables do significantly reduce the
amount of excess cable that must be tucked away
without blocking airflow. For example, for HyperX
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Figure 1: Cost vs. bisection bandwidth for 1024-server networks
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Figure 2: Cost vs. bisection bandwidth for 8192-server networks

with N=8192, the least-cost full-bandwidth configu-
ration with standard cables requires 9 SKUs, or 141
SKUs using custom cables. When using standard cables,
HyperX/N=8192 configurations end up with mean per-
cable excess lengths of between 23 and 265 in.

We also can quantify the number of wasted lanes in
quad-channel cables. For HyperX with N=8192, this
ranges from 0 to >55K, depending on the configuration.
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Figure 3: Cost vs. BW for $100 switch ports
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Figure 4: Cost vs. worst-case hop count

9 Related work
Traditional topology analyses did not focus on physi-

cal layout issues that arise in a data center; they mostly
considered only logical metrics such as bisection band-
width. Much of the prior work also does not address
the problem of efficiently sweeping through the logical
topology space [6].

Ahn et al. [3] presented an algorithm that minimizes
the number of switches needed to build a HyperX net-
work with a given bisection. However, they do not con-
sider any layout issues.

Popa et al. [13] compared the costs of several data-
center network architecture families. Their analysis cov-
ered the use of server cores for switching, and included
energy costs. However, they did not directly address the
problem of finding a least-cost network design within a
specific topology family, and they do not appear to have
tried to optimize the placement of switches in racks.

Farrington et al. [8] analyzed cabling issues for Fat-
Tree networks. They showed that much cost could be
eliminated by consolidating the upper levels of a FatTree,
replacing cables, connectors, and a physically distributed
set of low-radix commodity switches with a design using
merchant silicon. Many of the cables become traces on
circuit boards. They also show how to use higher-speed
links within a FatTree to reduce the cable count.

The Helios [8] design also addresses the costs of ca-
bling, switching, and especially the costs of electrical
to optical conversions. Helios focuses on the connec-
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tions between containers, and exploits low-cost, rela-
tively slow optical switches, so it covers a somewhat dif-
ferent domain than Perseus is aimed at.

Currently our tools do not model topology related en-
ergy costs. At one level, quantifying power is easy: we
simply add up the power consumption of the individ-
ual switches. However, as switch designers improve the
energy-proportionality of their products, switch power
becomes more dependent on traffic demands (that is
the goal of proportionality). An accurate estimate of
network-related power consumption requires a detailed,
time-varying traffic model, and also requires accurate
models for switch power consumption at various traf-
fic levels. These data are often hard to obtain, which
could make it difficult to compare topology-related en-
ergy costs; Popa et al. [13] used average network-wide
utilization as a proxy. Abts et al. [1] demonstrated that a
flattened butterfly topology is more power-efficient than
a folded-Clos (FatTree) network.

Prior work by Heller et al. [10] has shown that dy-
namic adjustment of the set of active, power-consuming
links can increase network-wide proportionality. Thus,
there is a complex interaction between network topology,
traffic demands, and power consumption, and we do not
know how to model this issue in detail.

10 Future work
Within our framework, there is a lot of room for further

work, including:
• Understanding how to model internal vs. external

bandwidth. Currently, we assume that local servers
and external connections properly share the overall bi-
section bandwidth of a network, but this is probably
wrong. We also need to understand whether designers
care where the external ports can be connected.

• Dealing different widths for hot and cold aisles.
• Incorporating plenum capacity into copper vs. fiber

choice and/or design-feasibility testing (See Sec. 7.4).
• Modeling network energy consumption. This requires

models for traffic and switch energy proportionality.
• Modeling network reliability.

11 Summary and conclusions
In this paper we have exposed the complexity of the

problem of choosing good designs for high-bandwidth,
multi-path data-center networks. We have described the
Perseus framework for assisting network designers in ex-
ploring this space, and we have presented several algo-
rithms that help to optimize parameter choices. We have
also shown that, based on semi-plausible parts costs, the
overall cost for constructing a network with a given bi-
section bandwidth can vary significantly.

We know from past experience that the relative costs
of parts such as switches and cables will change over

time, sometimes dramatically. We also expect NIC and
switch port speeds to increase in several jumps. These
trends mean that topology choices based on current parts
will undoubtedly need to be re-evaluated every year or
two; thus, our goal in this paper has been to provide a
methodology and a set of algorithms, not to describe the
“correct” choices for topologies and their parameters.

While designers of real networks will undoubtedly use
different costs, they will still have to grapple with the
choice of parameters, and Perseus should prove useful in
this task.
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