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Abstract

In order to avoid critical SLA violations, service
providers use monitoring technology to automate the
identification of relevant events in the performance of
managed components and forward them as incident tick-
ets to be resolved by system administrators (SAs) be-
fore a critical failure occurs. For optimal cost and per-
formance, monitoring policies must be finely tuned to
the behavior of the managed components, such that SAs
are not engaged for investigation of false alerts. Exist-
ing approaches to tuning monitoring policy rely heavily
on high skilled SA work, with high costs and long com-
pletion times. Polygraph is a novel architecture for au-
tomated tuning of monitoring policies towards reducing
false alerts. Polygragh integrates multiple types of ser-
vice management data into an active-learning approach
to automated generation of new monitoring policies. SAs
can only be involved in the verification of policies with
low projected scores. Experiments with a trace of 60K
monitoring events from a large IT service delivery in-
frastructure compare methods for threshold adjustment
in alert policy predicates with respect to potential for
false alert reduction. Select methods reduce false alerts
by up to 50% compared to baseline methods.

1 Introduction
Proactive prevention and timely response to failures with
minimal operational costs is a major target for service
providers in large-scale IT infrastructures. In order to
achieve this target, service providers use monitoring in-
frastructures such as IBM Tivoli 7 [5] and HP Service-
Center 7 [4], to monitor the performance of the managed
components and identify critical events. Such events are
forwarded to incident management systems, and actions
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are taken before Service Level Agreement (SLA) viola-
tions occur. The monitoring agents deployed on man-
aged components use pre-defined policies to generate
events based on Key Performance Indicators (KPIs) and
component execution contexts. Other nodes in the mon-
itoring infrastructure perform event aggregation and in-
cident ticket generation based on policies that aggregate
in time and space (i.e., across multiple systems). Even-
tually, SAs analyze the auto-generated incident tickets,
called alerts, to prevent or solve failures.

The effectiveness of the monitoring policies in captur-
ing critical events with limited false positives and neg-
atives has impact on the service management costs, in-
cluding the cost of SA time spent with incident man-
agement, and the cost of SLA penalties. Previous work
[2] and our observation of large-scale delivery infrastruc-
tures confirm the difficulty of configuring the monitoring
policies for an effective cost balance because of the com-
plexity of the monitored systems and applications.

This paper addresses the problem of effective config-
uration of the monitoring policies with an automated ap-
proach to dynamically modeling system behavior, gener-
ating monitoring policies and deploying them. The nov-
elty draws from the integration of diverse service man-
agement content (e.g., incident tickets, system vitals)
and operational domains (e.g., customers, clusters) and
from the use of machine learning to model system be-
havior and to assess policy effectiveness. As a result, our
system, called Polygraph, can automatically reduce the
number of false-positive alerts, called false alerts, with
limited or no impact on the identification of true alerts.
Thus, Polygraph reduces SA work with both alert han-
dling and policy tuning.

Polygraph builds on two novel principles. First princi-
ple is to learn from SAs, namely, learn from the resolu-
tions of historical incident tickets handled by SAs about
alert instances that can be safely ignored. This principle
enables effective assessment of policies without elabo-
rate, resource consuming system analysis. The second
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Figure 1: Polygraph system architecture and environ-
ment.

principle is to leverage component similarity in large
scale environments in order to expand the input size
for Polygraph learning tasks, and thus improve accuracy.
Similarity is also used for policy deployment such that
false alerts are reduced even for servers that have not ex-
perienced similar events yet, but are likely to experience
them in the future. Towards this end, Polygraph uses
temporal correlation of system vitals, configuration de-
tails, and change operation details.

Figure 1 illustrates the integration of Polygraph within
a typical service management infrastructure and its main
components. Polygraph has a close interaction with the
monitoring infrastructure and leverages data from con-
figuration management databases, repositories of histor-
ical system vitals, incident and change management sys-
tems, repositories of SLA and maintenance data.

The Polygraph prototype described and evaluated in
this paper is focused on the analysis of alerts and gener-
ation of new policy. The implementation uses the IBM
Tivoli policy specification language. However, our pro-
posal does not depend on a specific monitoring technol-
ogy, and can be extended to any IT service delivery en-
vironment. The evaluation compares several approaches
for generation of new monitoring policies., and it is based
on over 60K monitoring events, and related incident tick-
ets and system vitals from a large IT service provider.

Overall, this work makes several contributions:
(1) Design system architecture for continual refinement
and assessment of policies based on integrated exploita-
tion of diverse service management data, (2) Propose
techniques for identification of false alerts by mining his-
torical incident resolutions, (3) Propose techniques for
generation and assessment of new monitoring policies
that can significantly reduce the volume of false alerts.

In this paper, true alert identifies an alert instance for
which SA intervention is required to solve a critical sit-
uation, and false alert identifies an alert instance that is
cleared without any fix performed by SA, yet involves

the SA for system status checks.
Next section discusses related work, Section 3 de-

scribes Polygraph architecture and implementation de-
tails, Section 4 presents the evaluation of Polygraph pro-
totype. Finally, Section 5 summarizes our results. Refer
to [7] for more extensive evaluation results and related
work.

2 Related Work
There are several well-known commercial and
community-supported platforms for monitoring data-
center and IT infrastructure components, including IBM
Tivoli Monitoring [6], and HP OpenView [4]. Most
of these products support alert-suppression based on
statically specified policies. Our proposal uses policies
dynamically generated by mining alert streams and other
service management data.

Previous work in the area of incident prevention and
resolution in large scale IT infrastructures used incident
classification techniques based on performance metrics
[1]. Polygraph uses a similar approach of learning from
historical service management data in order to discover
alert patterns and generate new policies.

In the area of dynamic generation of alert policy, the
closest to our work is the approach in [2] for automated
and adaptive threshold setting based on application Ser-
vice Level Objectives (SLOs). This approach is hard to
apply in large IT infrastructure due to the complexity of
the method and the difficulty to acquire component de-
pendency graphs.

A large body of work relates to false-alert reduction
in intrusion detection systems (IDS). The use of data
mining methods applied to historical data [9], and multi-
stage analysis architectures render our work similar to
some IDS solutions [8]. However, the binary IDS alert
model (real vs. false attack) is different from the model
of performance monitoring alerts, which includes quanti-
fied resource usage levels. Thus, this work cannot lever-
age the IDS methods.

Previous work [3] underlines the difficulty in classi-
fying rare events because traditional learning classifiers
are often biased for the most common events. The au-
thors argue that if the events are rare and not too costly,
the learning algorithms can do little to improve. When
events have high costs (e.g., SLA penalties), a larger
number of false alarms must be tolerated. This matches
a best practice in IT Service Delivery for management of
high-risk SLOs.

3 Polygraph Framework
For a competitive IT service delivery infrastructure, the
monitoring infrastructure must minimize the number of
false alerts in order to keep operational costs low and



must maximize the number of true alerts in order to pre-
vent SLA failures. This goal can be achieved with de-
tailed analysis and fine-tuning of alert policies. However,
even with state-of-the-art tooling, this approach requires
substantial SA effort and skills, prohibiting large-scale
adoption.

Polygraph, the framework proposed in this paper,
specifically addresses these limitations through the au-
tomation of monitoring policy evaluation and fine-
tuning. The goal of Polygraph is to identify false alerts
and design new monitoring policies that lower the occur-
rences of false alerts with negligible impact of true alerts.

The Polygraph method for false-alert reduction com-
prises: (1) learning the pattern of true and false alerts,
(2) generation of new policy based on the alert patterns,
(3) assessment of new policy impact. Figure 1 illustrates
the component architecture that implements this method
by integration with the overall service delivery infras-
tructure. Polygraph comprises of four functional compo-
nents (see Figure 1): False Alert Detector performs the
analysis of current alert specification effectiveness and
false-alert detection. The module distinguishes false and
true alerts by learning from SA’s assessment of past inci-
dent resolutions. Alerts are associated with details about
related policy and KPI thresholds, which are used in next
stages.

Monitoring Policy Generator performs the genera-
tion of monitoring policies based on observed false-alert
patterns. Data from similar servers is integrated in order
to improve result quality.

Monitoring Policy Evaluator performs the evalua-
tion of newly generated monitoring policies with focus
on SLA impact (minimize missed true alerts) and work
reduction (maximize eliminated false alerts). Evaluation
is based on simulation against historical system vitals
and monitoring events. Policies with acceptable balance
of SLA impact and reduction move to deployment while
others can be passed to SAs for further evaluation.

Monitoring Policy Deployment performs the deploy-
ment of new monitoring policies by close interaction
with the monitoring infrastructure. Urgency of deploy-
ment is assessed base on server profiles, and used for
scheduling policy deployment.

The reminder of this section is focused on select ele-
ments of Polygraph implementation.

3.1 Policy Model
In general, an alert policy is defined by a user-specified
predicate over component KPIs or context parameters.
The policy may also include threshold conditions on the
event reoccurrence in order to delay alert generation.
Polygraph prototype works with three types of policy:
[BASIC] IF A; [AND] IF A AND B; and [OR] IF A OR
B. Here, A and B are predicate units consisting of one

KPI reference and related threshold value. Our methods
apply to more complex predicate expressions by conver-
sion to conjunctive normal form.

In the Polygraph prototype, we consider only
threshold-based alert policies, which have predicates
that refer only to KPIs and threshold values. The ana-
lyzed alert traces show that most false-alerts result from
threshold-based policies. Sample policies for each type:

• IF (System.V irtualMemoryUtilization > 90)

• IF (NTPhysical Disk.Disk T ime > 80) AND
(NT Physical Disk.Disk T ime <= 90)

• IF (SMP CPU.CPU Status = ‘off-line’) OR
(SMP CPU.Avg CPU Busy 15 > 95)

3.2 Learning Alert Patterns
Alerts are identified by analysis of incident ticket de-
tails. The alerts-related tickets are automatically gen-
erated, and are characterized by a text pattern that may
include details about the policy, monitoring event (KPIs
and values). Polygraph includes methods for detection of
text patterns for alert identification. For each alert, it ex-
tracts KPI values, alert policy references, and managed
component references. Further, text analysis of incident
resolution description helps classify an alert as true alert
or false alert.

Given a scope defined by a target alert policy P and a
server or group of serversH , Polygraph scans the related
historical content to identify alerts and constructs the true
set, comprising the identified true alerts, and false set,
comprising the false alerts. A sample approach to capture
alert pattern is based on the KPI value patterns, i.e., the
ranges of KPI values for each of the true and false sets.
Polygraph includes also methods for discovery of time
patterns, discussed next.

3.3 Policy Generation with Value Patterns
An alert value pattern is described by the true value
range, the range of KPI values that corresponds to alerts
in the true set. Without loss of generality, we assume
a monotonic behavior for KPI values; if a value corre-
sponds to a true alert, than all alerts for higher KPI values
are true alerts.

Proposition 1 For a given alert policy P consisting of
one KPI parameter p and its corresponding threshold θ,
let T be the true set of P , and t = min(T ). If t > θ, P
modified to include the threshold t will not generate any
false negatives for the given dataset.

Proposition 1 describes how to tune the threshold
value for a BASIC alert policy. If the smallest KPI value
t for true alerts is bigger than the original threshold, then



the new threshold value is set to t and no true alerts are
missed. False alerts related to KPI values between the
old and new threshold are eliminated while those for KPI
values above the new threshold remain. As an example,
given a policy governing CPU threshold, if all true alerts
happen for thresholds greater than or equal to 95%, we
can safely raise the original threshold of 90% to 95%. If
a false alert occurs for CPU load of 98%, it is not elimi-
nated by the new threshold setting.

3.4 Policy Generation with Time Patterns
To further improve the false alert reduction, Polygraph
takes into account the time patterns. Periodic patterns
of jobs, like daily, weekly, or even monthly, can signif-
icantly affect resource consumption and trigger alerts,
false or true. The method comprises the finding of pe-
riodic patterns based on learning set and extrapolation of
these patterns in the analysis to remaining historical con-
tent. In order to limit the risk of missing true alerts by
extrapolation, we focus on the periodicity of true alerts,
rather than on false alerts.

Given a scope of policy and server(s), periodicity anal-
ysis starts with the related true set of the policy and pro-
duces a set of periodic time intervals, called true time
ranges, during which all of the occurring alerts are con-
sidered true alerts. Alerts that occur outside the true time
ranges are considered false alerts. Periodicity analysis
requires specification of a threshold for the width of a
true range to mine a set of these true ranges for each
alert policy. For example, suppose host H has three true
events at 3pm, 4pm, and 8pm. Given a true time range
threshold of 1 hour, the analysis results in two true time
ranges (2pm-5pm) and (7pm-9pm). Smaller thresholds
lead to more false alert detection, but increase the risk of
missing true alerts.

3.5 Server-Based Policy Tuning
The typical approach to defining alert policy in service
delivery infrastructures is to use the same best-practices
policies for all servers with similar installed software
and workloads. While this approach yields acceptable
alert accuracy during early server lifetime, it will no
longer efficient later in server lifetime, across capacity
changes (e.g., memory or hard disk upgrades), dynamic
re-clustering for workload balancing, and other events.
For example, for a server with increase of hard disk ca-
pacity from 100GB to 10TB, an alert threshold of 90%
utilization will generate alerts when 1TB of disk space is
still available.

To address these limitations, Polygraph takes the ap-
proach of tuning alert policy thresholds for each server
and our experiments show significant benefits. Poly-
graph does not exclude the tuning of alerts for groups of
servers with similar configurations and workloads, which

we plan to integrate in the future.

3.6 New Policy Evaluation
In the evaluation phase, Polygraph scans the set of alerts
for the current scope (i.e., union of true and false sets)
and compares the KPI values against the new policy
threshold. The new counters for new true and false alerts
are compared with the old counters in order to assess
the risk (true alert misses) and benefit (false alert reduc-
tion). Installation-specific thresholds on the impact met-
rics are used to determine if the new policy (1) is highly
beneficial with very low impact and should be automat-
ically deployment,(2) has borderline benefits and risks
and should be forwarded for SA analysis, or (3) has lim-
ited benefits and higher risks, and should be discarded.

4 Evaluation
Our empirical results are based on large and detailed
datasets collected from globally distributed production
environments serving real clients. We collected 30-day
datasets with around 60K events. We divide the datasets
of system performance metrics, alerts, and events into
six parts (5 days for each) based on their occurred time:
older data are to be used for learning purpose, and recent
data are for test purpose. To show the effects of training
data size on our alert threshold adjustment schemes, we
use the first five datasets to make five differently sized
training data (datasets of 5, 10, 15, 20, and 25 days) and
the last part as test data. By default, the true time range
threshold is 1 hour.

The experiments in this section compare various meth-
ods for new policy generation with respect the effect of
the automatically generated policies to eliminate false
alerts. Namely, the experiments present the ratio of false
alerts for which the generated policies do not trigger
alerts. We refer to the not-triggered false alerts as ‘de-
tected false alerts’. The larger the shares of detected
false alert, the larger the reduction enabled by Polygraph
framework.

4.1 Data Characteristics
In the target service delivery environment, alert policy
specification comprises several fields including the target
server and predicate descriptions. The threshold values
have never been changed since initial deployed (which is
typical in most environments).

System KPI values are collected at one-minute inter-
vals and are aggregated over different time windows such
as 15 minute, 1 hour, 1 day, and further.

We use two widely deployed alert policies, say P1 and
P2, in our experiments to show the effectiveness of the
Polygraph framework. Table 1 shows their characteris-
tics, including total alert count, share of total alert trace,
and distribution across true and false alerts; actual policy



Table 1: Characteristics of select alert policies
Alert Policy Count Ratio(%) True Alerts False Alerts

P1 23355 40.48 1026 (4.39%) 22329 (95.61%)
P2 3344 5.80 1526 (45.63%) 1884 (56.34%)
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Figure 2: Host-based false alert detection with varying
learning set size

expressions are not disclosed for privacy issues. P1 has a
large volume of alerts, of which 95% are false alerts. P1

is a good example of how Polygraph can automatically
and effectively tune an alert policy threshold. P2 illus-
trates the case when Polygraph needs expert SA reviews
to prevent abuse of automation.

4.2 Basic Threshold Adjustment
The basic threshold adjustment method comprises of
policy generation using value patterns and including all
servers, i.e., the entire data set is used for assessment of
the true set. Both P1 and P2 alert policies do not have
any gain when applying this method, even if the current
policy thresholds are not optimal. This is because servers
with same alert policy are not similar with respect to re-
lated datasets, as shown by experiments below.

4.3 Host-Based Adjustment
This experiment compares the basic threshold adjust-
ment (i.e., analysis across all servers) with host-based ad-
justment (i.e., server-based analysis) including only the
servers whose training data includes true alerts. Figure 2
illustrates false alert detection rates of P1 and P2 as the
training set increases. Note that the difference between
the plots for each policy indicates the false alert detection
rate for servers whose training data do not have any true
events. In general, we observe that more false alerts are
detected as training set gets smaller. P1 shows a high rate
of false alert detection where as P2 shows a low detec-
tion rate. For P2, we see that at least 10 days of training
data is needed for reliable performance. The spike of P2

is due to the large number of servers with no true events
in the training set.
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Figure 3: Host and time-based false alert detection with
varying learning set size
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Figure 4: Host and time-based false alert detection with
varying true time threshold

4.4 Host and Time-Based Adjustment
This experiment compares the basic adjustment method
with a method using the time-based pattern for false alert
detection and selection of the servers that experience
true alerts. Figure 3 shows false alert detection rates
of P1 and P2 for the two methods when increasing the
training set. In general, the host-and-time-based schema
shows higher false alert detection than the time-based
schema (see Figure 2). Similarly, the host-and-time-
based scheme shows higher false alert detection rates
than the host-based scheme. Based on the experiments
described above, P1 can be safely tuned by Polygraph
with no human interaction, but P2 needs to be shown to
the system administrator before deployment.

4.5 Impact of True Time Range Threshold
This experiment evaluates the impact of the true time
range threshold on the rate of false-alert detection when
applied to host-and-time-based scheme. The experiment
uses the 10-day training dataset and varies the threshold
value from 30 to 180 minutes.

The results are illustrated in Figure 4. As the threshold
value increases and true time ranges of P1 and P2 get
larger, the rate of false-alert detection decreases.

4.6 Discussion
Based on our experiments, we identify extensions that
can improve the effectiveness of Polygraph in reducing



false-alerts by automated tuning of alert policies.

Leverage operational data for tuning alert policy.
The analysis of monitoring event data demonstrates the
need to leverage operational data in the tuning of alert
policy. For instance, Polygraph integrates operational
data that describes when the scheduled maintenance ac-
tivities are expected to generate significant workload on
the managed servers, such as anti-virus scans and back-
ups. Our analysis shows that 20.3% of a customer’s
alerts are due to virus scan that caused higher CPU usage
than the normal state. In order to eliminate these false
alerts, one has to exploit operational data and include in
the new policies predicates related to the execution con-
text. Another relevant type of operational data includes
SLA specifications and attainment statistics. One can ex-
ploit SLA information to delay generation of alerts when
workload varies significantly but yet the SLAs are un-
likely to be missed.

Emphasize more recent history. When long event
history is available, such as in typical production envi-
ronments, false-alert detection is likely to exhibit poor
quality if all data samples receive equal weight in the
analysis. This is because the detector misses to recognize
the most recent trends in the occurrence of false alerts. In
order to improve decision quality, a weighted scheme can
be employed to emphasize recent input. Weights should
be carefully chosen such that the discard of old content
does not cause the missing of true alerts.

Scalable policy deployment. Polygraph can generate
new policies for a server profile that matches a very large
number of servers. In order to avoid the disruption of the
monitoring infrastructure, the policy deployment should
be staged. The staging order and timeline is based on the
assessment of server-specific risks/costs due to delaying
the policy deployment.

Impact of change operations. The behavior of a man-
aged system changes over time due to infrastructure
changes for the server itself (e.g., hardware, software)
or the environment in which the server is running (e.g.,
workload). As a result, monitoring policy becomes out-
dated. Integration of service management data that de-
scribes change operations, such as new patch/software
installation, memory expansion, and subnet change,
should be used to trigger analysis for policy tuning and
determine the relevant historical content to consider.

Leverage server similarity. Our experiments reveal
the potential benefit of grouping similar servers in alert
policy tuning. This is helpful in cases when the train-
ing dataset collected on an individual server does not
have sufficient data points for rare events; grouping sim-
ilar servers provides a better training dataset, hence bet-
ter policy tuning. A sample similarity criterion includes

the servers in the same web-application cluster, which
all have the same server configuration and the same
workload characteristics. For more general cases, Poly-
graph must use a server similarity measure that integrates
server resource profiles and workload characteristics.

5 Conclusion
This paper introduces Polygraph, a framework for auto-
mated reduction of false alerts in large scale IT infras-
tructures based on an active-learning approach. Poly-
graph mines historical incident ticket content to learn
from SAs about which alerts are false and to correlate
this information with other service management content,
such as system vitals and server similarities, to modify
threshold-based alert policies and eliminate false alerts.
In experiments with real-life traces from a large and di-
verse service delivery environment, Polygraph performs
very well in reducing false alerts while not missing true
alerts. Polygraph achieves this by combining host and
time-based tuning of alert policies.

In future work, we plan to extend the Polygraph model
for automated generation of new policy by including
conditions on execution context and methods for auto-
matic identification of durations when maintenance pro-
cesses generate temporary spikes in resource consump-
tion. Furthermore, for improved quality of false-alert re-
duction, we plan the development of methods that em-
phasize recent history.
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