
Stout: An Adaptive Interface to Scalable Cloud Storage

John C. McCullough, John Dunagan∗, Alec Wolman∗, and Alex C. Snoeren

UC San Diego and ∗Microsoft Research, Redmond

ABSTRACT
Many of today’s applications are delivered as scalable,
multi-tier services deployed in large data centers. These
services frequently leverage shared, scale-out, key-value
storage layers that can deliver low latency under light
workloads, but may exhibit significant queuing delay and
even dropped requests under high load.

Stout is a system that helps these applications adapt to
variation in storage-layer performance by treating scal-
able key-value storage as a shared resource requiring
congestion control. Under light workloads, applications
using Stout send requests to the store immediately, min-
imizing delay. Under heavy workloads, Stout automat-
ically batches the application’s requests together before
sending them to the store, resulting in higher throughput
and preventing queuing delay. We show experimentally
that Stout’s adaptation algorithm converges to an appro-
priate batch size for workloads that require the batch size
to vary by over two orders of magnitude. Compared to
a non-adaptive strategy optimized for throughput, Stout
delivers over 34× lower latency under light workloads;
compared to a non-adaptive strategy optimized for la-
tency, Stout can scale to over 3× as many requests.

1. INTRODUCTION
Application developers are increasingly moving to-

wards a software-as-a-service model, where applications
are deployed in data centers and dynamically accessed
by users through lightweight client interfaces, such as
a Web browser. These “cloud-based” applications may
run on hundreds or even thousands of servers to support
hundreds of millions of users; the application servers in
turn leverage high-performance scalable key-value stor-
age systems, such as Google’s BigTable [7] and Mi-
crosoft’s Azure Storage [3], that allow them to grace-
fully handle variable client demand. Unfortunately, be-
cause these storage systems support many applications
on a single shared infrastructure, they present application
developers with a new source of variability: every appli-
cation must now cope with a store that is being loaded by
many applications’ changing workloads.

Unlike variability in its own workload, which an appli-
cation can easily monitor and often even predict, changes
in the level of competition for shared storage resources
are likely to be unexpected and outside the control of
a particular application. Instead, each individual appli-
cation must observe and react to changes in available
storage-system throughput. Ideally, the collection of ap-
plications leveraging a particular scalable storage system
would cooperate to achieve a mutually beneficial oper-
ating point that neither overloads the storage system nor
starves any individual application.

Today, each application seeks to minimize its own per-
ceived latency by sending each storage request immedi-
ately. Each storage request thus incurs overheads such
as networking delay, protocol-processing, lock acquisi-
tions, transaction log commits, and/or disk scheduling
and seek time. However, when the store becomes heav-
ily loaded, sending each request individually can lead to
queuing at the store, and consequently high delay or even
loss due to timeouts. In such heavily loaded situations,
the throughput of the storage service can often be im-
proved by batching multiple requests together, thereby
reducing queuing delay and loss. Batching achieves this
improvement by amortizing the previously mentioned
overheads across larger requests, and prior work has doc-
umented that many stores provide higher throughput on
larger requests [7, 16, 35].

Dynamically adjusting their degree of batching allows
applications to achieve lower latency under light load and
higher throughput under heavy load. Unfortunately, ex-
isting work applying control theory to computer systems
offers no easily applicable solutions [18, 23]. For exam-
ple, a common assumption in control theory is modest
actuation delay: a reasonable and known fixed time be-
tween when an application changes its request rate and
the store responds to this change. Scale-out key-value
storage systems do not have such bounds, as an appli-
cation can easily create a very deep pipeline of requests
to the storage system. Other control theory techniques
avoid this assumption, but bring other assumptions that
are similarly unsatisfied by such storage systems. In-

1



stead, we observe that managing independent applica-
tion demands in a scale-out key-value storage environ-
ment is quite similar to congestion control in a network:
the challenge in both settings is determining an applica-
tion’s (sender’s) “fair share.” Moreover, the constraints
of distributed congestion control—multiple, independent
agents, unbounded actuation delay, and lack of a known
bandwidth target—are quite similar to our own. Hence,
we take inspiration from CTCP [37], a recently proposed
delay-based TCP variant which updates send-rates based
on deviation from the measured round-trip latency.

We propose an adaptive interface to cloud key-value
storage layers, called Stout, that implements distributed
congestion control for client requests. Stout works with-
out any explicit information from the storage layer: its
adaptation strategy is implemented solely at the applica-
tion server (the storage client) and is based exclusively on
the measured latency from unmodified scalable storage
systems. This allows Stout to be more easily deployed,
as individual cloud applications can adopt Stout without
changing the shared storage infrastructure. Stout both
adapts to sudden changes in application workload and
converges to fairness among multiple, competing appli-
cation servers employing Stout.

We show experimentally that Stout delivers good per-
formance across a range of workloads requiring batch-
ing intervals to vary by over two orders of magnitude,
and that Stout significantly outperforms any strategy us-
ing a fixed batching interval. Based on these results,
Stout demonstrates that much of the benefit of adapta-
tion can be had without needing to modify existing stor-
age systems; to use a new store, Stout requires only in-
ternal re-calibration. By allowing cloud applications to
sustain higher request rates under bursts, Stout can help
reduce the expense of over-provisioning [8, 34]. Simul-
taneously, Stout provides good common case storage la-
tency; this is critical to user-perceived latency because
generating a user response often requires multiple inter-
actions with the storage layer, thereby incurring this la-
tency multiple times [11].

The primary novelty of Stout is its adaptive algorithm
for dynamically adjusting the batching of storage re-
quests. To better understand both the benefits and chal-
lenges in building an adaptive interface to shared cloud
storage, we evaluate our adaptive control loop using a
workload inspired by a real-world cloud service that is
one component of Microsoft’s Live Mesh cloud-based
synchronization service [27]. In our performance evalu-
ation, we demonstrate that: 1) Stout successfully adapts
to a wide range of offered loads, providing under light
workloads over 34× lower latency than a long fixed
batching interval optimized for throughput, and under
heavy workloads over 3× the throughput of a short fixed
batching interval optimized for latency; 2) Stout provides

Figure 1: Stout in a datacenter spreadsheet application.

fairness without any explicit coordination across the dif-
ferent application servers utilizing a shared store; and 3)
the same adaptation algorithm works well with three dif-
ferent cloud storage systems (a partitioned store that uses
Microsoft SQL Server 2008; the PacificA research pro-
totype [26]; and the SQL Data Services cloud store [30]).

2. BACKGROUND
Stout targets interactive cloud services. This class of

services requires low end-user latency to a variety of
data. Stout facilitates high-performance storage access
for these services by controlling and adapting the way
the services make use of back-end key-value storage sys-
tems to provide the best possible response time (i.e., min-
imize end-user latency). While we believe that Stout’s
general approach of using a control loop to manage the
interactions with a persistent storage tier holds promise
for many different kinds of cloud-based services, includ-
ing those that process large data sets (e.g., services that
use MapReduce [10] or Dryad [20]) the rest of this sec-
tion elaborates on our current target class of interactive
latency-sensitive cloud services.

Stout works with scalable services that are partitioned.
A partitioned service is one that divides up a namespace
across a pool of servers, and assigns “keys” within that
namespace to only one server at a given point in time. To
enable fast response times, the objects associated with
the partition keys are stored in memory by these servers.
Stout is responsible for handling all interactions with the
back-end persistent storage tier. Figure 1 depicts a typ-
ical three-tier cloud service, and where Stout fits within
that model. The first tier simply consists of front-end
Web servers that route end-user requests to the appropri-
ate middle-tier server; the middle tier contains the appli-
cation logic glued together with Stout, and the back-end
tier is a persistent storage system.

As a concrete example, consider an online spreadsheet
application, such as that provided by Google Docs [15].
The user-interface component of the spreadsheet appli-

2



cation runs inside the client Web browser. As users per-
form actions within the spreadsheet, requests are submit-
ted to the cloud infrastructure that hosts the spreadsheet
service. User requests arrive at front-end Web servers af-
ter traversing a network load balancer, and the front-end
server routes the user request to the appropriate middle-
tier server which holds a copy of the spreadsheet in mem-
ory. Each server in the middle tier holds a large num-
ber of spreadsheets, and no spreadsheet is split across
servers. Whenever the processing of a user request re-
sults in a modification to the spreadsheet, the changes
are persisted to a scalable back-end storage system be-
fore the response is sent back to the user.

Many of today’s Web services are built using the same
paradigm as the spreadsheet application above. For ex-
ample, a service for tracking Web advertising impres-
sions can store many “ad counters” at each middle-tier
server. Email, calendar, and other online office applica-
tions can also use this partitioning paradigm [15, 19, 29].

Forcing writes to stable storage before responding to
the user ensures strong consistency across failures in the
middle tier; that is, once the user has received a response
to her request to commit changes, she can rest assured
they will always be reflected by subsequent reads. So
long as a middle-tier server maintains these semantics, it
is free to optimize the interactions with the storage layer.
Thus, when a middle-tier is handling multiple changes,
it can batch them together for the storage layer.

3. ADAPTIVE BATCHING
Batching storage requests together before sending

them to the store leads to several optimization opportu-
nities (Section 3.1). However, delaying requests to send
in a batch is only needed when the store would other-
wise be overloaded; if the store is lightly loaded, delay-
ing requests yields a net penalty to client-visible latency.
This motivates Stout’s adaptation algorithm, which mea-
sures current store performance to determine the correct
amount of batching as workloads change (Section 3.2).

3.1 Overlapped Request Processing
Having multiple storage requests to send in a batch re-

quires the application to overlap its own processing of
incoming client requests. Figure 2 illustrates overlapped
request processing for both reads and writes. Note that
only reads that miss the middle-tier’s cache require a re-
quest to the store; cache hits are serviced directly at the
middle-tier. Initially, the application receives two client
requests, “Change 1 on A” and “Change 2 on B”. Both of
the client requests are processed up to the point that they
generate requests for the store. These are then sent in a
single batch to the store. After the store acknowledgment
arrives, replies are sent to both of the client requests.
While waiting for the store acknowledgment, client re-

Figure 2: An example of overlapped request processing.

quest “Change 3 on B” arrives and is processed up to the
point of generating a request to the store. Later, client
request “Read B” arrives and hits the middle-tier cache,
while “Read C” arrives and requires fetching C from the
store. We describe in Section 4 how the Stout implemen-
tation handles the multiplexing of these storage requests
into batches and the corresponding de-multiplexing of
store responses. Grouping storage requests together en-
ables two well-known optimizations:

• Batching: Many stores perform better when a set of
operations is performed as a group, and many systems
incorporate a group-commit optimization [6, 16, 17].
The performance improvements arise from a number
of factors, such as reducing the number of commit
operations performed on the transaction log, or re-
ducing disk seek time by scheduling disk operations
over a larger set. Storage system performance further
improves by initiating batching from the middle-tier
for reasons that include reduced network and protocol
processing overheads.

• Write collapsing: When multiple writes quickly oc-
cur on the same object, it can be significantly more
efficient for the middle-tier server to send only the fi-
nal object state. An example where write collapsing
may arise in cloud services is tracking advertising im-
pressions, where many clients may increment a single
counter in quick succession and the number of writes
can be safely reduced by writing only the final counter
value to the store. Many workloads possess opportu-
nities for write collapsing, and many prior systems are
designed to exploit these opportunities [36, 40].

Stout’s novelty is managing how these optimizations
are exploited for a shared remote store based on a
multiplicative-increase multiplicative-decrease (MIMD)
control loop. It does this by varying a single parameter,
the batching interval. At the end of each interval, Stout
sends all writes and cache-miss reads to the store. In this
way, the batch size is simply all such reads and writes

3



Batching Interval
No batching 10ms 20ms

Requests/second 11k 13k 17k
Throughput Gain - 18% 55%

Table 1: How a service’s maximum throughput can in-
crease by exploiting batching.

generated in the previous interval, and write collapsing is
obtained to the extent that multiple updates to the same
key happened during this interval. Pipelining occurs if
this batch is sent to the store while an earlier batch is still
outstanding (i.e., when the batching interval is less than
the store latency).

For a given workload, a longer batching interval will
allow more requests to accumulate, leading to a larger
batch size and potentially greater throughput. Table 1
quantifies the improvement in maximum throughput for
one of the experimental configurations that we use to
evaluate Stout. This configuration is described in detail
in Section 5.2. Our goal here is simply to convey the
magnitude of potential throughput gain (over 50%) from
even slightly lengthening the batching interval. This
throughput gain translates into a much larger set of work-
loads that can be satisfied without queues building up at
the store and requests eventually being dropped.

However, the improved throughput of a longer batch-
ing interval is not always needed; if the workload is suf-
ficiently light, client latency is minimized by sending
every request to the store immediately. For example,
the batching intervals that lead to the higher through-
put shown in Table 1 also add tens of milliseconds to
latency. To determine the right batching interval at any
given point in time, Stout measures the current perfor-
mance of the store. Stout uses these measurements to set
its batching interval to be shorter if the store is lightly
loaded, and longer if the store is heavily loaded.

3.2 Updating the Batching Interval
The problem of updating the batching interval is a

classic congestion control problem: competing requests
originate independently from a number of senders (i.e.,
middle-tiers); these requests have to share a limited
resource—the store—and there is some delay before re-
source oversubscription is noticed by the sender (in this
case, the time until the store completes the request). Like
TCP, Stout does not require explicit feedback about the
degree of store utilization. This allows Stout to be easily
deployed with a wide range of existing storage systems.
Unlike TCP, Stout must react primarily to delay rather
than loss, as stores typically queue extensively before
dropping requests. Thus, our design for Stout’s control
loop borrows from a recent delay-based TCP, Compound
TCP (CTCP [37]). In general, delay-based TCP variants

EWMA factor 1/16
thresh 0.85
MinRequests 10
MinLatencyFrac 1/2

Table 2: Parameters to make measurements and compar-
isons robust to jitter.

react when the current latency deviates from a baseline,
falling back to traditional TCP behavior in the event of
packet loss. Compared to TCP Vegas [5] (another delay-
based TCP), CTCP more rapidly adjusts its congestion
window so that it can better exploit high bandwidth-
delay product links. For Stout, rapid adjustment means
faster convergence to a good batching interval.

However, one aspect of our problem differs from that
addressed by congestion control protocols. Delay-based
TCP assumes that increasing delay reflects congestion
and will consequently reduce the sending rate to allevi-
ate that congestion. Stout acts to reduce congestion by
improving per-request performance rather than reducing
send rates. Increasing the batch size means that the next
request will take longer to process even in the absence
of congestion. Furthermore, Stout must distinguish this
increased delay due to an increased batch size from in-
creased delay due to congestion. For this reason, Stout
has to depart from CTCP by incorporating throughput,
not just delay, into measuring current store performance
and assessing whether the store is congested.

The remainder of this section describes Stout’s ap-
proach to updating the batching interval, which we de-
note by intrvl, the time in milliseconds between send-
ing batches of requests to the store. In Section 3.2.1,
we describe how Stout decides when it is time to up-
date the batching interval. In Section 3.2.2, we describe
how Stout decides whether to increase or decrease the
batching interval. Increasing the batching interval cor-
responds to backing off—going slower because of the
threat of congestion—while decreasing the batching in-
terval corresponds to accelerating. Then in Section 3.2.3,
we describe how Stout decides how much to increase or
decrease the batching interval.

3.2.1 When to Back-off or Accelerate
Like TCP and its many variants, Stout is self clock-

ing: it decides whether or not to back-off more frequently
when the store is fast, and less frequently when the store
is slow. To this end, Stout tracks the latency between
when it sends a request to the store and when it receives
a response. Stout computes the mean of these latencies
over every request that completes since the last decision
to adjust intrvl; we abbreviate the mean latency as lat.

Stout decides to either back-off or accelerate as soon
as both MinRequests requests have completed and

4



(MinLatencyFrac× lat) time has elapsed; the former
term is dominant when there is little pipelining, and the
latter term is dominant when there is significant request
pipelining. We find that this waiting policy mitigates
much of the jitter in latency measurements across indi-
vidual store operations. Table 2 shows the settings for
these parameters that we used in our experiments, as well
as the other parameters (introduced later in this section)
that play a role in making Stout robust to jitter.

3.2.2 Whether to Back-off or Accelerate
Stout makes its decision on whether to back-off or ac-

celerate by comparing the current performance of the
store to the performance of the store in the recent past.
We denote the store’s current performance by perf , its
recent performance by perf∗, and we explain how both
are calculated over the next several paragraphs. As men-
tioned in the Introduction, Stout restricts its measure-
ments to response times so that it can be re-used on
different stores, as this measurement requires no store-
specific support. The performance comparison is done
with some slack (denoted as thresh), so as to avoid sen-
sitivity to small amounts of jitter in the measurements:

if (perf < (thresh× perf∗))
BACK-OFF

else
ACCELERATE

We calculate perf using the number of bytes sent to
and received from the store during the most recent self-
clocking window (denoted by bytes), the mean latency
of operations that completed during this same period
of time, and the length of the current batching interval.
(Note that higher perf is better.)

perf =
bytes

lat+ intrvl

Our perf definition is a simple combination of la-
tency and throughput: Stout’s latency is intrvl + lat,
the time until Stout initiates a batch plus the time until
the store responds; Stout’s throughput is bytes/intrvl,
the amount sent divided by how often it is sent.

Incorporating throughput appropriately rewards
backing-off when it causes throughput to increase and
the throughput improvement outweighs the larger store
latency (lat) from processing a larger batch. By contrast,
just measuring latency could lead to an undesirable
feedback loop: Stout could back-off (taking more time
between batches), each batch could send more work
and hence take longer, the store would appear to be
performing worse, and Stout could back-off again.

Stout must compute recent performance (perf∗) in a
manner that is robust to background noise, is sensitive
to the effects of Stout’s own decisions, and that copes
with delay between its changes and the measurement of

those changes. To this end, Stout computes perf∗ over
different sets of recent measurements depending on its
own recent actions (e.g., backing off or accelerating). To
explain the perf∗ computation, we first present the algo-
rithm and then provide its justification.

if (last decision was ACCELERATE)
perf∗ = MAXi(

bytesi
lati+intrvli

) (1)

else // last decision was BACK-OFF
if (intrvl < EWMA(intrvli))

perf∗ = EWMA(bytesi)
EWMA(lati)+EWMA(intrvli)

(2)

else // (intrvl ≥ EWMA(intrvli))
perf∗ = EWMA(bytesi)

EWMA(lati)+intrvl (3)

Equation (2) for computing perf∗ is the most straight-
forward: it is an exponentially weighted moving aver-
age (EWMA) over all intervals i since the last acceler-
ation. However, Stout cannot always wait for latency
changes to be reflected in this EWMA because of the risk
of overshooting—not reacting quickly enough to latency
changes that Stout itself is causing. This risk motivates
Equations (1) and (3), which we now discuss.

Equation (1) prevents overshoot while accelerating.
When Stout is accelerating, it runs a risk of causing the
store to start queuing. To prevent this, Stout heightens its
sensitivity to the onset of queuing by computing recent
performance (perf∗) as the best performance since the
last time Stout backed-off. Stout stops accelerating as
soon as current performance drops behind this best per-
formance. By contrast, calculating recent performance
using an EWMA would mask any latency increase due
to queuing until it had been incorporated into the EWMA
multiple times.

Equation (3) prevents overshoot while backing-off:
when Stout backs off, the increase in intrvl can penal-
ize current perf , potentially causing Stout to back-off yet
again, even if throughput (the bytes/lat portion of perf )
has improved. To address this, when the current intrvl
is larger than its recent history, we use it in calculating
both perf and perf∗.

3.2.3 How Much to Back-off or Accelerate
Stout reuses the MIMD-variant from CTCP [37]:

MIMD allows ramping up and down quickly, and as in
CTCP, incorporating

√
intrvl into the update rule pro-

vides fairness between competing clients. A minor dif-
ference between CTCP and Stout is that CTCP modi-
fies the TCP window, and backing-off corresponds to de-
creasing this window; Stout modifies its batch interval,
and backing-off corresponds to increasing this interval.

Stout backs off using a simple multiplicative back-off
step, and it accelerates using a multiplicative factor that
decreases as intrvl approaches its lower limit (1 ms in

5



α′ 1/400
αmax 1/2
β 1/10
intrvlinitial 80 ms
intrvlmax 400 ms

Table 3: Parameters for gain and boundary conditions.
These parameters are analogous to those in CTCP, e.g.,
intrvlmax corresponds to RTOmax.

this case):

BACK-OFF:
intrvli+1 = (1 + α) ∗ intrvli

ACCELERATE:
intrvli+1 = (1− β) ∗ intrvli + β ∗

√
intrvli

Competing clients converge to fairness because slow
clients accelerate more than fast clients when the store
is free, and all clients back-off by an equal factor when
the store is busy. The CTCP paper formally analyzes this
convergence behavior [37].

The incremental benefit of additional batching de-
creases as the batch size grows. Because of this, Stout
must react more dramatically if the store is already pro-
cessing large batches and then starts to queue. To accom-
plish this, we make α (the back-off factor) proportional
to an EWMA of latency, with an upper bound:

α = MAX(EWMA(lati) ∗ α′, αmax)

Finally, stores occasionally exhibit brief pauses in pro-
cessing, leading to short-lived latency spikes (this behav-
ior is described in greater detail in Section 5.7). This
behavior could cause Stout to back-off dramatically, and
then take a long time recovering. To address this, we in-
troduce an intrvlmax parameter; just as TCP will never
assume that the network has gotten so slow that retrans-
missions should wait longer than RTOmax, Stout will
never assume that store performance has degraded to the
point that batches should wait longer than intrvlmax.
This bounds Stout’s operating range, but allows it to re-
cover much more quickly from brief store pauses.

Table 3 shows the gain and boundary condition param-
eter settings. As in CTCP’s parameter settings, the initial
batching interval is conservative, and the gain parame-
ters lead to bigger back-offs than accelerations, similar
to how TCP backs off faster than it accelerates. Our ex-
periments in Section 5 show that Stout works well with
these choices, and that it effectively converges to batch-
ing intervals spanning over two orders of magnitude.

4. IMPLEMENTATION
Stout’s primary novelty is its algorithm for dynami-

cally adjusting the batching of storage requests. We im-
plement the Stout prototype to evaluate this algorithm

Figure 3: The internal architecture of Stout.

Figure 4: Data structures for Stout’s dependency map.

with a real-world cloud service (a component of Mi-
crosoft’s Live Mesh service [27]). We first describe
how the application ensures that each key is owned by
a single middle-tier (Section 4.1). We then describe
the Stout internal architecture (Section 4.2), followed
by how Stout multiplexes storage requests into batches
and the corresponding de-multiplexing of store responses
(Section 4.3). Finally, we describe the Stout API by
walking through an example of its use (Section 4.4).

4.1 Key Ownership
As discussed previously, applications that use Stout

must ensure that all requests on a given partition key are
handled by only one middle-tier server at any given point
in time. In particular, the write collapsing optimization
requires that all updates to a given partition key are being
sent to the same server. This requirement could be met
using a variety of techniques; the applications we evalu-
ate rely on Centrifuge [2].

Centrifuge is a system that combines lease-
management with partitioning. Centrifuge uses a
logically centralized manager to divide up a flat names-
pace of keys across the middle-tier servers. Centrifuge
grants leases to the middle-tiers to ensure that respon-
sibility for individual objects within the namespace are
assigned to only one server at any given point in time.
Front-end Web servers route requests to middle-tiers via
Centrifuge’s lookup mechanism.

4.2 Stout Internal Architecture
Stout’s internal architecture divides the problem of

managing interaction with the store into three parts, as
depicted in Figure 3. The “Persistence and Dependency

6



Stout.Fill(key) Ask Stout to fetch objects associated with partition key from store.
Stout.MarkDirty(key) Mark objects associated with partition key as modified, so that Stout knows to persist them.
Stout.MarkDeleted(key) Mark objects associated with partition key as deleted, so that Stout knows to delete them from store.
Stout.SendMessageWhenSafe(key, Sends a reply message after Stout’s internal dependency map indicates it is safe to send response.

sendMsgCallback)
Stout.SerializeDone(key[], byte[][]) App indicates completion of Stout’s request to serialize objects.
App.Serialize(key[]) Callback invoked by Stout for objects that have been marked dirty. Requests App to convert objects

into byte arrays to send to the store and respond with SerializeDone().
App.Deserialize(key[], byte[][]) Callback invoked by Stout when Fill() responses arrive from store. Converts each byte[] into object.

Table 4: Client API. All calls are asynchronous.

// We have received a message containing ‘‘update’’
// for the spreadsheet named by ‘‘key’’.
ProcessRequest(update, key) {
// If we don’t have the state for this key,
// we ask Stout to get it from the back-end store.
if (table[key] == null)
Stout.Fill(key);

... // Block until Stout has filled in table[key].

// Spreadsheet-specific logic is in UpdateSheet().
replyMessage = UpdateSheet(table[key], update);
Stout.MarkDirty(key); // Tell Stout about update.

// Ask Stout to send reply when update is persisted.
Stout.SendMessageWhenSafe(key, replyMessage);

}

(a) Placement of API calls in sample application code. Stout
and the application communicate via message passing, so the
application does not need to coordinate its locking with Stout.

(b) Flow of calls between spreadsheet application, Stout and
store. The portion of time when the spreadsheet application is
active is denoted by the thick black line.

Figure 5: An example use case of a spreadsheet application interacting with Stout.

Manager” component handles correctness and ordering
constraints (e.g., ensuring that requests are committed
to the store before replies are sent), as described in
Section 4.3. Applications interact with this component
through the API described in Section 4.4. The “Up-
date Batching Interval” component implements the adap-
tive batching algorithm from Section 3.2. The “Storage
Proxy” component is a thin layer that connects Stout to a
specific scalable storage system. We have implemented
three proxies to interface Stout with different cloud stor-
age systems, and all three use TCP as a transport layer.

4.3 Persistence and Dependencies
Each middle-tier uses Stout to manage its in-memory

data as a coherent cache of the store. Stout is responsible
for communicating with the store and ensuring proper
message ordering. The application is then responsible
for calling Stout when it: (1) needs to fetch data from the
store, (2) modifies data associated with a partition key, or
(3) wants to send a reply to a client.

Stout ensures proper message ordering by maintain-
ing a dependency map that consists of two tables, as de-
picted in Figure 4. Keys are added to the table of dirty
keys whenever the application notifies Stout that a key
has been modified. Messages provided by the applica-

tion are added to the table of in-progress operations if
the key is dirty or there are any outstanding operations
to the store on this key; otherwise, the messages are sent
out immediately. When Stout sends a batch of writes to
the store to commit the new values of some keys, those
same keys are removed from the table of dirty keys, and
Stout fills in the “Store Op” for the appropriate rows in
the table of in-progress operations. When a store opera-
tion returns, Stout sends out messages in the order they
were received from the application.

Figure 4 depicts both batching (keys 11 and 51 were
both sent in storage operation 29) and write collapsing
(two update operations for key 11 were both conveyed
in operation 29). Stout requires the store to commit op-
erations in order, but the store may still return acknowl-
edgments out of order. In our example, if the acknowl-
edgment of 30 arrives before the acknowledgment of 29,
Stout would mark the fourth row of the table “Ready”
and send the message once all earlier store operations on
key 11 are ready and their messages sent.

4.4 Stout API
Table 4 describes each of the API calls and the call-

backs that applications must provide for Stout. Figure 5a
shows how a datacenter spreadsheet application places

7



the API calls in its code. Before the application’s Pro-
cessRequest() function is called, the application has al-
ready received the request, done any necessary authenti-
cation, and checked that it holds the lease for the given
partition key. ProcessRequest() handles both modifying
spreadsheet objects (done in UpdateSheet()) and interact-
ing with Stout: using Stout to fetch state from the store,
letting Stout know that the state has been updated, and
telling Stout about a reply that should be sent once the
update has been persisted to the store. We do not show
the code to send the reply, but note that before the appli-
cation sends the reply message to the client, it must check
that the lease for the partition key has been continuously
held for the duration of the operation.

Figure 5b illustrates the ordering of calls between the
application and Stout, and between Stout and the store.
When an application or service first receives a request
on a given partition key, it fetches the state associated
with that partition key using the Stout.Fill() call. When
the state arrives, Stout calls App.Deserialize() to create
in-memory versions of fetched objects, which can then
easily be operated on by the application logic.

To support coherence, Stout needs to know when op-
erations modify internal service state, so that these up-
dates can be saved to the store. Since Stout has no a
priori knowledge of the application internals, Stout re-
quires the service developer to call Stout.MarkDirty()
in any service methods that modify objects associated
with a partition key. At some point after a key has been
marked as dirty, the Stout persistence manager will call
App.Serialize() on a set of dirty keys. By delaying calls to
App.Serialize(), Stout allows modifications to the same
object to overwrite each other in-memory, thus capturing
write collapsing. The application then responds by call-
ing Stout.SerializeDone() with the corresponding byte
arrays to be sent to the store.

When a Stout-enabled service would like to
send a response to a user’s request, it must use
Stout.SendMessageWhenSafe() to provide the outgo-
ing message callback to Stout. Stout will then take
responsibility for determining when it is safe to send
the outgoing message, based on its knowledge of the
current interactions with the persistent store related to
the partition key for that request. For example, if the
message is dependent on state which has not yet been
committed to the persistent store, Stout cannot release
the message until it receives a store acknowledgment
that the commit was successful.

For certain services, the state associated with a parti-
tion key may be large enough that one does not want to
serialize the entire object every time it is modified, espe-
cially if the size of the modifications is small compared
to the size of the entire state. To handle this case, the API
supports an additional parameter, a sub-key. Stout keeps

track of the set of dirty sub-keys associated with each
partition key, and asks the application for only the byte
arrays corresponding to these sub-keys. Finally, Stout
also enables deletion from the persistent store using the
Stout.MarkDeleted() call, which similarly takes both par-
tition keys and sub-keys. Stout tracks these requested
deletes, and then includes them in the next batch sent to
the store, along with any read and write operations.

5. EVALUATION
We now demonstrate the benefits of Stout’s adaptation

strategy. In Section 5.1, we describe the setup for our
experiments. In Section 5.2, we evaluate the potential
benefits of batching and write collapsing in the absence
of adaptation. In Sections 5.3-5.6, we evaluate Stout’s
adaptation strategy and show that it outperforms fixed
strategies with both constant and changing workloads,
that multiple instances of Stout dynamically converge to
fairly sharing a common store, and that Stout’s adapta-
tion algorithm works across three different cloud storage
systems. Finally, in Section 5.7, we examine the behav-
ior of our store, and we show that Stout is robust to brief
“hiccups” where the store stops processing requests.

5.1 Experimental Setup
We first describe the application that we ported to use

Stout and this application’s workload, and we then char-
acterize the system configuration for our experiments.

5.1.1 Application and Workload
The application we run on our middle-tier servers is a

“sectioned document” service. This service is currently
in production use, and additional details can be found
in the Centrifuge paper [2]. This service allows docu-
ments to contain independent sections that can be named,
queried, added, and removed. The unmodified service
is approximately 7k commented lines of C# code, and
we ported this service to use the Stout API changing ap-
proximately 300 lines of code. Stout itself consists of
4k commented lines of code and the storage proxies are
each approximately 600 commented lines of code.

In production, this service is deployed on multiple
large pools of machines. One pool is used exclusively to
store device presence: a small amount of addressing in-
formation, such as IP address, and an indication whether
the device is online. Although we were unable to obtain a
trace from production, we used known characteristics of
the production system to guide the design of a synthetic
client workload for our evaluation: varying request rates
on a large number of small documents, 2k documents per
middle-tier, each consisting of a single 256-byte section.
At saturation, our store is limited by the total number
of operations rather than the total number of bytes being
stored under this workload, a common situation [7, 31].

8



In this synthetic workload, we designed the read/write
mixture to best evaluate Stout’s ability to adapt under
workload variation. We avoid making the workload
dominated by reads, because this would have primarily
loaded the middle-tiers, and Stout’s goal is to appropri-
ately adapt when the store is highly loaded. We also
avoided a pure-write workload because this would not
capture how reads that hit the middle-tier cache are de-
layed if they touch documents that have been updated but
where the update has not yet been committed to the store.
This led us to choose a balanced request mixture of 50%
reads and 50% writes.

In the commercial cloud service that motivates our
workload, all data fits in RAM—Stout is using the store
for persistence, not capacity. Because of this, read laten-
cies are uniformly lower than write latencies (e.g., Fig-
ure 9 in Section 5.3). In the Stout consistency model,
write latencies impact the user experience because re-
sponses are only sent after persisting state changes (e.g.,
after saving a spreadsheet update). Because writes form
the half of the workload that poses the greater risk of
poor responsiveness, the rest of the evaluation reports
only write latencies unless otherwise noted.

5.1.2 System Configuration
Our testbed consists of 50 machines with dual-socket

quad-core Intel Xeon 5420 CPUs clocked at 2.5 GHz,
with 16 GB of RAM and 2×1 TB SATA 7200 rpm drives.
We chose the ratio of front-ends to middle-tiers to stor-
age nodes such that the overall system throughput was
maximized subject to the constraint that the storage sys-
tem was the bottleneck. This led to dividing the 50 ma-
chines into 1 experiment controller, 1 Centrifuge lease
manager, 12 front-ends that also generate the synthetic
client workload, 32 middle-tiers using the Stout library,
and 4 systems running the persistent storage system. The
choice of 32 middle-tiers means there are 64k total doc-
uments in the system. Unless noted otherwise, latency
is measured from the front-ends (denoted FE latency in
the figures)—this represents the part of end-to-end client
latency due to the datacenter application.

Most of our experiments run Microsoft SQL Server
2008 Express on each of the four storage servers to im-
plement persistent storage. We configure the storage
servers to use a dedicated disk for SQL logging, and we
followed the SQL documentation to ensure persistence
under power loss, including disabling write-caching on
our SATA drives [12]. The Stout storage proxy consists
of a simple client library that performs hash-based par-
titioning of the database namespace. For a small num-
ber of experiments, we used two additional stores: the
PacificA storage system [26] which uses log-based stor-
age and replication, and the commercially available SQL
Data Services (SDS) cloud-based storage system [30].

4k 6k 8k 10
k

12
k

14
k

16
k

18
k

20
k

load (requests/second)

0

50

100

150

200

250

300

F
E

la
te

nc
y

(m
s)

10 ms, low collapsing
20 ms, low collapsing
10 ms, high collapsing
20 ms, high collapsing

Figure 6: Two fixed batching intervals (10 ms, 20 ms) on
a workload with low write collapsing (10k documents)
or high write collapsing (100 documents).

2k 4k 6k 8k 10
k

12
k

14
k

16
k

18
k

load (requests/second)

0

50

100

150

200

250

300

F
E

la
te

nc
y

(m
s)

10 ms, no-batching
20 ms, no-batching
10 ms, batching
20 ms, batching

Figure 7: Two fixed batching intervals (10 ms, 20 ms) on
identical workloads with and without batching.

Under our workload, these stores occasionally exhibit
brief hiccups where they pause in processing; we de-
scribe this in more detail in Section 5.7. Unless noted
otherwise, we report data from runs without hiccups.

5.2 Batching and Write Collapsing
We perform two experiments to evaluate the po-

tential performance improvements that are enabled by
the batching and write collapsing optimizations. For
both experiments, we use two different fixed batch-
ing intervals—10 and 20 ms—to isolate the benefits of
batching and write collapsing from adaptation.

Figure 6 shows the performance benefits of write col-
lapsing. For this experiment, requests are delayed for the
duration of the batching interval, but they are not actu-
ally sent in a batch; at the end of each batching interval,
all the accumulated requests are sent individually to the
store. Because of this, the entire observed performance
difference is due to write collapsing. The low collapsing
workload consists of 10k documents spread across the
32 middle-tiers, while high collapsing consists of only
100 documents, significantly increasing the probability
that there are multiple updates to the same document
within the batching interval. The graph shows that, as
expected, write collapsing reduces latency and improves

9



5k 10
k

15
k

20
k

25
k

30
k

35
k

40
k

45
k

load (requests/second)

0

100

200

300

400

500

600

700

800
F

E
la

te
nc

y
(m

s)
Stout
160 ms interval
80 ms interval
40 ms interval
20 ms interval

Figure 8: Mean response latency for writes: Stout versus
fixed batching intervals over a wide variety of loads.

the capacity of the system. For the low collapsing case,
we see that the 10- and 20-ms batching intervals can sat-
isfy between 4k requests/second and 10k requests/second
with better client perceived latency for a 10-ms batch-
ing interval. However, at 12k requests/second the storage
system is overloaded, resulting in a large queuing delay
represented by an almost vertical line. In contrast, for
the high collapsing workload a 10-ms batching interval
can sustain nearly 15k requests/second because the ac-
tual number of writes sent to the store is reduced. For
the 20-ms batching interval, the number of writes is re-
duced enough to shift the bottleneck from the store to the
middle-tier and provide up to 80k requests/second.

Figure 7 shows the performance benefits of batching.
The no-batching experiments reflect disabling batching
using the same methodology as in the write collapsing
experiment: requests are delayed but then sent individ-
ually. We see that the throughput benefits of batching
are noticeable at 10 ms, and they increase as the batch-
ing interval gets longer, which in turn causes the batch
size to get larger. At a 20-ms batching interval, batch-
ing allows the system to handle an additional 6k requests
per second. The amount of write collapsing for each
fixed batching interval in this experiment is constant (and
small). We separately observed that PacificA also deliv-
ers performance benefits from batching (this is detailed
in Section 5.6, where we evaluate Stout on both PacificA
and SDS). As mentioned in the Introduction, the reason
for batching’s benefits depend on the individual store be-
ing used; for our partitioned store built on SQL, we sepa-
rately determined that a significant portion of the benefit
comes from submitting many updates as part of a single
transaction.

5.3 Adaptive vs. Fixed Batching
In this section, we demonstrate that Stout is effective

across a wide operating range of offered loads, and inves-
tigate the overhead imposed by Stout’s adaptation over
the best fixed batching interval at a given load.

5k 10
k

15
k

20
k

25
k

30
k

35
k

40
k

45
k

load (requests/second)

0

50

100

150

200

F
E

re
ad

la
te

nc
y

(m
s) Stout

160 ms interval
80 ms interval
40 ms interval
20 ms interval

Figure 9: Mean response latency for reads: Stout ver-
sus fixed batching intervals over a wide variety of loads.
Note that the y-axis is 4× smaller than in Figure 8.

Figures 8 and 9 compare Stout to fixed batching inter-
vals that vary from 20 ms up to 160 ms, for offered loads
that range from 5k requests/second all the way up to 41k
requests/second, which is very near the maximum load
that our storage system can support. These figures are
generated from the same experiments: Figure 8 shows
the mean response latency for write operations whereas
Figure 9 shows the latency for reads – all reads are cache
hits in this workload, but the latency numbers do in-
clude delay from reading an updated document where
the update has not yet been committed to the store. In
both graphs, we see that Stout provides a wider operat-
ing range than any of the fixed batching intervals, and
it provides response latencies that are either similar to
or better than the fixed batching intervals. Looking at
the two extremes of latency and throughput in Figure 8,
Stout’s 4.2 ms latency at 6k requests/second is over 34×
smaller than the 144 ms latency incurred by the longest
fixed batching interval in this experiment (160 ms), while
Stout’s 41k requests/second maximum is over 3× larger
than the 12k requests/second maximum for the shortest
fixed batching interval in this experiment (20 ms).

To understand the overhead of Stout’s adaptation, we
compare Stout to different fixed batching intervals at fine
granularity under two fixed workloads. In Figures 10 (a)
and (b), the time series show Stout’s latency to be rela-
tively steady, and for this reason we focus on the mean
latency throughout this section. Figure 10 (c) compares
Stout’s mean to fixed intervals with an offered load of
24k requests/second. The best fixed interval is at 50 ms,
and here we observe that Stout’s adaptation adds just un-
der 15 ms to the response latency (from 80 to 94 ms) and
is within the standard deviation. When the fixed batch-
ing interval is too short (40 ms), the store is overloaded
and we see large queuing delays. When the fixed interval
is too long (at 70 ms and above), we see unnecessary la-
tency. Figure 10 (d) shows a similar comparison, but with
an offered load of 26.4k requests/second. Here we see

10



1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

time (seconds)

0

50

100

150

200

250

300
F

E
la

te
nc

y
(m

s)

(a) Stout, 24k RPS
1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

time (seconds)

0

50

100

150

200

250

300

F
E

la
te

nc
y

(m
s)

(b) Stout, 26.4k RPS

30405060708090

Fixed Interval (ms)

0

50

100

150

200

250

300

F
E

la
te

nc
y

(m
s)

(c) Fixed, 24k RPS

30405060708090

Fixed Interval (ms)

0

50

100

150

200

250

300

F
E

la
te

nc
y

(m
s)

(d) Fixed, 26.4k RPS

Figure 10: Latency of responses for Stout (a, b) and fixed
batching intervals (c, d), at two different workloads, 24k
requests/second (a, c) and 26.4k requests/second (b, d).
In (a, b), we see Stout’s changing response latency over-
layed with its mean response latency. In (c, d), Stout’s
mean response latency is overlayed with the mean la-
tency and standard deviation for multiple fixed batching
intervals. The slight increase in requests/second causes
the best fixed interval from 24k requests/second to gen-
erate queuing at 26.4k requests/second.

that the best fixed interval is at 60 ms, and the overhead
imposed by Stout’s adaptation is about 25 ms (from 75 to
100 ms), again within the standard deviation. If we use
the best fixed interval from 24k requests/second (50 ms),
the store becomes overloaded and unable to process re-
quests in a timely fashion until the load subsides. These
results demonstrate the need for adaptation—choosing
the right fixed interval is difficult, even with this mod-
est difference in offered load.

5.4 Dynamic Load Changes
Thus far we have shown Stout operating over fixed

request rates. Here, we explore Stout’s response to a
sudden change in request load. For this experiment we
apply a fixed load of 12k requests/second to our stan-

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

time (seconds)

0

50

100

150

200

250

F
E

la
te

nc
y

(m
s)

fixed, load increase
Stout, load increase
fixed, load decrease
Stout, load decrease

Figure 11: Stout outperforms a fixed batching interval
after the load either increases or decreases.

dard configuration and part way through the experiment
we change the request load. Figure 11 shows the front-
end latency for two of these experiments. In the first ex-
periment, the load decreases to 6k requests/second. The
front-end latency for Stout decreases from 50 ms to 5 ms.
In the second experiment, the load increases to 18k re-
quests/second and the latency increases from 50 ms to 80
ms. In contrast, a 20-ms fixed interval is marginally bet-
ter than Stout at 12k requests/second but it only achieves
24 ms after the decrease and it causes queuing at the store
after the increase. This demonstrates Stout’s benefits in
the presence of workload changes.

5.5 Fairness
Cloud storage systems typically serve many middle-

tiers and it is important that these middle-tiers obtain fair
usage of the store. To measure Stout’s ability to converge
to fairness, we ran an experiment where after 90 seconds,
we forcibly set half of the thirty-two middle-tiers to a
batching interval of 400 ms and the remaining half to 80
ms. The middle-tier servers then collectively reconverge
to the steady state. Because Centrifuge balances the dis-
tribution of documents across the middle-tiers, they have
identical throughput throughout the experiment and we
are only concerned with latency-fairness. The middle-
tiers achieve good fairness after re-convergence: measur-
ing from 30 seconds after the perturbation to 120 seconds
after the perturbation, the mean latencies have a Jain’s
Fairness [22] of 0.97, where a value of 1.0 is optimal.

5.6 Alternate Storage Layers
To explore the generality of Stout’s adaptation algo-

rithm, we run experiments using two additional storage
platforms with substantially different architectures. For
both, we keep the same algorithm but calibrate the pa-
rameters to the new store. We first evaluate Stout against
SQL Data Services (SDS) [30], a pre-release commercial
storage system. For SDS, we calibrate the parameters to
be the same as in Section 3.2 except that thresh = 0.2

11



5k 10
k

15
k

20
k

25
k

30
k

load (requests/second)

0

100

200

300

400

500

600

700

800

900
F

E
la

te
nc

y
(m

s)
Stout
160 ms interval
80 ms interval
40 ms interval
20 ms interval

Figure 12: Mean response latency for writes using Paci-
ficA: Stout and fixed intervals over a variety of loads.

and β = 1/4. The current SDS API does not support
batching or pipelining, and thus the best approach in our
workloads is to send as rapidly as possible. We find that
Stout does converge to sending as rapidly as possible.

We also evaluate Stout against PacificA [26], a re-
search system that differs from our SQL-based storage
layer in that it includes replication and uses log-based
storage. We configure PacificA with three-way partition-
ing and three-way replication for a total of nine stor-
age machines and one additional metadata server. The
rest of the setup consists of twelve front-ends, sixteen
middle-tiers, and one Centrifuge manager server. We cal-
ibrate the parameters from Section 3.2 to have EWMA-
factor= 1/32, thresh = 0.7, and β = 1/8. Figure 12
shows Stout’s behavior across a range of request loads.
At low to moderate load, Stout compares favorably to
the best (20- and 40-ms) fixed batching intervals. As
load increases, PacificA’s log compaction frequency also
increases, resulting in sufficiently frequent store hiccups
that we are not able to avoid them in our experiments.
After 22.2k requests/second, Stout has difficulty differ-
entiating the store hiccups from the queuing behavior to
which it is adapting. In spite of these hiccups, Stout out-
performs any fixed batching interval in the presence of
significant workload variation: compared to the short in-
tervals, it avoids queuing at high loads; compared to long
intervals, it yields much better latency at low loads.

5.7 Store Hiccups
As mentioned in our experiments with PacificA, stores

sometimes experience hiccups, where they briefly pause
in processing new requests. Such Stout-independent hic-
cups can lead to large spikes in observed latency, com-
plicating Stout’s task of inferring store load. We now
investigate the issue of hiccups in more detail.

Figure 13 shows the occasional brief pauses in pro-
cessing (or “hiccups”) that occur over a 2-hour interval
when using the SQL Server storage system. For this ex-
periment, we used a single middle-tier server sending 3k
operations per second with a fixed 2-ms batching inter-
val to a single SQL Server back-end machine, and we

0 20 40 60 80 100 120

time (minutes)

0

500

1000

1500

2000

2500

SP
la

te
nc

y
(m

s)

Figure 13: Intermittent hiccups in store processing yield
brief spikes in latency as measured from the middle tier.
These measurements were taken with a 2-ms fixed batch-
ing interval and 3k requests/second.

measured latency from within the Stout storage proxy —
this is denoted SP latency and it only includes the time to
send the requests over a TCP connection to the back-end
and the time that the store takes to service these requests
and send responses back to the middle-tier. The figure
shows that these hiccups occur on an irregular and infre-
quent basis, and they lead to significant spikes in latency
— up to three orders of magnitude greater than the steady
state. Although this figure only shows the hiccups at one
offered load, we have run similar experiments with dif-
ferent loads, and we have not observed any obvious cor-
relation between the offered load and the frequency of
hiccups in this store.

Although we do not know the exact cause of hiccups
in the SQL store, we believe they are caused by periodic
background bookkeeping tasks that are common in stor-
age systems. We did make efforts to eliminate such hic-
cups from SQL Server by both disabling the option that
generates query-planning statistics and setting the recov-
ery interval to one hour (the recovery interval controls
how much replay from the log may be needed after a
crash). These changes reduced the number of hiccups
but did not eliminate them. As mentioned in Section 5.6,
we observed that log compaction is responsible for even
more frequent hiccups in PacificA.

Because these brief latency spikes may be unrelated
to the offered load, an appropriate response to them is
simply to pause briefly; increasing the batching interval
is not appropriate because the store is not actually over-
loaded. The problem of a unrelated event causing the
appearance of congestion is familiar from the literature
on TCP over wireless channels, where packet loss may
reflect either congestion (which should be mitigated by
the sender) or background channel noise (which can fre-
quently be ignored). In response, researchers have pro-
posed explicit signaling techniques like ECN [4, 25] to
improve performance in these challenging environments.
Our measurements suggest that similar mechanisms for

12



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

time (minutes)

0

100

200

300

400

500
m

s
Store Latency
Batching Interval

Figure 14: Stout recovering from a store hiccup while
operating at 3k requests/second.

adaptive use of cloud storage are also worth research-
ing. In this paper, we restrict our attention to showing
that Stout, which does not try to distinguish latency due
to store hiccups from latency due to overload, still copes
acceptably with such hiccups.

Figure 14 shows how Stout reacts to one of these hic-
cups: the solid line shows the measured response time
of the store, and the dashed line shows how Stout ad-
justs its intrvl as a result of the latency spike. With
intrvlmax set to 400 ms, Stout takes slightly over half
a minute to recover from the very large spike in latency
(the peak in this figure is 2,696 ms) caused by this hic-
cup. This recovery is rapid compared to the frequency of
hiccups. Lowering intrvlmaxwould improve recovery
time, but would also reduce Stout’s operating range.

The rarity of store hiccups raises a methodological
question: each of our experiments would have needed
to run for hours in order for the number of hiccups to
be similar across runs. Because Figure 8 alone includes
27 such experiments, such an approach would have sig-
nificantly hindered our ability to evaluate Stout under a
wide variety of conditions. Because Stout recovers from
store hiccups with reasonable speed, we chose instead
to re-run the occasional experiment that saw such a hic-
cup. The one exception is our experiment using PacificA
(Section 5.6), where hiccups were sufficiently frequent
that we did not need to take any special steps to ensure a
comparable number across runs.

6. RELATED WORK
Stout’s control loop is inspired by the literature on

TCP and, more generally, adaptive control in computer
systems. The Stout implementation also incorporates
a number of well-known techniques from storage sys-
tems. We briefly discuss a representative set of this re-
lated work.

There is a large existing literature on TCP [21, 24,
43]. This prior work has explored many different indi-
cators of utilization and load; Stout uses response time

measurements to adjust its rate of sending requests to the
store. In this regard, Stout is similar to TCP Vegas [5],
FAST TCP [41] and Compound TCP (CTCP) [37], each
of which attempts to tune the transmit rate of a TCP flow
based upon the inter-packet delay intervals. In compari-
son, Stout’s control loop has to deal with the additional
subtlety of distinguishing delay due to congestion from
delay due to sending a larger batch.

Control theory is a deep field with many applications
to computer systems [42, 38, 8, 34, 28, 9]. Despite
these successes, many adaptation problems in computer
systems have remained unaddressable by control the-
ory due to the dramatic differences between computer
systems and the systems that control theory has tradi-
tionally considered [18]. For example, advocates of
a class of controllers called self-tuning regulators have
constructed a list of eight requirements that computer
systems must satisfy to enable their successful applica-
tion [23]. Scale-out storage systems fail to satisfy a num-
ber of these conditions, such as the requirement for a
modest bound on the actuation delay of the system (e.g.,
if an application enqueues a large number of requests,
future request batching can take a very long time to re-
duce user-perceived latency). Other control techniques
may remove this particular requirement, but instead in-
troduce other difficult requirements, such as the need
for a detailed model of scale-out storage system perfor-
mance [23].

The Stout implementation borrows from prior work on
storage systems in two major ways. First, the perfor-
mance benefits of batching, write collapsing and pipelin-
ing are well-known, and have been leveraged by sys-
tems such as Lightweight Recoverable Virtual Memory
(LRVM) [36], Low-Bandwidth File System [32], Far-
site [1], Cedar [16], Practical BFT [6], Tandem’s B30
system [17] and the buffer cache [40]. Stout’s novelty is
in using a control loop to manage exploiting these opti-
mizations, not the optimizations themselves.

Second, Stout’s internal architecture incorporates at
least two major ideas from prior storage systems. Split-
ting consistency management from storage was explored
in Frangipani [39] and LRVM [36], while prior work
such as Soft Updates [14], Generalized File System De-
pendencies [13], and xsyncfs [33] explored ways to pro-
vide some or all of the performance benefits of delayed
writes with better consistency guarantees.

7. CONCLUSION
Stout’s adaptation algorithm is the first technique for

automatically adapting application usage of scalable key-
value storage systems. Stout treats store access as a
congestion control problem, measuring the application-
perceived latency and throughput of the store, and dy-
namically adjusting the application’s grouping of re-

13



quests to the store. To evaluate this algorithm, we im-
plemented the Stout system and modified a real-world
cloud service to use Stout. We found that in the presence
of significant workload variation, Stout dramatically out-
performs non-adaptive approaches.

Acknowledgements
We thank the anonymous reviewers, and our shepherd,
Garth Gibson, for their feedback on earlier drafts of this
manuscript.

8. REFERENCES
[1] A. Adya, W. J. Bolosky, R. Chaiken, J. R. Douceur, J. Howell,

and J. Lorch. Load management in a large-scale decentralized
file system. Technical Report MSR-TR-2004-60, Microsoft
Research, July 2004.

[2] A. Adya, J. Dunagan, and A. Wolman. Centrifuge: Integrated
Lease Management and Partitioning for Cloud Services. In
Proceedings of USENIX NSDI, Apr. 2010.

[3] Azure Storage. http://www.microsoft.com/azure/
windowsazure.mspx.

[4] H. Balakrishnan and R. Katz. Explicit Loss Notification and
Wireless Web Performance. In Proceedings of the IEEE
Globecom Internet Mini-Conference, 1998.

[5] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas:
New techniques for congestion detection and avoidance. In
Proceedings of ACM SIGCOMM, pages 24–35, Aug. 1994.

[6] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In
Proceedings of USENIX OSDI, 1999.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A
distributed storage system for structured data. In Proceedings of
USENIX OSDI, Nov. 2006.

[8] J. S. Chase, D. C. Andersen, P. N. Thakar, A. Vahdat, and R. P.
Doyle. Managing energy and server resources in hosting centres.
In Proceedings of ACM SOSP, pages 103–116, Oct. 2001.

[9] C. M. Chen and N. Roussopoulos. Adaptive database buffer
allocation using query feedback. In Proceedings of VLDB, pages
342–353, Aug. 1993.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In Proceedings of USENIX OSDI,
Dec. 2004.

[11] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels. Dynamo: Amazon’s highly available key-value store.
In Proceedings of ACM SOSP, pages 205–220, Oct. 2007.

[12] Disable SATA Write Caching.
http://support.microsoft.com/kb/811392.

[13] C. Frost, M. Mammarella, E. Kohler, A. de los Reyes,
S. Hovsepian, A. Matsuoka, and L. Zhang. Generalized file
system dependencies. In Proceedings of ACM SOSP, pages
307–320, Oct. 2007.

[14] G. R. Ganger and Y. N. Patt. Metadata update performance in
file systems. In Proceedings of USENIX OSDI, pages 49–60,
Nov. 1994.

[15] Google. Google Apps: Gmail, Calendar, Docs and more.
http://apps.google.com.

[16] R. Hagmann. Reimplementing the Cedar file system using
logging and group commit. SIGOPS Operating Systems Review,
21(5):155–162, 1987.

[17] P. Helland, H. Sammer, J. Lyon, R. Carr, P. Garrett, and
A. Reuter. Group Commit Timers and High Volume Transaction
Systems. In Proceedings of High Performance Transaction
Systems, pages 301–329, 1989.

[18] Y.-C. Ho. On centralized optimal control. IEEE Transactins on
Automatic Control, 50(4):537–538, 2005.

[19] Hotmail. http://www.hotmail.com.
[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:

Distributed data-parallel programs from sequential building
blocks. In Proceedings of ACM EuroSys, Mar. 2007.

[21] V. Jacobson. Congestion avoidance and control. In Proceedings
of ACM SIGCOMM, pages 314–329, Aug. 1988.

[22] R. Jain, D. M. Chiu, and W. Hawe. A quantitative measure of
fairness and discrimination for resource allocation in shared
computer systems. Technical Report TR-301, Digital Equipment
Corp., Sept. 1984.

[23] C. Karamanolis, M. Karlsson, and X. Zhu. Designing
controllable computer systems. In Proceedings of USENIX
HOTOS, 2005.

[24] T. Kelly. Scalable TCP: improving performance in highspeed
wide area networks. ACM SIGCOMM Computer
Communications Review, 33(2):83–91, 2003.

[25] A. Kuzmanovic. The Power of Explicit Congestion Notification.
In Proceedings of ACM SIGCOMM, pages 61–72, Aug. 2005.

[26] W. Lin, M. Yang, L. Zhang, and L. Zhou. PacificA: Replication
in log-based distributed storage systems. Technical Report
MSR-TR-2008-25, Microsoft Research, 2008.

[27] Live Mesh. http://www.mesh.com.
[28] J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang, and

T. E. Anderson. Improving the performance of log-structured file
systems with adaptive methods. In Proceedings of ACM SOSP,
pages 238–251, Oct. 1997.

[29] Microsoft. Office Web Applications.
http://www.microsoft.com/Presspass/
Features/2008/oct08/10-28PDCOffice.mspx.

[30] Microsoft. SQL Data Services.
http://www.microsoft.com/azure/data.mspx.

[31] M. Moshayedi and P. Wilkison. Enterprise SSDs. ACM Queue,
2008.

[32] A. Muthitacharoen, B. Chen, and D. Mazieres. A
Low-bandwidth Network File System. In Proceedings of the
18th ACM Symposium on Operating Systems Principles, pages
174–187. ACM New York, NY, USA, 2001.

[33] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and J. Flinn.
Rethink the sync. In Proceedings of USENIX OSDI, pages 1–14,
Nov. 2006.

[34] P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem. Adaptive control of virtualized
resources in utility computing environments. In Proceedings of
ACM EuroSys, pages 289–302, Mar. 2007.

[35] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Transactions on Computer Systems, 10(1):26–52, 1992.

[36] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere,
and J. J. Kistler. Lightweight recoverable virtual memory. ACM
Transactions on Computer Systems, 12(1):146–160, Feb. 1994.

[37] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound TCP
approach for high-speed and long distance networks. In
Proceedings of IEEE Infocom, pages 1–12, Apr. 2006.

[38] C. Tang, S. Tara, R. Chang, and C. Zhang. Black-Box
Performance Control for High-Volume Non-Interactive Systems.
In Proceedings of USENIX ATC, June 2009.

[39] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A scalable
distributed file system. In Proceedings of ACM SOSP, pages
224–237, Oct. 1997.

[40] W. Vogels. File system usage in Windows NT 4.0. In
Proceedings of ACM SOSP, pages 93–109, Dec. 1999.

[41] D. Wei, C. Jin, S. Low, and S. Hegde. FAST TCP: motivation,
architecture, algorithms, performance. IEEE/ACM Transactions
on Networking (TON), 14(6):1246–1259, 2006.

[42] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An
architecture for well-conditioned, scalable internet services. In
Proceedings of ACM SOSP, pages 230–243, Oct. 2001.

[43] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion
control (BIC) for fast long-distance networks. In Proceedings of
INFOCOM, Mar. 2004.

14


